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Abstract: Characteristically, most fluids are not linear in their natural deeds and therefore fractional
order models are very appropriate to handle these kinds of marvels. In this article, we studied the base
solvents of water and ethylene glycol for the stable dispersion of graphene oxide to prepare graphene
oxide-water (GO-W) and graphene oxide-ethylene glycol (GO-EG) nanofluids. The stable dispersion
of the graphene oxide in the water and ethylene glycol was taken from the experimental results.
The combined efforts of the classical and fractional order models were imposed and compared under
the effect of the Marangoni convection. The numerical method for the non-integer derivative that was
used in this research is known as a predictor corrector technique of the Adams–Bashforth–Moulton
method (Fractional Differential Equation-12) or shortly (FDE-12). The impact of the modeled
parameters were analyzed and compared for both GO-W and GO-EG nanofluids. The diverse effects
of the parameters were observed through a fractional model rather than the traditional approach.
Furthermore, it was observed that GO-EG nanofluids are more efficient due to their high thermal
properties compared with GO-W nanofluids.

Keywords: integer and non-integer order derivatives; GO-W/GO-EG nanofluids; Marangoni
convection; FDE-12 numerical method

1. Introduction

Fractional order models are very useful in the study of nanofluids that contain small nanosized
particles at the rate of small intervals rather than the traditional concept of integer order derivatives.
A fractional order study has the credibility to explain the actual behavior of the physical parameters
and is possible only in the case of the small intervals. The influences of the physical parameters in the
classical models are limited and, in some cases, different from the fractional order models near the wall
surface. Caputo [1] introduced the idea of fractional derivatives from the modified Darcy’s law using
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the concept of unsteadiness. This idea was further modified by the researchers El Amin [2], Atangana
and Alqahtani [3], and Alkahtani [4] by introducing varieties of new fractional derivatives and their
applications. The fractional derivative concept can potentially be applied to the study of complicated
control system problems. Yilun Shang [5] studied finite-time state consensus problems in continuous
multi-agent systems with non-linear particles. Liu et al. [6] investigated the fixed-time event-triggered
consensus control problem for multi-agent systems with non-linear uncertainties.

Advanced energy assets are the hot issue amid engineers and researchers as a response to rising
energy demands. The base liquids have no sufficient thermal efficiency to fulfill the required demands
of the industry. The small size of metal particles are used in common solvents to improve the thermal
efficiency of the liquids. Water-, ethylene glycol-, and mineral oil-like convectional heat transfer fluids
play an imperative role in many industrial and technological approaches such as heat generation,
air-conditioning, chemical production, microelectronics, and transportation. The rate of change at
small intervals has been examined by Atangana and Baleanu [7] to investigate the physical constraints
of nanofluids for the heat transfer applications.

The physical aspects of the nanofluids and the role of the small sized nanoparticles in the
enhancement of heat transfer applications using the traditional concept were introduced by Choi [8] to
enhance the thermal efficiency of the nanofluids through nanoparticles.

The carbon family has the tendency to provide rapid cooling and fast thermal productivities.
The experimental results demonstrated for carbon materials include the results of graphite nanoparticles,
graphene oxides, and carbon nanotubes. Ellahi et al. [9] comprehensively discussed the effect of Carbon
Nanotubes (CNT) nanofluid flow along a vertical cone with variable wall temperature. The results
of both types of nanofluid can be obtained. Gul et al. [10] discussed effective Prandtl number model
influences on Al2O3−H2O and Al2O3−C2H6O2 nanofluids’ spray along a stretching cylinder. Ellahi [11]
worked on the effects of Magneto Hydrodynamic (MHD) and temperature-dependent viscosity on the
flow of a non-Newtonian nanofluid in a pipe, using the analytical solution. Ellahi et al. [12] studied
shiny film coating for multi-fluid flows of a rotating disk suspended with nanosized silver and gold
particles. Khan et al. [13] worked on the Optimal Homotopy Analysis Method (OHAM) solution of
Multi Walled Carbon Nanotubes and Single Walled Carbon Nanotubes (MWCNT/SWCNT) nanofluid
thin film flow over a nonlinear extending disc.

