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Abstract: We propose a new and easy approach to evaluate structural dissimilarities between frames
issued from molecular dynamics, and we test this methodology on human hemagglutinin. This
protein is responsible for the entry of the influenza virus into the host cell by endocytosis, and this
virus causes seasonal epidemics of infectious disease, which can be estimated to result in hundreds
of thousands of deaths each year around the world. We computed the three interfaces between the
three protomers of the hemagglutinin H1 homotrimer (PDB code: 1RU7) for each of its conformations
generated from molecular dynamics simulation. For each conformation, we considered the set of
residues involved in the union of these three interfaces. The dissimilarity between each pair of
conformations was measured with our new methodology, the symmetric difference distance between
the associated set of residues. The main advantages of the full procedure are: (i) it is parameter free;
(ii) no spatial alignment is needed and (iii) it is simple enough so that it can be implemented by a
beginner in programming. It is shown to be a relevant tool to follow the evolution of the conformation
along the molecular dynamics trajectories.

Keywords: macromolecular interfaces; PPI; symmetric difference distance; influenza hemagglutinin;
molecular dynamics simulation

1. Introduction

Influenza virus causes seasonal epidemics of infectious disease and can even trigger pandemics.
Inferring from U.S. data [1], these epidemics may cause hundreds of thousands of deaths each year
around the world, mainly concerning the elderly, children, and immunosuppressed people, resulting
in a real public health issue. Moreover, there were several severe influenza pandemics, such as the 1968
Hong Kong one [2] and the 1918 one, which resulted in about 20 millions deaths [3]. More recently,
modeling studies attributed about 200,000 deaths to the 2009 influenza pandemic [4]. Initiation of virus
infection involves multiple influenza Hemagglutinin (HA) binding [5] to sialic acids typically by α2,3
or even α2,6 linkages at the cell surface. The virus is then endocytosed through clathrin-dependent
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pathways, and the fusion of the viral particle with the cell’s membrane happens due to the acidification
(about pH = 5) in the late endosomes. Indeed, this pH variation induces a folding change of HA
homotrimers, resulting in the three fusion peptides’ exposure to the cell’s membrane [6]. HA is
thus one of the two neutralizing antibody targets with neuraminidase, which is the second surface
glycoprotein, allowing the virus to spread out from the cells [7].

In a recent modeling study to design new inhibitors against HA, two Molecular Dynamics (MD)
simulations were performed, one at pH = 7 and one at pH = 5, this acidic pH being the one inducing a
conformational change [8]. A motivation of this previous study was to compare the simulations at
both pH values. Each protomer has two domains: HA1, responsible for the binding, and HA2 for the
fusion, containing respectively 327 and 160 amino acid residues. The tridimensional structural data
of HA were found in the Protein Data Bank (PDB), Code 1RU7, taken from [3] (see Figure 1). This
structure is the one of A/Puerto Rico/8/1934 H1N1.

Figure 1. The tridimensional structure of the HA homotrimer (data found in the Protein Data Bank
(PDB), Code 1RU7, taken from [3]). Each of the three protomers contains a subunit HA1 (in cyan in
protomer 1) and a subunit HA2 (in green in protomer 1). HA1 domains are on the left. HA2 α-helices
are on the right. The image was generated with PyMOL [9].

Starting from an initial conformation, 40 conformations were extracted every 0.5 ns for two
performed simulations (see [8] for technical details about the protocol). The problem considered here
is to evaluate, for each set of 41 conformations, the dissimilarities between pairs of conformations.
For this purpose, we needed a simple procedure, easy to implement, and without spatial alignment
because these latter generally involve unwanted contributions of meaningless parts of macromolecules,
these parts being difficult to identify.

