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Abstract

:

In this article, a general contractive mapping is presented and some fixed point results in complete b-metric-like spaces are studied. The results obtained here extend and improve some related results in the literature. Also, new common fixed point results for a graphic contraction mappings are proved. Some comparative examples are given to support the obtained results. Moreover, an analytical solution of an integral equation has been presented as an application.
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1. Introduction


Fixed point theory plays an important role in applications of many branches of mathematics. Within the past thirty years several generalizations of a metric space have been made.



Problems in nonlinear analysis are solved by a popular tool called the Banach contraction principle. A lot of publications are devoted to the study and solutions of many practical and theoretical problems by using this principle [1,2,3,4,5,6]. One of the interesting generalizations of this basic principle was given by Bakhtin [7] (and also Czerwik [8]) by introducing the concept of b-metric spaces. Following the initial paper of Czerwik [8], a number of researchers in nonlinear analysis investigated the topology of the paper and proved several fixed point theorems in the context of complete b-metric spaces, (for example, see [9,10,11,12,13,14,15]).



The notion of a b-metric-like presented by Alghamdi et al. [16] as a generalization of a b-metric. They discussed some related fixed point consequences concerning with this space. Recently, Hussain et al. [17] examined topological structure of this space and presented some fixed point results in b-metric-like space. A lot of results on fixed points of mappings via certain contractive conditions in mention spaces have been done (for example, see [18,19,20,21,22,23,24]).



Many authors generalized fixed point theory in various directions either by using generalized contractions or by using more general spaces. Via these directions, in this article, we introduce generalized contractive mappings (so-called βq,ϕs,ψ-contraction mappings) and prove some new results on common fixed points. The obtained results generalize some classical common fixed point theorems in the literature. Finally, some common fixed point results for (s,q)-graphic contraction mappings, illustrative examples and an application to nonlinear integral equation are presented to justify the obtained results.




2. Preliminaries


This part is devoted to present some definitions and basic notions of metric-like and b-metric-like spaces.



Definition 1

([17]). Let Ω be a nonempty set. A mapping ω:Ω×Ω→[0,+∞) is said to be a metric-like if the following three conditions hold for all κ,τ,μ∈Ω:




	
(ω1)ω(κ,τ)=0⇒κ=τ;



	
(ω2)ω(κ,τ)=ω(τ,κ);



	
(ω3)ω(κ,μ)≤ω(κ,τ)+ω(τ,μ).








In this case, the pair (Ω,ω) is called a metric-like space.





Definition 2

([25]). A b-metric-like on a nonempty set Ω is a function ω:Ω×Ω→[0,+∞) such that for all κ,τ,μ∈Ω, the following three conditions hold:




	
(ω1)ωb(κ,τ)=0⇒κ=τ;



	
(ω2)ωb(κ,τ)=ωb(τ,κ);



	
(ω3)ω(κ,μ)≤s[ωb(κ,τ)+ωb(τ,μ)].








In this case, the pair (Ω,ωb) is called a b-metric-like space (with a constant s≥1).





In a b-metric-like space (Ω,ωb), if κ,τ∈Ω and ωb(κ,τ)=0, then κ=τ, and the converse is not true in general.



Example 1.

Let Ω={0,1,2} and let


ωb(κ,τ)=3,κ=τ=0,13,otherwise.











Then (Ω,ωb) is a b-metric-like space with the constant s=3.





Example 2.

If Ω=R, then ωb(κ,τ)=κ+τ defines a metric-like on Ω.





Example 3.

Let Ω=[0,+∞),q>1 be a constant, and ωb:Ω×Ω→[0,+∞) be defined by


ωb(κ,τ)=(κ+τ)q,∀κ,τ∈Ω.











Then (Ω,ωb) is a b-metric-like space with coefficient s=2q−1.





Example 4.

Let (Ω,ωb) be a metric-like space and ωb(κ,τ)=ω(κ,τ)q, where q>1 is a real number, then (Ω,ωb) is a b-metric-like space with coefficient s=2q−1, this follows immediately by the fact that (a+b)q≤2q−1(aq+bq).





By Example 4, we can get:



Example 5.

Let Ω=[0,1]. Then the mapping ωb1:Ω×Ω→[0,+∞) defined by ωb1(κ,τ)=κ+τ−κτq is b-metric-like on Ω with coefficient s=2q−1, where q>1 is a real number.





Example 6.

Let Ω=R. Then the mappings ωi:Ω×Ω→[0,+∞)(i∈{2,3,4}), defined by


ωb2(κ,τ)=κ+τ+aq,ωb3(κ,τ)=κ−b+τ−bq,ωb4(κ,τ)=κ2+τ2q.








are b-metric-like on Ω, where q>1,a≥0 and b∈R.





Definition 3

([25]). Let {xn} be a sequence on a metric-like space (Ω,ωb) with coefficient s.




	(i) 

	
If limm,n→∞ωb(κn,κ)=ωb(κ,κ), then the sequence {κn} is said to be convergent to κ;




	(ii) 

	
The sequence {κn} is said to be a Cauchy sequence in (Ω,ωb) If limm,n→∞ω(κm,κn) exists and is finite;




	(iii) 

	
(κ,ωb) is said to be a complete b-metric-like space if for every Cauchy sequence {κn} in Ω, there exists an κ∈Ω, such that limm,n→∞ωb(κm,κn)=ωb(κ,κ)=limn→∞ωb(κn,κ).











Remark 1.

In a b-metric-like space the limit of a sequence need not be unique and a convergent sequence need not be a Cauchy sequence.





To show this remark, we give the following example



Example 7.

Let Ω=[0,+∞). Define a function ωb:Ω×Ω→Ω by ωb(κ,τ)=max{κ,τ}2. Then (Ω,ωb) is a b-metric-like space with a coefficient s=2. Suppose that


{κn}=0whennisodd1whenniseven.











For κ≥1,limn→∞ωb(κn,κ)=limn→∞max{κn,κ}2=κ2=ωb(κ,κ). Therefore, it is a convergent sequence and κn→κ for all κ≥1. That is, limit of the sequence is not unique. Also, limm,n→∞ω(κm,κn) does not exist. Thus, it is not a Cauchy sequence.





Lemma 1

([26]). Let T:Ω→Ω be a nonlinear self-mapping on a b-metric-like space (Ω,ωb) with coefficient s. Consider T is continuous at η∈Ω. Then for all sequences {κn} in Ω such that κn→η, we get Tκn→Tη that is


limn→∞ωb(Tκn,Tη)=ωb(Tη,Tη).













The proof of the following lemma is obvious.



Lemma 2.

Suppose that (Ω,ωb) be a b-metric-like space with coefficient s≥1. Then




	(i) 

	
If ωb(κ,τ)=0, then ωb(κ,κ)=ωb(κ,τ)=0;




	(ii) 

	
If {κn} is a sequence such that limn→∞ωb(κn,κn+1)=0 then, we can write


limn→∞ωb(κn,κn)=limn→∞ωb(κn+1,κn+1)=0;












	(iii) 

	
if κ≠τ, then ωb(κ,τ)>0.