Hummers and Offeman [14] developed a speedy and comparatively safe technique for the
production of graphitic oxide from graphite in what is basically a crystalline substance of sulfuric acid
H2SO4, potassium permanganate KMnO4, and sodium nitrate NaNO3.

The high thermal conductivity and characteristic lubricity of graphene make it a perfect claimant
for the alteration of functional fluids. The solid particles, having an efficient thermal conductivity,
are assorted to the base fluid to enhance the overall thermal conductivity of the fluid, as depicted in
Maxwell [15]. Balandin et al. [16] examined the efficient thermal conductivity of single layer graphene
in different solvents. Wei et al. [17] were pioneers in expressing the use of graphene oxide in ethylene
glycol to enhance the thermal conductivity of ethylene glycol (EG). The graphene oxide nanosheets
were set and isolated in EG and water at 5% capacity concentrations to enhance the thermal conductivity
up to 60% compared with the base liquid EG.

Recently, Gul and Firdous [18] experimentally examined the stable dispersion of the graphene
oxide in water and then analyzed the numerical study of the graphene oxide-water (GO-W) nanofluid
between two rotating discs for the thermal applications.

Another type of convection which is used for temperature-dependent situations is called Marangoni
convection. The existence of a spontaneous interface was first reported in 1855 by Thomson [19] and
later represented in detail in 1865 by Marangoni [20] by spreading an oil droplet on a water surface,
revealing that lower surface tension will spread on a liquid with higher surface tension.

In light of the previous meaningful discussion, the aim of this study was to examine the GO-W
and graphene oxide and ethylene glycol (GO-EG) nanofluid flow under the effect of Marangoni
convection using the classical and fractional order models. The comparison of the two types of
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nanofluids was conducted to investigate the impacts of the physical parameters. The physical
and numerical outputs of the classical and fractional models were also compared and discussed.
Sheikholeslami and Ganji [21] examined the Cu–H2O nanofluid flow under the impact of Marangoni
convection. The numerical approach to find the solution of a different type of problem was previously
discussed [22–27]. The numerical scheme of Runge Kutta method of order 4 (RK-4) was used in their
study to determine the impact of the physical parameters and numerical outputs.

The published work of Gul and Kiran [18] was extended by including the GO-EG nanofluid and a
comparison of GO-EG and GO-W was made. Furthermore, integer and non-integer models h were
compared under the effect of Marangoni convection. The fractional order differential equations were
tackled numerically with the help of the Fractional Differential Equation-12 (FDE-12) technique [28–32].
A variety of numerical techniques are used to find the solutions of the classical models [33] and these
techniques are further combined for the solutions of fractional order problems. Agarwal et al. [34]
studied the neural network models using the GML synchronization and impulsive Caputo fractional
differential equations. Morales-Delgado et al. [35] worked on the analytic solution for oxygen
diffusion from capillaries to tissues involving external force effects using a fractional calculus approach.
Khan et al. [36] researched the dynamics of the Zika virus with the Caputo fractional derivative.
The physical configuration of the problem is shown in Figure 1.
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2. Problem Formulation

The two-dimensional Marangoni boundary layer flow of GO-W and GO-EG nanofluids is
considered. The magnetic field is functional to the flow pattern in the transverse direction. The interface
temperature is vigilant as a function of x. Assume that both base solvents (water and EG) contain
GO nanoplatelets that are present in the thermally stable stage and no slippage. The flow under
observation can be put into the following plan for GO nanofluids [14]:
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where Equation (1) is the continuity equation, Equation (2) is the momentum equation, and Equation (3)
is the energy equation. Exposed boundary conditions are expressed as:
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v = 0, µnf
µ f

