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Abstract: Random matrices have played an important role in many fields including machine learning,
quantum information theory, and optimization. One of the main research focuses is on the deviation
inequalities for eigenvalues of random matrices. Although there are intensive studies on the
large-deviation inequalities for random matrices, only a few works discuss the small-deviation
behavior of random matrices. In this paper, we present the small-deviation inequalities for the largest
eigenvalues of sums of random matrices. Since the resulting inequalities are independent of the
matrix dimension, they are applicable to high-dimensional and even the infinite-dimensional cases.
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1. Introduction

Random matrices have been widely used in many problems, e.g., compressed sensing [1],
high-dimensional data analysis [2], matrix approximation [3,4] and dimension reduction [5]. In the
literature, one of main research issues is to study the deviation behavior of eigenvalues (or singular
values) of random matrices.

In general, there are two types of deviation results studied in probability theory: one is the
large-deviation inequality that describes the behavior of the probability P(|x| > t) for large t; and the
other is the small-deviation (or small-ball) inequality that controls the probability P(|x| < ε) for
small ε.

The early large-deviation inequalities for sums of random matrices can be dated back to the work
of Ahlswede and Winter [6]. Tropp [7] improved their results and developed a user-friendly framework
to obtain the large-deviation inequalities for sums of random matrices. To overcome the limitation of
the matrix-dimension dependence, Hsu et al. [8] and Minsker [9] introduced the concepts of intrinsic
dimension and effective dimension to tighten large-deviation inequalities, respectively. Moreover,
Zhang et al. [10] applied a diagonalization method to obtain the dimension-free large-deviation
random for largest singular value of sums of random matrices, while it remains a challenge to select
the auxiliary matrices and functions. In the scenario of a single random matrix, Ledoux [11] studied
the largest eigenvalues of Gaussian unitary ensemble matrices and Vershynin [12] studied the singular
values of the sub-Gaussian and sub-exponential matrices.

Small-deviation problems stemmed from some practical applications, e.g., approximation
problems [13], Brownian pursuit problems [14], quantization problem [15], and convex geometry [16].
For more details, we refer to the bibliography maintained by Lifshitz [17]. There have been some works
on the small-deviation inequalities for the specific types of random matrices. Aubrun [18] obtained the
small-deviation inequalities for the largest eigenvalue of a single Gaussian unitary ensemble matrix.
Rudelson and Vershynin [19] presented the small-deviation inequalities for the smallest singular value
of the random matrix with independent entries. Volodko [20] estimated the small-deviation probability
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of the determinant of the matrix BBT , where B is a d×∞ random matrix whose entries obey a centered
joint Gaussian distribution. To the best of our knowledge, there are few works on the small-deviation
inequalities for sums of random matrices.

1.1. Related Works

Let {X1, X2, · · · , XK} ⊂ Cd×d be a finite sequence of independent random Hermitian matrices.
It follows from Markov’s inequality that

P
{

λmax

(
∑
k

Xk

)
≥ t

}
≤ inf

θ>0

{
e−θt · tr

(
E eθ ∑k Xk

)}
,

where λmax denotes the largest eigenvalue and E stands for the expectation operation. By using
Golden-Thompson inequality, Ahlswede and Winter [6] bounded the trace of the matrix moment
generating function (mgf) in the following way:

tr
(
E eθ ∑k Xk

)
≤ tr(I) ·

[
∏

k
λmax

(
EeθXk

)]
= d · exp

(
∑
k

λmax
(

logEeθXk
))

, (1)

where tr(A) stands for the trace of the matrix A. By applying Lieb’s concavity theorem, Tropp [7]
achieved a tighter matrix mgf bound than the above one:

tr
(
E eθ ∑k Xk

)
≤ d · exp

(
λmax

(
∑
k

logEeθXk
))

, (2)

where “the eigenvalue of sum of matrices” is smaller than “the sum of eigenvalues of matrices” in the
right-hand side of (1). However, there remains a shortcoming that the result (2) is dependent with the
matrix dimension d, and its right-hand side will become loose for high-dimensional matrices.

To overcome the shortcoming, Hsu et al. [8] employed the intrinsic dimension tr(X)
λmax(X)

to replace
the ambient dimension d in the case of real symmetric matrices. Minsker [9] provided a dimension-free
version of Bernstein’s inequality for sequences of independent random matrices. Zhang et al. [10]
introduced a diagonalization method to obtain the tail bounds for the largest singular values of the sum
of random matrices. Although their bounds are independent of the matrix dimension and overcame
the aforementioned first shortcoming, there remains a challenge to select the appropriate parameters
to obtain the tighter bounds.