Lemma 3 

([27]). Let {τn} be a sequence on a complete b-metric-like space (Ω,ωb) with parameter s≥1 such that


limn→∞ωb(τn,τn+1)=0.



(1)







If limn,m→∞ωb(τn,τm)≠0, there exists an ε>0 and sequences {m(ℓ)}ℓ=1∞ and {n(ℓ)}ℓ=1∞ of positive integers with nℓ>mℓ>ℓ such that


ωb(τnℓ,τmℓ)≥ε,ωb(τmℓ,τnℓ−1)<ε,εs2≤limsupn→∞ωb(τnℓ−1,τmℓ−1)≤εs,εs≤limsupn→∞ωb(τnℓ−1,τmℓ)≤ε,εs≤limsupn→∞ωb(τnℓ,τmℓ−1)≤εs2.













Definition 4

([28]). The nonlinear self-mappings T,S:Ω→Ω are weakly compatible if TSκ=STκ, whenever Sκ=Tκ.





Proposition 1 

([29]). Let T and S be weakly compatible self-maps of a nonempty set Ω. If T and S have a unique point of coincidence η=Sξ=Tξ, then η is the unique common fixed point of T and S.






3. An βq,ϕs,ψ-Contraction Mapping


This section is prepared to introduce βq,ϕs,ψ-contraction mappings and obtained some common fixed point results for such class of contractions in the framework of b-metric-like spaces.



Let Ψ, Φ denote the class of functions ψ,ϕ:[0,∞)→[0,∞) (respectively) satisfying the following conditions:




	▸

	
ψ is non-decreasing, continuous function and ψ(t)=0, if t=0;




	▸

	
ϕ is a lower semi-continuous and ϕ(t)=0, if t=0.









Definition 5.

Let (Ω,ωb) be a b-metric-like space with parameter s≥1. Let the constants q≥2 and β∈[0,1). The nonlinear self-mappings T,S:Ω→Ω are called βq,ϕs,ψ-contraction mappings if for all κ,τ∈Ω


ψ2sqωb(Tκ,Tτ)≤βψMωb(κ,τ)−ϕMωb(κ,τ),



(2)




where ψ∈Ψ, ϕ∈Φ and


Mωb(κ,τ)=maxωb(Sκ,Sτ),ωb(Sκ,Tτ),ωb(Sτ,Tκ),ωb(Sκ,Tκ)+ωb(Tτ,Sτ)4s.













Now we begin with our first result.



Theorem 1.

Let (Ω,ωb) be a complete b-metric-like space with the constant s≥1, and T,S:Ω→Ω be mappings satisfy the following conditions:




	(i) 

	
T(Ω)⊂S(Ω);




	(ii) 

	
the pair (S,T) is an βq,ϕs,ψ-contraction;



then, T and S have a point of coincidence in Ω.




	(iii) 

	
Moreover, if T and S are weakly compatible, then T and S have a unique common fixed point in Ω.











Proof. 

Let κ∘ be an arbitrary point in Ω. Since T(Ω)⊂S(Ω), there exists κ1∈Ω such that Tκ∘=Sκ1. By continuing this process inductively, we get a sequence {κn} in Ω such that


τn=Tκn=Sκn+1.











If ωb(τn∘,τn∘+1)=0 for some n∘∈N, then we have τn∘=τn∘+1 i.e., τn∘ is a common fixed point of the pair (T,S) and the proof is finished.



Now, let for all n∘∈N,ωb(τn+1,τn)>0.



By (2), one can get


ψ2sωb(τn+1,τn)≤ψ2sqωb(τn+1,τn)=ψ2sqωb(Tκn+1,Tκn)≤βψMωb(κn+1,κn)−βϕMωb(κn+1,κn)=βψmaxωb(Sκn+1,Sκn),ωb(Sκn+1,Tκn),ωb(Sκn,Tκn+1),ωb(Sκn+1,Tκn+1)+ωb(Tκn,Sκn)4s−βϕmaxωb(Sκn+1,Sκn),ωb(Sκn+1,Tκn),ωb(Sκn,Tκn+1),ωb(Sκn+1,Tκn+1)+ωb(Tκn,Sκn)4s=βψmaxωb(τn,τn−1),ωb(τn,τn),ωb(τn−1,τn+1),ωb(τn,τn+1)+ωb(τn,τn−1)4s−βϕmaxωb(τn,τn−1),ωb(τn,τn),ωb(τn−1,τn+1),ωb(τn,τn+1)+ωb(τn,τn−1)4s≤βψmaxωb(τn,τn−1),2sωb(τn,τn−1),s[ωb(τn−1,τn)+ωb(τn,τn+1)],ωb(τn,τn+1)+ωb(τn−1,τn)4s−βϕmaxωb(τn,τn−1),2sωb(τn,τn−1),s[ωb(τn−1,τn)+ωb(τn,τn+1)],ωb(τn,τn+1)+ωb(τn−1,τn)4s.



(3)







If ωb(τn,τn−1)≤ωb(τn,τn+1) for some n∈N, then by (3), we can get


ψ2sωb(τn+1,τn)≤βψ2sωb(τn+1,τn)−βϕ2sωb(τn+1,τn)<ψ2sωb(τn+1,τn)−ϕ2sωb(τn+1,τn).











According to definition of ψ and ϕ, the above inequality gives ωb(τn+1,τn)=0, which is a contradiction, since we have supposed ωb(τn+1,τn)>0. Hence, for all n∈N


ψ2sωb(τn+1,τn)≤ψ2sqωb(τn+1,τn)≤βψ2sωb(τn,τn−1)−βϕ2sωb(τn,τn−1).



(4)







Hence,


ωb(τn+1,τn)<ωb(τn,τn−1),








that is, a sequence {ωb(τn+1,τn)} is decreasing and bounded below. Thus there exists r≥0 such that


limn→∞ωb(τn+1,τn)=r.



(5)







Now, we proof r=0 by a contradiction. Assume that r>0. Taking limit as n→∞ in (4), using (5), since β∈[0,1) and by the properties of ψ and ϕ, we have


ψ2sr≤β(ψ2sr−ϕ2sr)<ψ2sr−ϕ2sr.











This is a contradiction. Hence


limn→∞ωb(τn+1,τn)=0.



(6)







In the next step, we claim that


limn,m→∞ωb(τn,τm)=0.











Let if possible, limn,m→∞ωb(τn,τm)≠0, then by Lemma 3, there exist ε>0 and sequences {m(ℓ)} and {n(ℓ)} of positive integers with nℓ>mℓ>ℓ such that ωb(κnℓ,κmℓ)≥ε, ωb(κnℓ−1,κmℓ)<ε and


εs2≤limsupn→∞ωb(τmℓ−1,τnℓ−1)≤εs,εs≤limsupn→∞ωb(τnℓ−1,τmℓ)≤ε,εs≤limsupn→∞ωb(τnℓ,τmℓ−1)≤εs2.