Usually, the dissimilarity between two conformers of the same macromolecule is measured
through the computation of the RMSD (Root Mean Squared Deviation). For a macromolecule
containing n heavy atoms, RMSD is the quadratic mean of the lengths of the n pairs of atoms (n
atoms for the first conformer, n atoms for the second conformer), minimized for all rotations and
translations of either of these two conformers. An analytical solution for this optimization problem is
known: the optimal translation is such that the barycenter of the two conformers should coincide, and
the optimal rotation is expressed with quaternions (see Appendix in [10] and Appendix A.5 in [11]).
While the calculus of an RMSD is easy to compute, this quantity offers two drawbacks. The first one is
the large numerical impact on the RMSD value from non-relevant parts of the macromolecule, such
as the flexible ends of the backbone, or such as the irrelevant parts of the macromolecule far from
the domain of interest for the experimentalist. For instance, in a protein–protein complex, the most
relevant part is the protein–protein interface, because it is the area that can stand the weak bonds



Symmetry 2019, 11, 662 3 of 13

responsible for the stability of the complex. This is also the case for a protein–ligand complex. In the
case of HA, the relevant part of the trimer is the three interfaces between the pairs of protomers (each
of the three pairs of protomers defines an interface), because they are the location of interprotomers’
binding interactions. The second drawback of the RMSD is that, when it is computed over all heavy
atoms, the side chains have an important numerical contribution to the RMSD value, although the
location of the side chains is often considered to be meaningless due to their flexibility. For the reasons
mentioned above, we restricted the evaluation of the dissimilarities between HA conformers generated
by MD simulations to the Cα atoms of the three polypeptidic chains’ interfaces.

Thus, for each conformer, we have a set of Cα atoms. The simplest way to evaluate the dissimilarity
between two sets is to compute their Symmetric Difference Distance (SDD). The SDD between two
sets having respectively n1 and n2 elements is n1 + n2 − 2n12, n12 being the number of elements of the
intersection of the two sets [12]. The properties of a distance are recalled in Appendix A, including
why they are useful. The computation of the SDD between the two sets of Cα atoms associated with
two conformations of our HA trimers (i.e., there is one set of Cα atoms per trimer) is explained in
Section 3. Here, the unit of this distance is the number of Cα atoms. It is recalled that, opposite what
is encountered during RMSD calculations, the sets of Cα atoms defined by the interfaces are never
pairwise associated, and in general, they have different cardinalities.

2. Results and Discussion

Starting from an initial conformation at time t0, the MD simulation at pH = 7 generated 40
conformations, at times t1, t2, ..., t40, and similarly, the MD simulation at pH = 5 generated 40
conformations, the time step between two conformations being 0.5 ns [8]. Thus, there was a total of
41 conformations for each of these two MD simulations. We computed for the two pH values the 40
SDDs between the 40 generated conformations and their respective initial conformations at t0. These
distances values are plotted in Figure 2. The range of the distance values was 39–72 at pH = 7 (the unit
of distances is the number of Cα atoms). It was slightly smaller at pH = 5: 25–52. The maximal values
were reached for the frames generated respectively at t26 and t24. The maximal ratios of the SDDs
values n1 + n2 − 2n12 to the total number of interface residues n1 + n2 were 16.3% at pH = 7 and 17.2%
at pH = 5. These moderately low values indicate that the generated conformations did not much differ
from their respective initial ones at t0. The correlation coefficient between the two sets of distances
was 0.507. There was no reason to expect a high correlation coefficient since the SDD between the two
initial conformations was 262, which was much higher than the range values at pH = 7 and at pH = 5.

Figure 2. The 40 SDDs, expressed as the number of Cα atoms, between the initial conformation at time
t0 and each of the 40 generated conformations by MD simulation, at pH = 7 (in blue) and at pH = 5 (in
red). Time steps are in the abscissas. The image was generated with R [13].
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We also computed for the two pH values the 40 RMSD between these 40 conformations and
their respective initial conformations at t0: see Figure 3. The range of RMSD values was 1.45–3.09 Å
at pH = 7. It was slightly smaller at pH = 5: 1.65–2.58 Å. The RMSD values were small relatively to
the size of the HA: the radius of the smallest sphere enclosing the tridimensional structure of the
11,510 atoms of HA was 68.55 Å for 1RU7. These small RMSD values indicate that the generated
conformations did not significantly differ from their respective initial ones at t0. More importantly, the
trend and the main peaks visible in Figure 3 are visible in Figure 2. This means that working on Cα
atoms at the interfaces rather than computing RMSD on all heavy atoms did not seem to cause any
major information loss. Thus, our approach is pertinent.