(
∂u
∂y

)
= −∂σ

⊗

∂x = σ0
(
γ∂T
∂x

)
, T = T∞ + ToX2, X = x

L , at y→ 0

u = 0, T = T∞, at y→∞.
(4)

The Marangoni conditions at the interface are revealed in Equation (4), taking the surface tension
σ⊗ = σ[1− γ(T − T∞)],γ = − 1

σ

(
∂σ⊗

∂T

)
, where γ stands for the surface tension temperature coefficient

and σ represents the surface tension constant at the origin.
Also, u, v specify velocity components in the x-, y-directions. The interface and external flow of

the temperature are represented by T, T∞ respectively.
The effective ρnf,µnf, σnf, knf, (ρcp)nf

indicate the density, dynamic viscosity, electrical conductivity,
thermal conductivity, and specific heat capacity of nanoplatelets, respectively, and are defined as:
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where φ is the solid volume fraction and σ f , ρ f , (ρcp) f
are the electrical conductivity, density, and

specific heat capacity of the base fluids, respectively.
The similarity transformations are considered as [14]:

η =
y
L

, ψ = υ f X f (η), u =
∂ψ

∂y
, v = −

∂ψ

∂x
, T = T∞ + ToX2Θ(η). (6)

Using the aforementioned assumption and condition, Equation (1) is verified identically, whereas
Equations (2)–(4) are transformed in the following form:
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f = 0, d f 2

dη2 = −2(1−φ)2.5, Θ = 1, at η = 0
d f
dη = 0, Θ = 0, at η→∞

(9)

where M, Pr, indicate the transformation of the magnetic parameter and Prandtl number, respectively,
and are defined individually as:

M2 =
σ f B2

oL2

µop f
, Pr =

(ρcp) f

k f
. (10)

The local Nusselt number Nux is:

Nu = −2
kn f

k f

(
∂T
∂y

)
y=0

. (11)

3. Preliminaries on the Caputo Fractional Derivatives

The basic definition and properties related to non-integer or fractional derivatives derived by
Caputo are as follows.
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3.1. Definition 1

Let b > 0, t > b; b,α, t ∈ R. The Caputo fractional derivative of order α of function f ∈ Cn is
given by:

C
b Dα

t f (t) =
1

Γ(n− α)

t∫
b

f (n)(ξ)

(t− ξ)α+1−n dξ, n− 1 < α < n ∈ N. (12)

3.2. Property 1

Let f (t), g(t) : [a, b]→< be such that C
b Dα

t f (t) and C
b Dα

t g(t) exist almost everywhere and let
c1, c2 ∈ <. Then C

b Dα
t
{
c1 f (t) + c2g(t)

}
exists almost everywhere and:

C
b Dα

t
{
c1 f (t) + c2g(t)

}
= c1

C
b Dα

t f (t) + c2
C
b Dα

t g(t). (13)

3.3. Property 2

The function f (t) ≡ c is constant and therefore the fractional derivative is zero: C
b Dα

t c = 0.
The general description of the fractional differential equation is assumed, including the Caputo concept:

C
b Dα

t x(t) = f (t, x(t)), α ∈ (0, 1) (14)

with the initial conditions x0 = x(t0).

4. Solution Methodology

The variables were selected to alter Equations (7)–(9) into the system of the first order
differential equations:

y1 = η, y2 = f , y3 = f ′, y4 = f ′′ , y5 = Θ, y6 = Θ′. (15)

The variables selected in Equation (15) were used for the classical (integer) system and
Equations (7)–(9) are settled as:

y′1 = 1, y′2 = y3, y′3 = y4, y′4 =
[
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2 +
σn f
σ f

M2y3

]
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+ 4
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[
−
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] (16)

with initial conditions:

y1 = 0, y2 = 0, y3 = u1, y4 = −2(1−φ)2.5, y5 = 1, y6 = u2. (17)

The first order ordinary differential equations system (15) is further transformed into the Caputo
fractional order derivatives.