(7)







By the contractive condition (2), we obtain


ψ2s2ωb(τmℓ,τnℓ)=ψ2sqωb(τmℓ,τnℓ)=ψ2sqωb(Tκmℓ,Tκnℓ)≤β[ψMωb(κmℓ,κnℓ)−ϕMωb(κmℓ,κnℓ)],



(8)




where


Mωb(κmℓ,κnℓ)=maxωb(Sκmℓ,Sκnℓ),ωb(Sκmℓ,Tκnℓ),ωb(Sκnℓ,Tκmℓ),ωb(Sκmℓ,Tκmℓ)+ωb(Tκnℓ,Sκnℓ)4s=maxωb(τmℓ−1,τnℓ−1),ωb(τmℓ−1,τnℓ),ωb(τnℓ−1,τmℓ),ωb(τmℓ−1,τmℓ)+ωb(τnℓ−1,τnℓ)4s.



(9)







Passing the upper limit as k→∞ in (9) and using (6) and (7), we can get


limsupn→∞Mωb(κmℓ,κnℓ)=max{εs,εs2,ε,0}.



(10)







Again, passing the upper limit as k→∞ in (8) and applying (10), we have


ψ2s2ε≤β[ψεs2−ϕεs2].











By properties of ψ,ϕ and the assumption ε>0 leads to a contradiction. Hence the sequence {τn} is a Cauchy sequence in the complete b-metric-like space (Ω,ωb). By completeness, there is a point η∈Ω such thatx


limn→∞ωb(τn,η)=limn→∞ωb(Tκn,η)=limn→∞ωb(Sκn+1,η)=0.



(11)







Since T(Ω)⊂S(Ω), there exists ξ∈Ω such that Sξ=η. Now, we shall prove that Tξ=Sξ, then by (11)


ψ2s2ωb(η,Tξ)=ψ2sqωb(η,Tξ)=ψ2sqωb(Tκn,Tξ)≤βψmaxωb(Sκn,Sξ),ωb(Sκn,Tξ),ωb(Sξ,Tκn),ωb(Sκn,Tκn)+ωb(Tξ,Sξ)4s−βϕmaxωb(Sκn,Sξ),ωb(Sκn,Tξ),ωb(Sξ,Tκn),ωb(Sκn,Tκn)+ωb(Tξ,Sξ)4s=βψmaxωb(τn−1,Sξ),ωb(τn−1,Tξ),ωb(Sξ,τn),ωb(τn−1,τn)+ωb(Tξ,Sξ)4s−βϕmaxωb(τn−1,Sξ),ωb(τn−1,Tξ),ωb(Sξ,τn),ωb(τn−1,τn)+ωb(Tξ,Sξ)4s.



(12)







By taking the limit as n→∞ in (12) and using (6) and (11), we can write


ψ2sωb(η,Tξ)≤ψ2s2ωb(η,Tξ)≤βψmaxωb(η,Sξ),ωb(η,Tξ),ωb(Sξ,η),ωb(Tξ,η)+ωb(Sξ,η)4−βϕmaxωb(η,Sξ),ωb(η,Tξ),ωb(Sξ,η),ωb(Tξ,η)+ωb(Sξ,η)4=βψ(2sωb(η,Tξ))−ϕ(ωb(η,Tξ))<ψ(2sωb(η,Tξ))−ϕ(ωb(η,Tξ)).











By the definition of ψ and ϕ, we have a contradiction. Hence ωb(η,Tξ)=0, i.e.,


η=Tξ=Sξ.











Then, T and S have a coincidence point η∈Ω, then by Proposition 1, η is a unique common fixed point of the pair (S,T), whenever, T and S are weakly compatible. This completes the proof. □





As a consequence of Theorem 1, we obtain the following results.



Corollary 1.

Let (Ω,ωb) be a complete b-metric-like space with parameter s≥1. If the nonlinear mappings T,S:Ω→Ω are weakly compatible such that T(Ω)⊂S(Ω). Assume that ψ∈Ψ, ϕ∈Φ,β∈[0,12) and q≥2 such that the condition


ψ2sqωb(Tκ,Tτ)≤βψMωb(κ,τ)1+ϕMωb(κ,τ),



(13)




holds for all κ,τ∈Ω, where M(κ,τ) is referred to in Definition 5, therefore T and S have a unique common fixed point in Ω.





Proof. 

The inequality (13) implies the inequality (2). So the proof finished by Theorem 1. □





Corollary 2.

Suppose that (Ω,ωb) is a complete b-metric-like space with coefficient s≥1. If the nonlinear mappings T,S:Ω→Ω are weakly compatible such that T(Ω)⊂S(Ω). Assume that ψ∈Ψ, ϕ∈Φ,β∈[0,12) and q≥2 such that the condition


ψ2sqωb(Tκ,Tτ)≤βψMωb(κ,τ)ϕMωb(κ,τ)1+ϕMωb(κ,τ),



(14)




holds for all κ,τ∈Ω, where M(κ,τ) is mentioned in Definition 5, therefore T and S have a unique common fixed point in Ω.





Proof. 

The inequality (14) implies the inequality (2). Hence the conclusion follows from Theorem 1. □





Corollary 3.

Consider (Ω,ωb) is a complete b-metric-like space with coefficient s≥1. If the nonlinear mappings T,S:Ω→Ω are weakly compatible such that T(Ω)⊂S(Ω). Assume that ψ∈Ψ, ϕ∈Φ,β∈[0,12) and q≥2 such that the condition


ψ2sqωb(Tκ,Tτ)≤βψMωb(κ,τ)−ϕMωb(κ,τ)1+ϕMωb(κ,τ),



(15)




holds for all κ,τ∈Ω, where M(κ,τ) is defined as in Definition 5, therefore T and S have a unique common fixed point in Ω.





Proof. 

Taking into account that ϕ is a lower semi-continuous function with ϕ(t)=0⇔t=0, we have


βψMωb(κ,τ)−ϕMωb(κ,τ)1+ϕMωb(κ,τ)≤βψMωb(κ,τ)1+ϕMωb(κ,τ),








for all κ,τ∈Ω and β∈[0,12). Hence inequality (15) implies inequality (13). Hence the conclusion follows from Theorem 1. □





In particular, by taking ψ(t)=t and S=T in Theorem 1, we have the following result.



Corollary 4.

Let (Ω,ωb) be a complete b-metric-like space with parameter s≥1, and T:Ω→Ω be a given self-mapping that satisfies


sqωb(Tκ,Tτ)≤βMωb(κ,τ)−ϕMωb(κ,τ),



(16)




where


Mωb(κ,τ)=maxωb(κ,τ),ωb(κ,Tτ),ωb(τ,Tκ),ωb(κ,Tκ)+ωb(τ,Tτ)4s,








for some constants β∈[0,1), q≥2 and for all κ,τ∈Ω. Then T has a unique fixed point.