Figure 3. The 40 RMSD (in Å ), taken over all heavy atoms, between the initial conformation at time t0

and each of the 40 generated conformations by MD simulation, at pH = 7 (in blue) and at pH = 5 (in
red). Time steps are in the abscissas. The image was generated with R [13].

Then, we computed for the two pH values the SDDs between the 40 successive pairs of
conformations. These distance values are plotted in Figure 4. The range of distance values was
similar for both pH values: 26–62 at pH = 7 and 24–52 at pH = 5. The maximal values were reached
between the frames generated at t22 for both simulations. The maximal ratios of the SDDs values
n1 + n2 − 2n12 to the total number of interface residues n1 + n2 were 13.9% at pH = 7 and 14.4% at
pH = 5. These values were slightly lower than the ones of Figure 2 for pH = 7, and they were of the
same magnitude as the ones of Figure 2 for pH = 5. For both simulations, the variations of the SDDs
along time did not induce a trend to deviate more and more from the initial conformation, as shown in
Figure 2. Thus, we can assume that the conformation is stable for the simulations at both pH values,
at least for the interval of time considered (20 ns). The correlation coefficient between the two sets of
distances was 0.468. There was no particular reason to expect a high correlation coefficient.

We also computed for the two pH values the RMSD values between the 40 successive pairs of
conformations: see Figure 5. The range of RMSD values were similar for both pH values: 1.40–2.60 Å
at pH = 7 and 1.42–2.54 Å at pH = 5. The RMSD values were small: we recall that the radius of the
smallest sphere enclosing the 11.510 atoms of HA was 120.5 Å for 1RU7. Such a similarity between
the range values at both pH is observed in Figure 4. The jumps observed in Figure 5 are also visible in
Figure 4. Due to the relatively small ranges of RMSD values, the jumps seen Figure 5 are difficult to
interpret. However, the maximal ratios of the SDDs values to the total number of interface residues
that we already mentioned (around 14%) indicate that the interfaces may contribute significantly to
the conformational changes along time. Again, working on Cα atoms at the interfaces rather than
computing RMSD values for all heavy atoms did not seem to cause any major information loss.
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Figure 4. The SDDs, expressed as the number of Cα atoms, between the 40 successive pairs of
conformations generated by MD simulation, at pH = 7 (in blue) and at pH = 5 (in red). Time steps are
in the abscissas. The image was generated with R [13].

Figure 5. The RMSD values ( Å ), taken over all heavy atoms, between the 40 successive pairs of
conformations generated by MD simulation, at pH = 7 (in blue) and at pH = 5 (in red). Time steps are
in the abscissas. The image was generated with R [13].

After having observed that the HA conformation remains stable over the 40-ns simulations,
we needed to define a mean conformation for docking purposes. Indeed, considering such an
average structure in the course of a docking simulation, rather than a structure determined from X-ray
diffraction experiments, enables us to take into account the relaxation of the protein in the solvent, at
T = 310 K [8]. We defined this mean conformation with the algorithm described in [14]: it is the one
that minimizes the sum of the squared distances to all other conformers. This mean conformation
is the one of the frame generated at t30 for pH = 7, and it is the one of the frame generated at t15 for
pH = 5. The residues at the interfaces of the mean conformers are given in Appendix B. The SDD
between these two mean conformations was equal to 70 Cα atoms. This was few compared to the 1448
residues of each mean conformer, but it was larger compared to the respective 224 and 214 residues of
the two interfaces, which had 184 residues in common. The RMSD between the 1448 pairs of Cα atoms
of these mean conformers was 3.54 Å, while the largest atom-pair length was 13.7 Å (obtained for the
first serine of the HA2 domain). The optimal superposition of the two interfaces is shown in Figure 6.
It was realized with the CSR freeware (http://petitjeanmichel.free.fr/itoweb.petitjean.html), which
implements a non-parametric algorithm performing a spatial alignment without a cutoff distance and
without any input pairwise correspondence [15].

http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html
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We have also performed an optimal superposition of the mean frames at t30 for pH = 7 and at t15

for pH = 5, on the basis of all pairs of 11.510 heavy atoms. The display of this optimal superposition in
Figure 7 has been restricted to the two sets of 1448 Cα atoms because displaying both sets of 11.510
heavy atoms would have been much more confusing. Even the display of the two sets of 1448 pairs of
Cα atoms in Figure 7 remains confusing. This is a general problem: the display of optimally-superposed
macromolecules produced overloaded images, and viewing the result remained confusing even with
interactive tools on the screen of a workstation. Thus, comparing the contents of Figures 6 and 7
shows another reason why our approach based on interfaces is useful: it produces lightened images of
optimally-superposed structural data, which would have been cumbersome to generate with existing
visualization tools.