There are also some small-deviation results on one single random matrix. Edelman [21] presented
the small-deviation behavior of the smallest singular value of a Gaussian matrix:

lim
d→∞

P
{

smin(A) ≤ ε√
d

}
= 1− exp

(
− ε− ε2

2

)
,

where A is a d× d random matrix whose entries are independent standard normal random variables.
Rudelson and Vershynin [22] studied the small-deviation bound of the smallest singular value of a
sub-Gaussian matrix:

P
{

smin(B) ≤
ε√
d

}
≤ C · ε + cd,

where C > 0, c ∈ (0, 1) only depends on the sub-Gaussian moment of its entries and B is a d× d
random matrix whose entries are i.i.d. sub-Gaussian random variables with zero mean and unit
variance. However, to the best of our knowledge, there is little work on the small-deviation inequalities
for sums of random matrices.
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1.2. Overview of Main Results

In this paper, we present the small-deviation inequalities for the largest eigenvalue for sums of
independent random Hermitian matrices, i.e., the upper bound of

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
.

In particular, we first present some basic small-deviation results of random matrices. We then
obtain several types of small-deviation inequalities for the largest eigenvalue of sums of independent
random positive semi-definite (PSD) matrices. In contrast to the large-deviation inequalities for
random matrices, the resulting small-deviation inequalities are independent of the matrix dimension d
and thus our finding are applicable to the high-dimensional and even infinite-dimensional cases.

The rest of this paper is organized as follows. In Section 2, we introduce some useful notations and
then give some basic results on small-deviation inequalities for random matrices. The small-deviation
results for sums of random PSD matrices are presented in Section 3. The last section concludes
the paper.

2. Basic Small-Deviation Inequalities for Random Matrices

In this section, we first introduce the necessary notations and then present some basic
small-deviation results of random matrices.

2.1. Necessary Notations

Given a Hermitian matrix A, denote λmax(A) and λmin(A) as the largest and the smallest
eigenvalues of A, respectively. Denote tr(A) and ‖A‖ as the trace and the spectral norm of A,
respectively. Let I be the identity matrix, U be the unitary matrix and U∗ stand for the Hermitian
adjoint of U.

By the spectral mapping theorem, given a real-value function f : R→ R, then

f (A) = U · f (Λ) ·U∗,

where A = UΛU∗ is a diagonalization of A. If f (a) ≤ g(a) for a ∈ I when the eigenvalues of A lie in I,
then there holds that f (A) � g(A), where the semi-definite partial order � is defined as follows:

A � H⇔ H−A is positive semi-definite.

2.2. Basic Small-Deviation Inequalities for Random Matrices

Subsequently, we produce the small-deviation inequalities for random matrices. First, we consider
a small-deviation bound for one single matrix:

Lemma 1. Let Y be a random Hermitian matrix. Then for any ε > 0,

P {λmax(Y) ≤ ε} ≤ inf
θ>0

{
1
d
· eθε ·E tr

(
e−θY)} .
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Proof. For any θ > 0, we have

P {λmax(Y) ≤ ε} = P{e−λmax(θY) ≥ e−θε}

≤ E e−λmax(θY) · eθε [by Markov’s inequality]

= E eλmin(−θY) · eθε [since −λmax(A) = λmin(−A)]

= Eλmin(e−θY) · eθε [by Spectral mapping theorem]

≤ 1
d
· eθε ·E tr

(
e−θY).

The last inequality holds because the minimum eigenvalue of a positive definite (pd) matrix is
dominated by the tr(·)/d. Since this inequality holds for any θ > 0, taking an infimum over θ > 0
completes the proof.

Then, by using the subadditivity of the matrix cumulant generating function (see [7], Lemma 3.4),
we obtain the small-deviation bound for sums of random matrices:

Theorem 1. Let {X1, X2, · · · , XK} be a finite sequence of independent random Hermitian matrices. Then for
any ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ inf

θ>0

{
eθε · exp

(
λmax

(
∑
k

logE e−θXk
))}

. (3)

Proof. By combining Lemma 1 and Lemma 3.4 of [7], we have for any θ > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ 1

d
· eθε ·E tr

(
e−θ ∑k Xk

)
≤ 1

d
· eθε · tr

(
exp

(
∑
k

logE e−θXk
))

≤ 1
d
· eθε · d · λmax

(
exp

(
∑
k

logE e−θXk
))

= eθε · exp

(
λmax

(
∑
k

logE e−θXk
))

.

Taking the infimum over θ > 0 completes the proof.

Please note that the above small-deviation bound is independent of the matrix dimension d,
and thus it is applicable to the scenarios of high-dimensional and even infinite-dimensional matrices.
In addition, we also derive the following small-deviation bounds for sums of random matrices.