Putting ψ(t)=t and ϕ(t)=12t in the above theorem, we can get the following result.



Corollary 5.

Let (Ω,ωb) be a complete b-metric-like space with parameter s≥1, and T,S:Ω→Ω be given self-mappings satisfies


sqωb(Tκ,Tτ)≤βmaxωb(Sκ,Sτ),ωb(Sκ,Tτ),ωb(Sτ,Tτ),ωb(Sκ,Tκ)+ωb(Tτ,Sτ)4s,








for some constants β∈[0,12), q≥2 and for all κ,τ∈Ω. Then T,S have a unique common fixed point, provided that the pair (S,T) is weakly compatible.





By the relation a+b≤max{a,b}, we obtain the following result.



Corollary 6.

Let (Ω,ωb) be a complete b-metric-like space with parameter s≥1. If T,S:Ω→Ω be self-mappings and there exists q≥2 and constants ci≥0,i=1,..,5 with c1+c2+c3+c4+c5<1 such that


sqωb(Tκ,Tτ)≤c1ωb(Sκ,Sτ)+c2ωb(Sκ,Tτ)+c3ωb(Sτ,Tτ)+c4ωb(Sκ,Tκ)+c5ωb(Tτ,Sτ),



(17)




for all κ,τ∈Ω. Then T and S have a unique common fixed point, provided that the pair (S,T) is weakly compatible.





The following examples illustrates the above results.



Example 8.

Let Ω=[0,+∞) and ωb(κ,τ)=κ2+τ2+κ−τ2 for all κ,τ∈Ω. It’s obvious that ωb is a b-metric like on Ω, with coefficient s=2 and (Ω,ωb) is a complete. Define nonlinear self-mappings T,S:Ω→Ω by Tκ=116ln(1+κ4), Sκ=14ln(1+κ2) for all κ,τ∈Ω, and the functions ψ(t)=t, ϕ(t)=t4 and constant q=2. It is clear that T(Ω)⊂S(Ω). Since t≥ln(1+t) for each t∈[0,∞), for all κ,τ∈Ω, we have


2s2ωb(Tκ,Tτ)=2s2T2κ+T2τ−Tκ−Tτ2=8ln(1+κ4)162+ln(1+τ4)162+ln(1+κ4)16−ln(1+τ4)162≤8κ2162+τ2162+κ16−τ162=132κ2+τ2+κ−τ2=132ωb(κ,τ).



(18)







By the same method, we have ωb(Sκ,Sτ)≤116ωb(κ,τ), again


ωb(Sκ,Tτ)=κ216+τ2162+κ4−τ162≤κ216+τ216+κ4−τ42=116κ2+τ2+κ−τ2=116ωb(κ,τ).











Similarly, ωb(Sτ,Tκ)=116ωb(κ,τ). On the other hand


ωb(Sκ,Tκ)=S2κ+S2κ=κ216+κ2162≤κ28,ωb(Tτ,Sτ)=T2τ+S2τ=τ2162+τ216≤τ28,ωb(Sκ,Tκ)+ωb(Tτ,Sτ)4s≤κ28+τ288=κ2+τ264≤164(κ2+τ2+κ−τ2)=164ωb(κ,τ).











From definition Mωb(κ,τ), we can write


Mωb(κ,τ)=116ωb(κ,τ).



(19)







Combining (18) and (19), we get


ψ2sqωb(Tκ,Tτ)=2s2ωb(Tκ,Tτ)=132ωb(κ,τ)≤23364ωb(κ,τ)=23116ωb(κ,τ)−164ωb(κ,τ)=23Mωb(κ,τ)−14Mωb(κ,τ)=βψ(Mωb(κ,τ))−ϕ(Mωb(κ,τ)).











Therefore, the pair (S,T) is βq,ϕs,ψ-contraction with β=23<1.



Moreover, the mappings T and S are weakly compatible, since 116ln(1+κ4)=14ln(1+κ2) only at κ=0 and T0=S0=0, also, TS0=T0=0=ST0. All of the axioms of Theorem 1 are satisfied and clearly κ=0 is a unique common fixed point of T and S.





Example 9.

Let Ω={0,1,2}. Define ωb:Ω×Ω→[0,+∞) as follows: ωb(0,0)=0,ωb(1,1)=3,ωb(2,2)=1,ωb(0,1)=ωb(1,0)=8,ωb(0,2)=ωb(2,0)=1 and ωb(1,2)=ωb(2,1)=4. Define ϕ(t)=t1+t, and define the mapping T:Ω→Ω by T0=0,T1=2, and T2=0. It is obvious that (Ω,ωb) is a complete b-metric-like space with the constant s=85. Let q=2, we show that the condition (16) is true. Since


sqωb(T0,T0)=0=βMωb(0,0)−ϕMωb(0,0),β=0;sqωb(T0,T1)=6425≤925(8−89)=βMωb(0,1)−ϕMωb(0,1),β=925<1;sqωb(T0,T2)=0=β(325−3237)=βMωb(0,2)−ϕMωb(0,2),β=0;sqωb(T1,T1)=6425≤45(4−45)=βMωb(1,1)−ϕMωb(1,1),β=45<1;sqωb(T1,T2)=6425≤925(8−89)=βMωb(1,2)−ϕMωb(1,2),β=925<1;sqωb(T2,T2)=0=β(1−12)=βMωb(2,2)−ϕMωb(2,2),β=0,











So, for all κ,τ∈Ω, we have sqωb(Tκ,Tτ)≤βMωb(κ,τ)−ϕMωb(κ,τ). Therefore all the required hypotheses of Corollary 4 are satisfied, and thus we deduce the existence and uniqueness of the fixed point of T. Here, 0 is the unique fixed point of T.






4. (s,q)-Graphic Contraction and Related Fixed Points


In this section we use the contractive condition (17) of Corollary 6 to discuss some common fixed point results in the framework of b-metric-like spaces endowed with a graph.



In line with Jachymski [30], let (Ω,ωb) be a metric-like space and ℜ denote the diagonal of the Cartesian product Ω×Ω. Consider a directed graph G such that the set Θ(G) of its vertices coincides with Ω, and the set Ξ(G) of its edges contains all loops, i.e., Ξ(G)⊇ℜ. We assume that G has no parallel edges, so we can identify G with the pair (Θ(G),Ξ(G)). Moreover, we may treat G as a weighted graph (see, [30]) by assigning to each edge the distance between its vertices.



By G−1 we denote the conversion of a graph G, that is, the graph obtained from G by reversing the direction of edges. Thus, we have


Ξ(G−1)={(κ,τ)∈Ω×Ω:(τ,κ)∈Ξ(G)}.