The FDE-12 technique was adopted for the fractional order differential equations. The final system
and initial conditions are as follows:
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5. Results and Discussions

The GO-W and GO-EG nanofluid flows under the effect of Marangoni convection were analyzed
using the classical and fractional models for heat transfer applications. The impact of the physical
parameters was obtained through the classical and fractional order models and compared. Moreover,
the impact of the embedded parameters, comprising GO-W and GO-EG nanofluids, was compared,
and it was observed that due to rich thermophysical properties the GO-EG nanofluid is a comparatively
better heat transfer solvent.

In the following figures, an upward arrow shows an increasing effect while a downward arrow
shows a decreasing effect.

The effect of the nanofluid volume fraction φ using the classical model versus the velocity profile
f (η) for the GO-W and GO-EG nanofluids is depicted in Figure 2. The rising values of φ lead to
enhance the velocity field linearly in the classical model. Physically, the larger amount of nanoparticle
volume fraction generates the friction force, and this force is more visible near the wall, reducing the
flow motion. However, this impact is unclear in the classical model. The increase in the flow motion
due to the rising values of φ indicates that the thermal efficiency of the nanofluid provides strength to
the flow field. Moreover, this impact is comparatively high using the GO-EG nanofluids.
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Figure 2. The impact of φ versus classical f (η), when M = 0.1.

The effect of the nanofluid volume fraction φ using the fractional model for the same values of
φ is shown in Figure 3. Near the wall surface the velocity field falls, because near the wall surface
friction increases, which retards the velocity and increases after the critical point due to the reduction
in friction. Physically, the larger nanoparticle volume fraction generates the friction force and this force
is more visible near the wall, reducing the flow motion. This effect is clearer using the fractional model.
The impact of the increasing values of φ versus the radial velocity field f ′(η) using the integer model is
shown in Figure 4. The same effect as discussed above was observed. The larger amount of φ increases
the value of f ′(η) in the integer order model. The impact of the increasing values of φ versus the radial
velocity field f ′(η) using the fractional model is shown in Figure 5. The larger amount of φ reduces
f ′(η) in the fractional order model near the wall surface and after the point of inflection the velocity
enhances, as shown in Figure 5.
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The influence of the larger values of the magnetic parameter M versus the temperature profile
Θ(η) for the integer order and fractional order problems is shown in Figures 6 and 7, respectively. This
is due to the Lorentz force, which results in resistance to the transport phenomena. This retarding
force controls the GO-W and GO-EG nanofluid velocities, which is useful in numerous industrial
and engineering applications such as heat transferring, industrial cooling, and nanofluid coolant.
Mathematically, the magnetic parameter represents the ratio of the magnetic induction to the viscous
force. Moreover, GO-EG was found to show more dominant results than GO-W.Symmetry 2019, 11, x FOR PEER REVIEW 9 of 15 
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The impact of the fractional order α = 1, 0.95, 0.90, 0.85 versus Nu for both sorts of nanofluids
is depicted in Figure 12. It was observed that the heat transfer and cooling efficiency of the GO-EG
nanofluid is comparatively higher than the GO-W nanofluid. The Nusselt number increases near the
wall surface and declines towards the free surface.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 15 
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The thermophysical properties of the two sorts of nanofluids (GO-W and GO-EG) were examined
from the experimental results and are displayed in Table 1. These properties of the base fluids were
initially calculated at 25 ◦C. The thermophysical properties were examined at a different temperature
level from 25 ◦C to 40 ◦C.
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Table 1. The experimental values (thermophysical properties) of water, ethylene glycol, and graphene
oxide nanoparticles.

Model ρ (kg/m3) Cp (kg−1/k−1) k (Wm−1k−1)

Water (W) 997.1 4179 0.613
Graphene oxide (GO) 1800 717 5000
Ethylene glycol (EG) 1.115 0.58 0.1490

The numerical outputs for the heat transfer rate using the fractional order problem are displayed
in Table 2. The fractional order α = 1, 0.95, 0.90, 0.85 enhances the heat transfer rate in increasing
intervals and this effect is relatively high in the GO-W nanofluid.