Corollary 1. Let {X1, X2, · · · , XK} be a sequence of independent random Hermitian matrices. Assume that
there is a function g(θ) and a sequence {Ak} of fixed Hermitian matrices such that

E e−θXk � eg(θ)·Ak , ∀ θ > 0. (4)

1. Define the scalar parameter

η1 := λmax

(
∑
k

Ak

)
.
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If g(θ) > 0, then for any ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ inf

θ>0

{
exp

(
θε + g(θ) · η1

)}
. (5)

2. Define the scalar parameter

η2 := λmin

(
∑
k

Ak

)
.

If g(θ) < 0, then for any ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ inf

θ>0

{
exp

(
θε + g(θ) · η2

)}
. (6)

Proof. It follows from (4) that
logE e−θXk � g(θ) ·Ak,

and substituting it into Theorem 1 leads to the result (5). Then, the fact that λmax(−X) = −λmin(X) for
any Hermitian matrix X leads to the result (6). This completes the proof.

By using the logarithm operation, we then obtain another small-deviation bound for sums of
random matrices:

Corollary 2. Let {X1, X2, · · · , XK} be a sequence of independent random Hermitian matrices. Then for any
ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ inf

θ>0
exp

(
θε + K · log λmax

( 1
K

K

∑
k=1

E e−θXk
))

.

Proof. Since the matrix logarithm is operator concave, for each θ > 0, we have

K

∑
i=1

log E e−θXk = K · 1
K

K

∑
i=1

log E e−θXk � K · log
( 1

K

K

∑
i=1

E e−θXk
)

.

According to (3), we then arrive at

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ 1

d
· eθε · tr exp

(
K · log

( 1
K

K

∑
i=1

E e−θXk
))

.

Since the trace of a matrix can be bounded by d times of its maximum eigenvalue, taking the
infimum over θ > 0 completes the proof.

The following presents the relationship between one random PSD matrix and a sum of PSD
random matrices.

Lemma 2. Let {X1, X2, · · · , XK} be a sequence of independent random Hermitian PSD matrices. Then for all
k and any ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤∏

k
P
{

λmax(Xk) ≤ ε
}
≤ P

{
λmax(Xk) ≤ ε

}
.
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Proof. Since {X1, X2, · · · , XK} are PSD, we have

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ P

{
max

(
λmax(X1), · · · , λmax(XK)

)
≤ ε

}
= ∏

k
P
{

λmax(Xk) ≤ ε
}

≤ P
{

λmax(Xk) ≤ ε
}

.

The last inequality holds for any k = 1, 2 · · · , K. This completes the proof.

This lemma shows that the small-deviation probability for sums of random matrices can be
bounded by using the small-deviation probability for one single matrix. This fact suggests that the
small-deviation bound could be independent of the size of matrix sequence, while this phenomenon
will not arise in the large-deviation scenario.

3. Small-Deviation Inequalities for Positive Semi-Definite Random Matrices

In this section, we present several types of small-deviation inequalities for the largest eigenvalue
of sums of independent random PSD matrices. Similar to the scalar version of small-deviation
inequalities, there remains a challenge to bound the term Ee−θXk . Here, we adapt some methods to
handle this issue.

First, we introduce the negative moment estimate for the largest eigenvalue to derive a
small-deviation inequality for sums of random matrices:

Theorem 2. Let {X1, X2, · · · , XK} be a sequence of independent random Hermitian PSD matrices. Given a
p > 0, if there exists a positive constant Cp such that[

λmax

(
∑
k
EXk

)]−p

< Cp,

then there holds that for any ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ Cpεp.

Proof. It follows from Jensen’s inequality that

E
(

λmax

(
∑
k

Xk

))−p

≤
(
Eλmax

(
∑
k

Xk

))−p

≤
[

λmax

(
∑
k
EXk

)]−p

< Cp.

Then, the Markov’s inequality yields

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
= P


[

λmax

(
∑
k

Xk

)]−p

≥ ε−p


≤ εp ·E

(
λmax

(
∑
k

Xk
))−p

≤ Cpεp.

This completes the proof.
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In this theorem, we impose an assumption that the negative moment of λmax
(
∑k Xk

)
is bounded.

In general, this assumption is mild, and can be satisfied in most cases. The following small-deviation
results are derived under that condition that the eigenvalues of the matrices {Xk} are bounded:

Theorem 3. Let {X1, X2, · · · , XK} be a sequence of independent random Hermitian PSD matrices such that
λmax(Xk) ≤ L (∀ k = 1, 2, · · · , K) almost surely. Then for any ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤
(µ

ε

)ε/L
· exp

(
ε− µ

L

)
, (7)

where

µ := λmin

(
∑
k
EXk

)
.