Figure 6. The optimal superposition of the interfaces of the mean frames, respectively at t30 for pH = 7
(224 Cα atoms, in blue) and at t15 for pH = 5 (214 Cα atoms, in red). The image was generated with
PyMOL [9].

Figure 7. The optimal superposition computed for all heavy atoms of the mean frames, respectively
at t30 for pH = 7 (224 Cα atoms, in blue) and at t15 for pH = 5 (214 Cα atoms, in red). Only Cα atoms
are displayed. Each straight line separates two successive Cα atoms in the backbone. The image was
generated with PyMOL [9].
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3. Methods

3.1. Computation of Interfaces within Macromolecular Complexes

The full procedure to compute a SDD between two macromolecular complexes relies on the
computation of a protein–protein interface within each complex. According to [16], there are three
main families of methods to compute interfaces:

1. The cutoff method.
2. The loss of accessible surface area upon binding.
3. The Voronoi tessellation method.

Machine learning methods [17,18] are not considered here because they are irrelevant in our
context. The cutoff method requires an arbitrary cutoff distance value, which may have a strong
impact on the resulting computed interface [19]. Computing accessible surface areas requires fixing
the values of atomic radii. Significantly different sets of radii values are found in the literature,
depending on how they are defined [20–22]. It was shown that these radii have a considerable
impact on surface areas [23,24]. The existence of parameters external to the input data and having
a strong numerical impact on the results are drawbacks of these two families of methods. Thus,
a non-parametric method is desirable. The third method, based on the Voronoi tessellation, in its
original variant was parameter-free [25,26]. It was implemented in PROVAT software [27]. The full
mathematical description of the Voronoi tessellation can be found in [28]. It is out of the scope of this
paper. To summarize, each atom lies inside a convex polyhedral cell having its polygonal faces located
at mid-distance from its neighboring atoms. Thus, two atoms are neighbors if their Voronoi cells share
a common face. However, computing interfaces with the Voronoi method generates large cells, which
induce the existence of meaningless long distances between neighboring atoms.

This is why we needed to compute interfaces with another free parameter method: we retained
the PPIC software. PPIC is publicly available with its documentation on a repository located
at http://petitjeanmichel.free.fr/itoweb.petitjean.html. The method implemented in PPIC was
introduced only in a very recent preprint [29]. It extends the approach of [30] used to compute the
interfaces in protein–ligand complexes. Its input is the tridimensional structure of a protein–protein
complex or of a protein–ligand complex. This complex has two parts (molecule or macromolecule),
named A and B. The algorithm has two steps:

1. Generate the first part of the interface, constituted by the non-redundant set of all nearest
neighbors of the atoms of A among the atoms of B.

2. Generate the second part of the interface, constituted by the non-redundant set of all nearest
neighbors of the atoms of B among the atoms of A.

Thus, the interface has two parts, i.e., two half interfaces, one in A and one in B. The roles of A
and B are symmetric in the algorithm. From [31], it is known that each of these two parts is a subset of
the half interface that would be computed by the Voronoi tessellation method. A nice consequence is
that we do not observe anymore meaningless long distance pairs of neighboring atoms (i.e., one atom
in A and one atom in B).

As a by-product, PPIC outputs the list of the RNNs (Reciprocal Nearest Neighbors). It is recalled
that, in the Euclidean space, the nearest neighbor y of some point x is not always such that the nearest
neighbor of y is x, e.g., consider three aligned points with abscissas x = 0, y = 2, and z = 3, for which
the nearest neighbor of x is y, while the nearest neighbor of y is z, not x.