The letter G˘ denotes the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat G˘ as a directed graph for which the set of its edges is symmetric. Under this convention


Ξ(G˘)=Ξ(G)∪Ξ(G−1).











If κ and τ are vertices in a graph G, then a path in G from κ to τ of length N(N∈N) is a sequence {κi}iN=0 of N+1 vertices such that κ∘=κ, κN=τ and (κn−1,κn)∈Ξ(G) for i=1,…,N. A graph G is connected if there is a path between any two vertices. G is weakly connected if G˘ is connected.



Recently, some results have appeared providing sufficient conditions for a self mapping of Ω to be a Picard operator when (Ω,d) is endowed with a graph. The first result in this direction was given by Jachymski [30].



Definition 6.

A nonlinear mapping S:Ω→Ω is a Banach G-contraction or simply G-contraction if S preserves edges of G, i.e.,


∀κ,τ∈Ω:(κ,τ)∈Ξ(G)⇒(S(κ),S(τ))∈Ξ(G)








and S decreases weights of edges of G as for all κ,τ∈Ω, there exists c∈(0,1), such that


(κ,τ)∈Ξ(G)⇒d(S(κ),S(τ))≤cd(κ,τ).













Throughout this section, we consider self-mappings T,S:Ω→Ω with T(Ω)⊂S(Ω). Let κ∘∈Ω be an arbitrary point, then there exists κ1∈Ω such that Tκ∘=Sκ1. By repeating this step we can build a sequence (Sκn) such that Sκn=Tκn−1 and the following property:



The property G(T,Sκn). If (Sκn)n∈N is a sequence in Ω such that Sκn→κ and (Sκn,Sκn+1)∈E(G˘) for all n≥1, then there is a subsequence (Sκni)i∈N of (Sκn)n∈N such that (Sκni,κ)∈Ξ(G˘) for all i≥1. Here, we use the notion GST={κ∘∈Ω:(Sκn,Sκm)∈Ξ(G˘), where m,n=1,2,…}.



Now, we present the results of this section.



Theorem 2.

Let T,S:Ω→Ω be self-mappings defined on a b-metric-like space (Ω,ωb) (with parameter s≥1) endowed with a graph G, and satisfy (15) for all κ,τ∈Ω with (Sκ,Sτ)∈Ξ(G˘) when either (c1+2c2+2c3+c4+c5<1s and c3+c4<1s) or (c1+c2+c3+2c4+2c5<1s and c1+c3<1s).



Suppose that T(Ω)⊂S(Ω) and S(Ω) is complete subspace of Ω. Then




	(i) 

	
If the property G(T,Sκn) is satisfied and GST≠∅, then T and S have a point of coincidence in Ω.




	(ii) 

	
If κ and τ are points of coincidence of T and S, it implies (κ,τ)∈Ξ(G˘), then the point is a unique in Ω, moreover, if the pair (S,T) is weakly compatible, then T and S have a unique common fixed point in Ω.











Proof. 

Assume that GST≠∅, there exists κ∘∈GST. Since T(Ω)⊂S(Ω), there exists κ1∈Ω such that Tκ∘=Sκ1, again we can find κ2∈Ω such that Tκ1=Sκ2. Repeat this step, we can build a sequence Sκn such that Sκn=Tκn−1 for n=1,2,.., and (Sκn,Sκm)∈Ξ(G˘).



Suppose that Sκn=Sκn+1 for some n∈N. Then Sκn=Tκn, which leads to κn is a coincidence point. So, we consider Sκn≠Sκn+1 for all n∈N. By the condition (17), we can get


sωb(Sκn,Sκn+1)≤sqωb(Sκn,Sκn+1)=sqωb(Tκn−1,Tκn)≤c1ωb(Sκn−1,Sκn)+c2ωb(Sκn−1,Tκn)+c3ωb(Sκn,Tκn−1)+c4ωb(Sκn−1,Tκn−1)+c5ωb(Tκn,Sκn)≤c1ωb(Sκn−1,Sκn)+c2ωb(Sκn−1,Sκn+1)+c3ωb(Sκn,Sκn)+c4ωb(Sκn−1,Sκn)+c5ωb(Sκn+1,Sκn)≤c1ωb(Sκn−1,Sκn)+sc2[ωb(Sκn−1,Sκn)+ωb(Sκn,Sκn+1)]+2sc3ωb(Sκn−1,Sκn)+c4ωb(Sκn−1,Sκn)+c5ωb(Sκn+1,Sκn).











Thus, we have


ωb(Sκn,Sκn+1)≤c1+sc2+2sc3+c41−sc2−c5ωb(Sκn−1,Sκn)=λωb(Sκn−1,Sκn).








where λ=c1+sc2+2sc3+c41−sc2−c5. Since c1+2sc2+2sc3+c4+c5<sc1+2sc2+2sc3+sc4+sc5<1, we get λ<1. Continuing this process, we can write,


ωb(Sκn,Sκn+1)≤λωb(Sκn−1,Sκn)≤λ2ωb(Sκn−2,Sκn−1)…≤λnωb(Sκ∘,Sκ1).



(20)







Now, if m>n for m,n∈N and by (ω3) of b-metric like conditions, one can write


ωb(Sκn,Sκm)≤sωb(Sκn,Sκn+1)+sωb(Sκn+1,Sκm)≤sωb(Sκn,Sκn+1)+s2ωb(Sκn+1,Sκn+2)+s2ωb(Sκn+2,Sκm)…≤sωb(Sκn,Sκn+1)+s2ωb(Sκn+1,Sκn+2)+s3ωb(Sκn+2,Sκn+3)+…+sm−n−1ωb(Sκm−2,Sκm−1)+sm−nωb(Sκm−1,Sκm).



(21)







Hence, Equations (20) and (21) gives


ωb(Sκn,Sκm)≤sλnωb(Sκ∘,Sκ1)+s2λn+1ωb(Sκ∘,Sκ1)+s3λn+2ωb(Sκ∘,Sκ1)+…+λm−1sm−nωb(Sκ∘,Sκ1)=sλn1+(sλ)+(sλ)2+…+(sλ)m−n−1ωb(Sκ∘,Sκ1)=sλn∑j=0∞(sλ)jωb(Sκ∘,Sκ1)=sλn11−sλωb(Sκ∘,Sκ1)→0,asn→∞.











Therefore, (Sκn) is a Cauchy sequence. The completeness of S(Ω) leads to, there is η∈S(Ω) such that (Sκn)→η=S(ξ) for some ξ∈Ω. As, κ∘∈GST, this implies that (Sκn,Sκm)∈Ξ(G˘) for n,m=1,2,… and so, (Sκn,Sκn+1)∈E(G˘). By property G(T,Sκn), there is a subsequence (Sκni)i∈N of (Sκn)n∈N such that (Sκni,η)∈Ξ(G˘). Applying (ω3) of b-metric like axioms, we can get


ωb(Tξ,Sξ)≤ωb(Tξ,Tκni)+ωb(Tκni,Sξ).