Table 2. α = 1, 0.95, 0.90, 0.85 versus Nu, when φ = 0.2, Pr = 6.7, M = 0.5.

α = 1
η.

Θ
′

(0)
GO-W

Θ
′

(0)
GO-EG

α = 0.95
η.

Θ
′

(0)
GO-W

Θ
′

(0)
GO-EG

α = 0.9
η.

Θ
′

(0)
GO-W

Θ
′

(0)
GO-EG

α = 0.85
η.

Θ
′

(0)
GO-W

Θ
′

(0)
GO-EG

0.1 1.0921 1.0903 0.1 1.1039 1.1014 0.1 1.1167 1.1133 0.1 1.1304 1.1259
0.2 1.1708 1.1639 0.2 1.1845 1.1758 0.2 1.1983 1.1875 0.2 1.2121 1.1986
0.3 1.2380 1.2234 0.3 1.2504 1.2328 0.3 1.2624 1.2413 0.3 1.2736 1.2486
0.4 1.2953 1.2706 0.4 1.3051 1.2764 0.4 1.3141 1.2809 0.4 1.3221 1.2840
0.5 1.3442 1.3076 0.5 1.3509 1.3095 0.5 1.3567 1.3101 0.5 1.3617 1.3096
0.6 1.3862 1.3361 0.6 1.3899 1.3344 0.6 1.3928 1.3318 0.6 1.3952 1.3288
0.7 1.4225 1.3578 0.7 1.4235 1.3532 0.7 1.4242 1.3484 0.7 1.4250 1.3441
0.8 1.4544 1.3741 0.8 1.4534 1.3676 0.8 1.4527 1.3619 0.8 1.4527 1.3577
0.9 1.4832 1.3866 0.9 1.4809 1.3794 0.9 1.4796 1.3741 0.9 1.4800 1.3715
1.0 1.5098 1.3966 1.0 1.5072 1.3900 1. 1.5064 1.3866 1.0 1.5083 1.3872

6. Conclusions

The flow of the two types of nanofluids, GO-W and GO-EG, were analyzed for the augmentation
of temperature. Numerical and theoretical analyses were carried out under the effect of Marangoni
convection. The classical and fractional models were used to investigate the impact of the physical
parameters for similar values of the constraint. It was observed that the outputs of the physical
parameters over the velocity and temperature profiles in the classical model are limited, but in utilizing
the fractional model the effect varies in each interval. The fractional order model specifies the outputs
at the small number of intervals, leading to the accurate determination of the physical parameters,
which is very necessary for industrial and engineering applications.

The main features of this study are as follows:

• The rising values of φ lead to the linear enhancement of the velocity field, which was observed
more clearly in the non-integer case compared with the classical model.

• The increasing values of the magnetic parameter increase the temperature field and decrease the
Nusselt number. This effect is somewhat better in the fractional case compared to the integer model.

• Due to the rising values of φ, the thermal boundary layer increases and this effect is somewhat
better in the GO-EG nanofluid rather than the GO-W nanofluid.

• The cooling efficiency and heat transfer of the GO-EG nanofluid is far better than that of the
GO-W nanofluid.

• With the Lorentz force, resistance arises in the transport phenomenon. This particular phenomenon
controls the GO-W and GO-EG nanofluid velocities. Also, this effect is more visible in GO-EG
than in GO-W.

• Due to the fractional order α = 1, 0.95, 0.90, 0.85, the heat transfer rate enhances in growing
increments and this effect is far better in the GO-W nanofluid compared with the GO-EG nanofluid.
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7. Future Work

This mathematical model is extendable for future work considering gold nanoparticles, carbon
nanotubes, porous media, variable viscosity, thermal radiation, and hall effects. The fractional ordered
derivative scheme is also extendable using the Caputo–Fabrizio and Atangana–Baleanu operators.
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