When all atoms (or all heavy atoms) of the complex are used as inputs in the calculation of the
interface, the pairs of atoms defined by the list of the RNN are a rough estimate of the location
of potential interacting atom pairs. Moreover, to estimate the location of PPIs (Protein–Protein
Interactions), looking at interacting atom pairs among the nearest neighbors makes more sense than
looking at interacting atom pairs at farther distances than the nearest neighbors.

http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html
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PPIC was shown to be effective to compute interfaces on a database of 1050 protein homo- and
hetero-dimers ([29]; data from [32]). It was used to compute HIV2 protease–ligand interfaces ([29];
data from [33]). For both datasets, it was observed that the best agreement between the interface
calculations produced on heavy atoms by PPIC and those produced by the cutoff method occurred for
a cutoff near 3.6–3.7 Å (see Figure 1 in [29]). This is in agreement with the maximal donor–acceptor
distance established in [34] at 3.9 Å. It is significantly smaller than the 4.5 Å cutoff distance between
non-H atoms used by other authors [33,35,36].

3.2. Computation of Interfaces in Macromolecular Polymers

For a macromolecule containing two partners, A and B, the interface is constituted by two sets
of atoms, one in A and one in B. In the case of a complex containing k polypeptidic chains, there are
(k(k− 1))/2 interfaces to compute. This is the case of HA, for which k = 3: there are three subsets,
A, B, and C. Since the atoms of all chains are in the same macromolecular unit, we defined the global
interface as the intersection of these (k(k− 1))/2 interfaces as the non-redundant list of atoms was
extracted. Therefore, in the case of a macromolecular polymer, the global interface is constituted by
only one list of atoms, not two. This is a difference from the case of macromolecular complexes.

3.3. Evaluation of the Dissimilarity between Two Interfaces

An interface is constituted by one or two sets of atoms. In the case of protein–ligand complexes
containing several ligands, the interface may contain more than two sets of atoms. Considering two
interfaces containing one set of atoms each, their dissimilarity can be evaluated by their SDD [12].

When each of the two interface contains K sets, K ≥ 1, and when these two K-tuples of sets are
pairwise associated, there are K SDDs to compute. A distance between these two K-tuples can be
defined to be the sum of these K SDDs. It can be checked from the definition in Appendix A that it
defines indeed a distance on the set of these K-tuples.

When the two K-tuples of sets are not pairwise associated, which in fact means that we consider
unordered K-tuples, a distance between these two K-tuples can be defined to be the minimal value
of the sum of the K SDDs, this minimum being taken over all K! possible pairwise correspondences
between the two K-tuples. It can be checked from the definition in Appendix A that this defines indeed
a distance on the set of such K-tuples.

3.4. Comparison with Other Dissimilarity Measures

Several other structural dissimilarity criteria are encountered in the literature, which are qualified
as metrics [37] (see also [38–40]), such as hydrogen bonds, distance from surface, the number of residues,
or the number of heavy or polar atoms, or the number of waters in the vicinity of a specific region,
RMSF (Root Mean Square Fluctuation), SASA (Solvent Accessible Surface Area), and gyration radius.

We outline here an ambiguity about the word “metric”: in many papers, it is used to name
a structural dissimilarity criterion, which does not have the mathematical meaning mentioned in
Appendix A. Even the dissimilarity criteria based on surfaces (e.g., SASA) cannot lead to defining
a metric, except in the case of convex sets [41]. As mentioned at the end of Section 1, the SDD can
be qualified as a metric [12]. The RMSD can be qualified as a metric when it is viewed as a distance
induced by the Frobenius matrix norm, and this is why we compared the SDD with the RMSD. This
happens in structural biology when we consider two matrices A1 and A2 of n lines and three columns,
each matrix containing the spatial coordinates of a set of n points (the two sets of n points are thus
pairwise associated). Setting A = A1 − A2,

√
nRMSD =

√
trace(At A), where At is the transpose of A.