(22)







On the other hand, condition (17) gives


ωb(Tξ,Tκni)≤sqωb(Tξ,Tκni)≤c1ωb(Sξ,Sκni)+c2ωb(Sξ,Tκni)+c3ωb(Sκni,Tξ)+c4ωb(Sξ,Tξ)+c5ωb(Tκni,Sκni).



(23)







Applying (23) in (22), we obtain that


ωb(Tξ,Sξ)≤c1ωb(Sξ,Sκni)+c2ωb(Sξ,Tκni)+c3ωb(Sκni,Tξ)+c4ωb(Sξ,Tξ)+c5ωb(Tκni,Sκni)+sωb(Tκni,Sξ).



(24)







Replacing Tκni with Sκni+1 in (24), we get


ωb(Tξ,Sξ)≤c1ωb(Sξ,Sκni)+c2ωb(Sξ,Sκni+1)+c3ωb(Sκni,Tξ)+c4ωb(Sξ,Tξ)+c5ωb(Sκni+1,Sκni)+sωb(Sκni+1,Sξ).











Hence


ωb(Tξ,Sξ)≤c11−c4ωb(Sξ,Sκni)+c2+s1−c4(Sξ,Sκni+1)+c31−c4ωb(Sκni,Tξ)+c51−c4ωb(Sκni+1,Sκni)≤c11−c4ωb(Sξ,Sκni)+c2+s1−c4(Sξ,Sκni+1)+sc31−c4ωb(Sκni,Sξ)+sc31−c4ωb(Sξ,Tξ)+c51−c4λniωb(Sκ1,Sκ∘).



(25)







Applying the limit of (25) as i→∞ and by limi→∞ωb(Sκni,Sξ)=0, we can get


ωb(Tξ,Sξ)≤sc31−c4ωb(Sξ,Tξ).











Since sc31−c4<1, it implies that ωb(Tξ,Sξ)=0. Therefore, Tξ=Sξ=η, and so ξ is a coincidence point of T and S, and η is a point of coincidence.



For uniqueness, suppose that the axiom (ii) of Theorem 2 is satisfied, i.e., there is η*∈Ω such that Tζ=Sζ=η* for some ζ∈Ω and (η,η*)∈Ξ(G˘). Now, the condition (17) gives


sωb(η,η*)≤sqωb(η,η*)=sqωb(Tξ,Tζ)≤c1ωb(Sξ,Sζ)+c2ωb(Sξ,Tζ)+c3ωb(Sζ,Tξ)+c4ωb(Sξ,Tξ)+c5ωb(Tζ,Sζ)=c1ωb(η,η*)+c2ωb(η,η*)+c3ωb(η*,η)+c4ωb(η,η)+c5ωb(η,η)≤(c1+c2+c3+2sc4+2sc5)ωb(η*,η).



(26)







Hence, Equation (26) becomes ωb(η,η*)≤1s2ωb(η,η*), which gives that η=η*, since c1+c2+c3+2c4+2c5<sc1+sc2+sc3+2sc4+2sc5<1.



If T and S are weakly compatible, then by Proposition 1, T and S have a unique common fixed point. □





Now, By specifying some of the constants c1,c2,c3,c4 and c5 of Theorem 2, we conclude the following results.



Corollary 7.

Let T,S:Ω→Ω be self-mappings defined on a b-metric-like space (Ω,ωb) (with parameter s≥1) endowed with a graph G, and satisfy one of the following


sqωb(Tκ,Tτ)≤c1ωb(Sκ,Sτ),c1<1s,sqωb(Tκ,Tτ)≤c4ωb(Sκ,Tκ)+c5ωb(Tτ,Sτ),c4+c5<1s,sqωb(Tκ,Tτ)≤c2ωb(Sκ,Tτ)+c3ωb(Sτ,Tκ)+c4ωb(Sκ,Tκ),c2+c3+c4<1s,








for all κ,τ∈Ω with (Sκ,Sτ)∈Ξ(G˘). If the conditions of Theorem 2 hold, then T and S have a unique common fixed point in Ω.





We can generalize Theorem 2 to integral and exponential type as follows.



Corollary 8.

Let T,S:Ω→Ω be self-mappings defined on a b-metric-like space (Ω,ωb) (with parameter s≥1) endowed with a graph G, and satisfy


sq∫0ωb(Tκ,Tτ)λ(ρ)dρ≤c1∫0ωb(Sκ,Sτ)λ(ρ)dρ+c2∫0ωb(Sκ,Tτ)λ(ρ)dρ+c3∫0ωb(Sτ,Tκ)λ(ρ)dρ+c4∫0ωb(Sκ,Tκ)λ(ρ)dρ+c5∫0ωb(Tτ,Sτ),λ(ρ)dρ,








for all κ,τ∈Ω with (Sκ,Sτ)∈Ξ(G˘) when either (c1+2c2+2c3+c4+c5<1s and c3+c4<1s) or (c1+c2+c3+2c4+2c5<1s and c1+c3<1s), where λ:[0,∞)→[0,∞) is a Lebesgue-integrable mapping satisfying ∫0ϵλ(ρ)dρ>0 for ϵ>0.



Suppose that T(Ω)⊂S(Ω) and S(Ω) is complete subspace of Ω. If the conditions of Theorem 2 hold, then T and S have a unique common fixed point in Ω.





Corollary 9.

Let T,S:Ω→Ω be self-mappings defined on a b-metric-like space (Ω,ωb) (with parameter s≥1) endowed with a graph G, and satisfy


sqeωb(Tκ,Tτ)≤c1eωb(Sκ,Sτ)+c2eωb(Sκ,Tτ)+c3eωb(Sτ,Tκ)+c4eωb(Sκ,Tτ)+c5eωb(Tτ,Sτ),








for all κ,τ∈Ω with (Sκ,Sτ)∈Ξ(G˘) when either (c1+2c2+2c3+c4+c5<1s and c3+c4<1s) or (c1+c2+c3+2c4+2c5<1s and c1+c3<1s), where e:[0,∞)→[0,∞) is a Lebesgue-integrable mapping satisfying eϵ>0 for ϵ>0. Then T and S have a unique common fixed point in Ω, whenever the conditions of Theorem 2 are satisfied.





Note that, the mappings T and S satisfying condition (17) only on a graph G. To explain that, we give the following example.



Example 10.

Let Ω=[0,+∞),q=2,s=2 and T,S:Ω→Ω be nonlinear mappings such that


Tκ=13κ3,ifκ≠80,ifκ=8andSκ=κ3,ifκ≠21,ifκ=2.











Let (Ω,ωb) be a b-metric-like space under the distance ωb(κ,κ)=(κ+τ)2, G be the graph with Θ(G)=Ω and Ξ(G)={(κ,κ):κ∈Ω}∪{(0,13n):n∈N} and the constants c1=13,c2=c4=1128,c3=19 and c5=164 such that c1+c2+c3+2c4+2c5<1s and c1+c3<1s.