Furthermore, there holds that for any ε > 0,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤
(

1
ε

)Kε/L
·
(

K

∏
k=1

µk

)ε/L

· exp
(

Kε−∑k µk
L

)
, (8)

where
µk = λmin(EXk).

Proof. For any θ > 0 and x ∈ [0, L], there holds that

e−θx ≤ 1 +
e−θL − 1

L
· x ≤ exp

(e−θL − 1
L

· x
)

.

According to transfer rule, we have,

logE e−θXk � e−θL − 1
L

EXk. (9)

By substituting (9) into Corollary 1, we then have,

P
{

λmax

(
∑
k

Xk

)
≤ ε

}
≤ inf

θ>0
eθε · exp

(
λmax

(
∑
k

e−θL − 1
L

EXk

))

= inf
θ>0

exp

(
θε + λmax

(e−θL − 1
L ∑

k
EXk

))

= inf
θ>0

exp

(
θε +

e−θL − 1
L

· λmin

(
∑
k
EXk

))

= inf
θ>0

exp
(

θε +
e−θL − 1

L
· µ
)

,

since e−θL−1
L < 0. The infimum is achieved at θ = 1

L log( µ
ε ), which leads to the result of (7).

Moreover, the combination of Lemma 1 and (9) leads to

P {λmax(Xk) ≤ ε} ≤
(µk

ε

)ε/L
· exp

(
ε− µk

L

)
.

Then, the result (8) is derived from Lemma 2. This completes the proof.

Actually, the above results are derived from the geometric point of view, where the term e−θx is
bounded by the linear function 1 + e−θL−1

L for any x ∈ [0, L]. Finally, we study the small-deviation
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inequalities for random matrix series ∑k xkAk, which is a sum of fixed Hermitian pd matrices Ak
weighted by random variables xk.

Theorem 4. Let {A1, A2, · · · , AK} be a sequence of fixed Hermitian pd matrices, and {x1, x2, · · · , xK} be a
finite sequence of independent variables. If there exist the constants C > 0 and α > 0 such that for all θ > 0,

E e−θxk ≤ C · θ−α, (10)

then there holds that for any 0 < ε < Kα
e ·

α

√
K

Cν ,

P
{

λmax

(
∑
k

xkAk

)
≤ ε

}
≤
( eε

Kα

)αK
·
(

Cν

K

)K
, (11)

where

ν = λmax

(
∑
k

Ak
−α

)
.

Furthermore, for any 0 < ε < (α/e) · C− 1
α ·
(

∏K
k=1 νk

)− 1
αK ,

P
{

λmax

(
∑
k

xkAk

)
≤ ε

}
≤
(

K

∏
k=1

νk

)
· CK ·

(eε

α

)Kα
, (12)

where
νk = λmax(Ak

−α).

Proof. According to transfer rule, we have,

E e−θxkAk � C · (θAk)
−α. (13)

By substituting (13) into Corollary 2, we then have,

P
{

λmax

(
∑
k

xkAk

)
≤ ε

}
≤ inf

θ>0
exp

(
θε + K · log λmax

( 1
K

K

∑
k=1

C · (θAk)
−α
))

= inf
θ>0

exp

(
θε + K · log λmax

(Cθ−α

K

K

∑
k=1

A−α
k

))

= inf
θ>0

exp
(

θε + K · log
Cν

Kθα

)
.

The infimum will be attained at θ = αK
ε , and it leads to the result of (11). Moreover, the

combination of Lemma 1 and (13) leads to

P {λmax(xkAk) ≤ ε} ≤ C · νk ·
(eε

α

)α
.

Then, the result (12) is resulted from Lemma 2. This completes the proof.

The above results hold under the condition (10) that E e−θxk has a power-type upper bound of
C · θ−α. This condition is mild, and we refer to [23] for the details. Moreover, to keep the results (11)

and (12) non-trivial, their right-hand sides should be less than one, and thus we arrive at ε < Kα
e ·

α

√
K

Cν

and ε < (α/e) · C− 1
α ·
(

∏K
k=1 νk

)− 1
αK , respectively.
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4. Conclusions

In this paper, we present the small-deviation inequalities for the largest eigenvalues of
sums of random matrices. In particular, we first give some basic results on small-deviation
inequalities for random matrices. We then study the small-deviation inequalities for sums of
independent random PSD matrices. In contrast to the large-deviation inequalities for random matrices,
our results are independent of the matrix dimension d and thus can be applicable to the scenarios
of high-dimensional and even infinite-dimensional matrices. In addition, by using the Hermitian
dilation (see Section 2.6 of [7]), our small-deviation results can also be extended to the scenario of
non-Hermitian random matrices.
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