3.5. Steps of the Methodology

The steps of the methodology to evaluate the evolution of interfaces along MD trajectories are
summarized below. We assumed that the macromolecule of interest contained at least two partners,
such as a protein and a ligand, two proteins or two protomers, etc.
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1. Generate the frames of the MD simulation.
2. For each frame, generate the global interface with the procedure described in Section 3.2.
3. For each couple of successive frames, evaluate the dissimilarity between the interfaces with the

SDD, as described in Section 3.3.
4. Follow the evolution of the interface along the trajectory using the SDD as a coordinate varying

as a function of the time.

4. Conclusions

Our approach to evaluate structural dissimilarities between frames issued from MD
calculations has several advantages over the traditional ones involving either RMSD calculations
or interface calculations:

• It is parameter free.
• No spatial alignment is needed, thus no non-trivial numerical solver is needed.
• The problem of molecular graph symmetries occurring in some contexts for residues Val, Leu,

Arg, Phe, Tyr, Glu, and Asp, which is almost always neglected when computing RMSD values,
does not exist in our approach.

• All the steps of our algorithm can be coded by a beginner in programming.
• The dissimilarity between interfaces is measured with a distance (see Appendix A).
• Unwanted contributions of meaningless parts of macromolecules can be discarded (e.g.,

disordered parts in macromolecules, etc.).
• Images of optimal superpositions of full macromolecules are too overloaded compared to those of

optimal superpositions of interfaces.

The software PPIC implementing our non-parametric algorithm of interfaces calculations is
publicly available for free at http://petitjeanmichel.free.fr/itoweb.petitjean.html. The user can
optionally run the cutoff method or the Voronoi tessellation method.

As an example, we presented results about two MD simulations of influenza HA (PDB Code 1RU7,
1448 residues). Knowing from MD simulations at pH = 7 and pH = 5 that HA is stable, the magnitude
of numerical values that we observed can serve as a first reference basis to discuss the results of MD
simulations of other macromolecules or complexes. Our approach is neither claimed to overcome
the previous ones, nor is it devoted to replacing them: it is just an additional tool devoted to helping
structural biologists, which is simple to use and which can be easily reprogrammed by beginners.
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Abbreviations

The following abbreviations are used in this manuscript:

HA Hemagglutinin
MD Molecular Dynamics
PDB Protein Data Bank
PPI Protein–Protein Interaction
RMSD Root Mean Squared Deviation
RMSF Root Mean Squared Fluctuation
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RNN Reciprocal Nearest Neighbors
SASA Solvent Accessible Surface Area
SDD Symmetric Difference Distance

Appendix A. Definition and Properties of Distances

For convenience, we recall the definition of a distance (see any textbook on analysis or topology).

Definition A1. A metric d (or distance function) on a set E is a function from the Cartesian product E× E on
R satisfying the following four conditions:

1. d(x, y) = d(y, x) (symmetry)
2. d(x, x) = 0 ∀x ∈ E
3. d(x, y) = 0 =⇒ x = y ∀(x ∈ E, y ∈ E)
4. d(x, y) ≤ d(x, z) + d(z, y) ∀(x ∈ E, y ∈ E, z ∈ E) (triangle inequality)

Setting y = x in the triangle inequality and using the symmetry condition, we deduce a property
that is flagged as an additional condition in some books: d(x, y) ≥ 0 ∀(x ∈ E, y ∈ E).

A value taken by the distance function is called a distance. As long as no confusion can be made
between the function and the value it takes, a distance function can be itself called a distance.

To understand why all four conditions of Definition A1 are of practical importance, imagine that
one of them is missing and try to interpret numerical results from experiments:

• Removing the symmetry condition would mean that there exist two elements x and y such that
d(x, y) 6= d(y, x): understanding this result may be difficult.

• Removing the condition d(x, x) = 0 would mean that there exists an element x such that d(x, x) >
0: what should one think about such an element?

• Many authors define dissimilarities between objects, although the third condition does not stand:
nothing can be deduced when a null distance d(x, y) = 0 is observed between two distinct element
x and y, a really embarrassing situation.

• The triangle inequality is useful, as well: it would be difficult to understand a situation where
three distinct elements x, y, and z would be such that d(x, y) > d(x, z) + d(z, y).

This is why, when possible, working with the distance appears to be a better choice than working
with some other dissimilarity criterion.