Note that (Sκ,Sτ)∈Ξ(G˘) only occurs in two cases:




	
Case 1.κ=τ;



	
Case 2.For some n∈N, either κ=τ=0 and the other one is 13(n3).








Now, if κ=τ=0, then ωb(Tκ,Tτ)=ωb(0,0)=0 which satisfies condition (17). Next, for some n∈N, assume that κ=0 and τ=13(n3), without loss of generality, we can get


ωb(Sκ,Sτ)=ωb(0,13n)=93n+2,ωb(Sκ,Tτ)=ωb(0,13n+2)=13n+2,ωb(Sτ,Tκ)=ωb(13n,0)=93n+2,ωb(Sκ,Tκ)=ωb(0,0)=0,ωb(Tτ,Sτ)=ωb(13n+2,13n)=163n+2,ωb(Tκ,Tτ)=ωb(0,13n+2)=13n+2.











Now,


c1ωb(Sκ,Sτ)+c2ωb(Sκ,Tτ)+c3ωb(Sτ,Tκ)+c4ωb(Sκ,Tκ)+c5ωb(Tτ,Sτ)=13(93n+2)+164(13n+2)+19(93n+2)+(1128)(0)+164(163n+2)=13n+2(3+164+1+14)>22127n+1=sqωb(Tκ,Tτ).











Otherwise, let κ=0 and τ=2. Then (Sκ,Sτ)=(0,1)∉Ξ(G˘) and


ωb(Sκ,Sτ)=ωb(0,1)=1,ωb(Sκ,Tτ)=ωb(0,83)=649,ωb(Sτ,Tκ)=ωb(1,0)=1,ωb(Sκ,Tκ)=ωb(0,0)=0,ωb(Tτ,Sτ)=ωb(83,1)=1219,ωb(Tκ,Tτ)=ωb(0,83)=649.











Thus,


c1ωb(Sκ,Sτ)+c2ωb(Sκ,Tτ)+c3ωb(Sτ,Tκ)+c4ωb(Sκ,Tκ)+c5ωb(Tτ,Sτ)=13(1)+164(649)+19(1)+1128(0)+164(1219)=4964<22649=ωb(Tκ,Tτ).











Hence, T and S satisfy our condition (17) on the graph G but do not on the whole space Ω.





To justify Theorem 2, we discuss the following example.



Example 11.

Consider Ω=[0,+∞),q=2 and nonlinear mappings T,S:Ω→Ω, such that Tκ=κ24 and Sκ=κ2. Assume that (Ω,ωb) is a b-metric-like space under the same distance of Example 10, G is a graph with Θ(G)=Ω, Ξ(G)={(κ,κ):κ∈Ω}∪{(0,12n):n∈N}, and the constants of (15) are c1=c3=18 and c2=c4=c5=164 such that c1+c2+c3+2c4+2c5<1s and c1+c3<1s. It is obvious that T(Ω)⊂S(Ω) and S(Ω) is complete subspace of Ω. The pair (Sκ,Sτ)∈Ξ(G˘) only occurs in two cases:




	
Case 1.κ=τ;



▸ for some n∈N;



	
Case 2.Either κ=τ=0 and the other one is 12(n2).








Now, if κ=τ=0, then ωb(Tκ,Tτ)=ωb(0,0)=0 which satisfies condition (17). Next, for some n∈N, assume that κ=0 and τ=12(n2), then


ωb(Sκ,Sτ)=ωb(0,12n+2)=164n+2,ωb(Sκ,Tτ)=ωb(0,12n+2)=14n+2,ωb(Sτ,Tκ)=ωb(12n,0)=164n+2,ωb(Sκ,Tκ)=ωb(0,0)=0,ωb(Tτ,Sτ)=ωb(12n+2,12n)=254n+2,ωb(Tκ,Tτ)=ωb(0,12n+2)=14n+2.











Now,


c1ωb(Sκ,Sτ)+c2ωb(Sκ,Tτ)+c3ωb(Sτ,Tκ)+c4ωb(Sκ,Tκ)+c5ωb(Tτ,Sτ)=18(164n+2)+164(14n+2)+18(164n+2)+(164)(0)+164(254n+2)=14n+2(2+164+2+2564)≥2214n+2=sqωb(Tκ,Tτ).











So, for all κ,τ∈Ω with the pair (Sκ,Sτ)∈Ξ(G˘), the condition (17) of Corollary 6 is verified.



At the last, let κ∘∈Ω. If κ∘=0, it is easy to show that the pair (Sκn,Sκm)=(0,0)∈Ξ(G˘) for m n=1,2,…GST≠∅.



For κ∘≠0, there is κ1∈Ω such that Sκ1=Tκ∘=x∘24. which implies κ1=κ∘2. Similarly, there is κ2∈Ω such that Sκ2=Tκ1=κ∘242, hence κ2=κ∘22. Repeat these steps, we can built the sequence (Sκn) such that Sκn=Tκn−1=κ∘24n.



It is clear that (Sκn,Sκm)=(κ∘24n,κ∘24m)∉Ξ(G˘). Thus, the constant sequence Sκn=0 is only convergent sequence such that (Sκn,Sκm)∈E(G˘). So for every subsequence (Sκni) of (Sκn), we have (Sκni,0)∈E(G˘).



Also, the mappings T and S are weakly compatible at κ=0 and TS0=T0=0=ST0, so all conditions of Theorem 2 are satisfied and 0 is the unique common fixed point of T and S in Ω.





In order to clarify the importance of the property G(T,Sxn), we present an example as follows:



Example 12.

Let Ω=[0,1],s=q=2 and S,T:Ω→Ω, such that


Tx=κ464,ifx≠0116,ifx=0andSx=κ22,ifx≠01,ifx=0.











Assume that (Ω,ωb) is a b-metric-like space under the same distance of Example 10, G be the graph with Θ(G)=Ω and Ξ(G)={(0,0)}∪{(κ,τ)∈(0,1]×(0,1]}, and the constants c1=c2=c3=c4=c5=164.It is obvious that T(Ω)⊂S(Ω) and S(Ω) is complete subspace of Ω. The pair (Sκ,Sτ)∈Ξ(G˘) only occurs in two cases:




	
Case 1.κ=τ=0;



	
Case 2.κ≠0≠τ.








If κ=τ=0, then


sqωb(Tκ,Tτ)=464≤164ωb(Sκ,Sτ)=c1ωb(Sκ,Sτ)≤164ωb(Sκ,Sτ)+164ωb(Sκ,Tτ)+164ωb(Sτ,Tκ)+164ωb(Sκ,Tκ)+164ωb(Tτ,Sτ).