Appendix B. Interfaces Residues of the Mean Frames

It is recalled that, for each mean frame (one at pH = 7 and one at pH = 5), we computed the three
interfaces between the three HA protomers, then we defined the final list of interface residues as the
non-redundant set of residues involved in the union of these three interfaces.

The 224 residues at the interface of the mean frame for pH = 7 are:

V19, L20, E100, E103, K159, K161, S184, E194, N195, S199, V201, S203, N204, N206, R207, R208, T210,
E212, I213, A214, E215, R216, P217, L232, K234, G236, T238, I240, E242; G324, L325, F326, G327, G331,
F332, K362, S363, N366, G370, N373, K374, S377, K381, N383, Q385, K395, L396, K398, R399, M400,
N402, L403, N404, K406, V407, G410, F411, D413, I414, W415, Y417, N418, L421, L422, L425, E426, R429,
F433, S436, N440, E443, K444, S447, K450, N451, E455, I456, G457, G478, P483;
V502, L503, E504, D577, E583, E586, K642, N678, S682, V684, S686, N687, Y688, N689, R690, R691, E695,
I696, A697, E698, R699, P700; G807, L808, F809, G810, G814, F815, K845, N849, G853, N856, K857, S860,
K864, M865, N866, K878, L879, K881, R882, M883, N885, L886, N887, K889, V890, D892, G893, F894,
D896, I897, Y900, L904, L905, L908, E909, R912, F916, S919, N923, E926, K927, K933, E938, G940, P966;
V985, L986, D1060, E1066, E1069, N1161, S1165, V1167, S1169, N1170, Y1171, N1172, R1173, R1174,
T1176, E1178, A1180, E1181, R1182, P1183, K1200, F1226; G1290, L1291, F1292, G1293, A1296, G1297,
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K1328, N1332, G1336, N1339, K1340, S1343, K1347, M1348, N1349, F1352, N1360, K1361, L1362, E1363,
K1364, R1365, M1366, N1368, L1369, N1370, K1372, V1373, D1375, G1376, F1377, D1379, I1380, Y1383,
N1384, L1387, L1388, L1391, E1392, R1395, F1399, S1402, N1406, E1409, K1410, S1413, K1416, N1417,
K1420, E1421, I1422, G1423, G1444, D1447, Y1448.

The 214 residues at the interface of the mean frame for pH = 5 are:

V19, L20, G93, E100, N195, S199, V201, S203, N204, N206, R207, R208, T210, E212, I213, A214, E215,
R216, P217, K234, E242; L325, F326, G331, F332, N366, G370, N373, K374, S377, K381, M382, N383,
F386, A388, K391, K395, L396, K398, R399, M400, N402, L403, N404, K406, V407, D409, G410, F411,
D413, I414, W415, Y417, N418, L421, L422, L425, R429, F433, S436, N437, N440, E443, K444, S447, K450,
N451, E455, G457, N458;
V502, L503, E583, E586, N678, Y680, S682, V684, S686, N687, Y688, N689, R690, R691, T693, E695, I696,
A697, E698, R699, P700, K717, E725, F743; G807, L808, F809, G810, A813, G814, F815, N849, G853, N856,
S860, V861, K864, M865, N866, Q868, K874, K878, L879, K881, R882, M883, N885, L886, N887, K889,
V890, G893, F894, D896, I897, W898, Y900, N901, L904, L905, L908, R912, F916, S919, N923, E926, K927,
S930, K933, N934, E938, I939, G940, Y965, P966;
V985, L986, D1060, E1066, E1069, K1125, E1160, N1161, Y1163, S1165, V1167, S1169, N1170, Y1171,
N1172, R1173, R1174, F1175, T1176, E1178, I1179, A1180, E1181, R1182, P1183; G1290, L1291, F1292,
F1298, K1328, N1332, G1336, S1343, V1344, K1347, M1348, N1349, K1361, L1362, K1364, R1365, M1366,
N1368, L1369, N1370, K1372, V1373, G1376, F1377, D1379, I1380, Y1383, N1384, L1387, L1391, R1395,
F1399, S1402, N1406, E1409, K1410, S1413, K1416, N1417, K1420, E1421, I1422, G1423, Y1448.
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