If x≠0 and y≠0, then


sqωb(Tκ,Tτ)=4(κ464+τ464)2=11024(κ4+τ4)(κ4+τ4)≤1512(κ4+τ4)≤1256(κ4+τ4)≤16414(κ4+τ4+2κ2τ2)=c1ωb(Sκ,Sτ)≤164ωb(Sκ,Sτ)+164ωb(Sκ,Tτ)+164ωb(Sτ,Tκ)+164ωb(Sκ,Tκ)+164ωb(Tτ,Sτ).











Let κ∘∈(0,1], then Sκ1=Tκ∘=κ∘464≠0, which leads to κ1=κ∘242∈(0,1]. By the same step, we can find κ2∈(0,1] such that Sκ2=Tκ1. Repeating the same steps, we can get Sκn=Tκn−1≠0. Therefore (Sκn,Sκm)∈Ξ(G˘). As the above results κ∘∈GST, and so GST≠∅.



Now, let κ∘=1. We will obtain a sequence (Sκn) by Sκn=Tκn−1. So, Sκ1=Tκ∘=164, hence κ1=28. Similarly, there is κ2 such that Sκ2=Tκ1=(2)486, thus κ2=(2)383. Repeating this process, we get


Sκn=Tκn−1=22n+1−482n+1−2→0asn→∞.











So, (Sκn,Sκm)∈E(G˘) and Sκn→0 but (Sκn,0)∉Ξ(G˘). So there is no subsequence (Sκni) of (Sκn) such that (Sκni,0)∈Ξ(G˘). Also, we can easily see that the mappings T and S have no coincidence point, so there is no common fixed point.






5. An Application to Nonlinear Integral Equation


In this section, we will use Corollary 1 to find an analytical solution of the following nonlinear integral equation:


η(ρ)=∫0AΛ(ρ,θ)σ(θ,η(θ))dθ;(ρ,θ)∈[0,A]2.



(27)







Let Ω=C([0,A],R) be the set of real continuous functions defined on [0,A] for A>0, endowed with


ωb(κ,τ)=maxρ∈[0,1]κ(ρ)+τ(ρ)mforallκ,τ∈Ω,








where m>1. It is clear that (Ω,ωb) is a complete b-metric-like space with parameter s=2m−1.



Consider a nonlinear self-mapping T:Ω→Ω given by


Tη(ρ)=∫0AΛ(ρ,θ)σ(θ,η(θ))dθ.











Theorem 3.

Suppose that Equation (27) with the following axioms:




	(i) 

	
Λ:[0,A]×[0,A]→[0,∞) is a continuous function;




	(ii) 

	
σ:[0,A]×R→R, where σ(θ,.) is monotone nondecreasing mapping for all θ∈[0,A];




	(iii) 

	
supρ,θ∈[0,A]∫0AΛ(ρ,θ)dθ≤1;




	(iv) 

	
there exists a constant μ∈(0,1) such that for all (ρ,θ)∈[0,A]2 and κ,τ∈R,


σ(θ,κ(θ))+σ(θ,τ(θ)≤(μ3s3)1mΛ(ρ,θ)κ(θ)+τ(θ).

















Then a nonlinear integral Equation (27) has a unique solution κ∈Ω.





Proof. 

For κ,τ∈Ω, from conditions (iii) and (iv), for all θ and ρ, we get


s2ωb(Tκ(ρ),Tτ(ρ))=s2Tκ(ρ)+Tτ(ρ)m=s2∫0AΛ(ρ,θ)σ(θ,κ(θ))dθ+∫0AΛ(ρ,θ)σ(θ,τ(θ))dθm≤s2∫0AΛ(ρ,θ)σ(θ,κ(θ))dθ+∫0AΛ(ρ,θ)σ(θ,τ(θ))dθm≤s2∫0A(μ3s3)1mΛ(ρ,θ)κ(θ)+τ(θ))m1mdθm≤s2∫0A(μ3s3)1mΛ(ρ,θ)ωb1mκ(θ),τ(θ))dθm≤s2(μ3s3)ωbκ(θ),τ(θ))∫0AΛ(ρ,θ)dθm≤μ3sωbκ(θ),τ(θ))≤μ3sMωb(κ,τ)=13Mωb(κ,τ)−(1−μs)Mωb(κ,τ)=13Mωb(κ,τ)−ϕMωb(κ,τ).











Therefore, all the axioms of Corollary 1 are satisfied by taking the coefficient q=2, and function ϕ(κ)=(1−μs)κ, where μs∈(0,1) and β=13. Hence the mapping T has a unique fixed point in X, which is a solution of the integral equation in (27). □





An example to illustrate the requirements of Theorem 3 is presented as follows.



Example 13.

Consider the following nonlinear integral equation


η(ρ)=148s∫01θ2η(θ)dθ,ρ∈[0,1].



(28)







Then it has a solution in Ω=(C[0,1],R).





Proof. 

Let T:Ω→Ω be defined as Tη(ρ)=148s∫01θ2η(θ)dθ. By specifying Λ(ρ,θ)=θ4,f(θ,η(θ))=θη(θ)12s in Theorem 3, we can write




	(i)

	
the function Λ(ρ,θ) is continuous on [0,1]×[0,1],




	(ii)

	
σ(θ,η(θ)) is monotone increasing on [0,1]×R for all θ∈[0,1],




	(iii)

	


supρ,θ∈[0,A]∫0AΛ(η,θ)dθ=supρ∈[0,1]∫01θ4dθ≤supρ∈[0,1]18=18<1,












	(iv)

	
By taking m=3, so there exists a constant μ=19∈(0,1) such that for all (ρ,θ)∈[0,1]2 and κ,τ∈R, we have


σ(θ,κ(θ))+σ(θ,τ(θ)=θ12sκ(θ)+τ(θ)≤112θsκ(s)+τ(s)=(μ3s3)13θ4κ(s)+τ(s)=(μ3s3)1mΛ(ρ,θ)κ(θ)+τ(θ).

















Therefore, the conditions of Theorem 3 are justified, hence a nonlinear mapping T has a fixed point in Ω, which is a solution to Equation (28). □






6. Conclusions


The analytical solution of nonlinear integral equations and graph theory are important applications in fixed point theory, where they have attracted the interest of many authors in academic research. Continuing in this direction, this article presents some common fixed point theorems for a pair of βq,ϕs,ψ-contractive mappings in b-metric-like spaces. Our results extend and generalize the results of [27] in two mappings and [31] in b-metric-like spaces and other spaces. It can be pointed out that the obtained results could be extended to some open mathematical problems in the fields of convergence of trajectory solutions to the equilibrium points and stability of dynamic systems and to those related ones formulated in the fractal space. It is also of interest to investigate the convergence properties in problems described by operators firstly defined on infinite, dimensional Hilbert spaces which are then represented in truncated finite dimensional ones. See, for instance, refs. [32,33,34,35,36] and some references therein. Next, some common fixed point results in the framework of b-metric-like spaces endowed with a graph have been discussed. Moreover, some important examples are given to support our results and we showed the existence of a solution for a nonlinear integral equation.
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