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Abstract: In the paper, we study the oscillation of fourth-order delay differential equations,
the present authors used a Riccati transformation and the comparison technique for the fourth
order delay differential equation, and that was compared with the oscillation of the certain second
order differential equation. Our results extend and improve many well-known results for oscillation
of solutions to a class of fourth-order delay differential equations. Some examples are also presented
to test the strength and applicability of the results obtained.
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1. Introduction

In this work, we consider a fourth-order delay differential equation

Lz + q (y) f (z (σ (y))) = 0, (1)

where

Lz :=
[

m3 (y)
(

m2 (y)
[
m1 (y) z′ (y)

]′)′]′ .
We assume mi, q, σ ∈ C ([y0, ∞),R) , mi (y) > 0, i = 1, 2, 3, lim

y→∞

m3 (y)
m1 (y)

> 0, q > 0, σ (y) ≤ y

and lim
y→∞

σ (y) = ∞, f ∈ C (R,R) , f (u) /u ≥ k > 0 for u 6= 0.

By a solution of (1) we mean a function z ∈ C ((σ (yz) , ∞)) , which has the property

m1 (y) z′ (y) , m2 (y) [m1 (y) z′ (y)]′ , m3 (y)
(

m2 (y) [m1 (y) z′ (y)]′
)′
∈ C1[yz, ∞), and satisfies (1) on

[yz, ∞).We consider only those solutions z of (1) which satisfy sup{|z (y)| : y ≥ yz} > 0, for all y > yz.
Such a solution is said to be oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise.

The study of differential equations with deviating argument was initiated in 1918, appearing in
the first quarter of the twentieth century as an area of mathematics that has since received a lot of
attention. It has been created in order to unify the study of differential and functional differential
equations. Since then, there has been much research activity concerning the oscillation of solutions of
various classes of differential and functional differential equations. Many authors have contributed on
various aspects of this theory, see ( [1–9]) .
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The problem of the oscillation of higher and fourth order differential equations have been
widely studied by many authors, who have provided many techniques used for obtaining oscillatory
criteria for higher and fourth order differential equations. We refer the reader to the related books
(see [4,10–13]) and to the papers (see [11,14–18]). Because of the above motivating factors for the study
of fourth-order differential equations, as well as because of the theoretical interest in generalizing and
extending some known results from those given for lower-order equations, the study of oscillation of
such equations has received a considerable amount of attention. For a systematic summary of the most
significant efforts made as regards this theory, the reader is referred to the monographs of [19–22].

Especially, second and fourth order delay differential equations are of great interest in biology in
explaining self-balancing of the human body and in robotics in constructing biped robots.

One of the traditional tools in the study of oscillation of equations which are special cases of (1) has
been based on a reduction of order and the comparison with oscillation of first-order delay differential
equations. Another widely used technique, applicable also in the above-mentioned case, involves
the Riccati type transformation which has been used to reduce Equation (1) to a first-order Riccati
inequality see (see [2]) .

Moaaz et al. [11] improved and extended the Riccati transformation to obtain new oscillatory
criteria for the fourth order delay differential equations(

π (y)
(
z′′′ (y)

)α
)′

+
∫ m

a
q (y, ξ) f (z (Φ (y, ξ))) dσ (ξ) = 0‚ y ≥ y0.

Elabbasy et al. [7] studied the equation

[
m (y)

(
z(n−1) (y)

)γ]′
+

m

∑
i=1

qi (y) f (z (σi (y))) = 0‚ y ≥ y0.

Agarwal, et al. [1] and the present authors in [18] used the comparison technique for the fourth
order delay differential equation[

m (y)
(

z(n−1) (y)
)γ]′

+ q (y) zγ (σ (y)) = 0‚ y ≥ y0,

that was compared with the oscillation of certain first order differential equation and under
the conditions ∫ ∞

y0

1

m
1
γ (y)

dy = ∞,

and ∫ ∞

y0

1

m
1
γ (y)

dy < ∞.

However, the authors of this paper used the comparison technique for the fourth order
delay differential equation and that was compared with the oscillation of certain second order
differential equation.

To the best of our knowledge, there is nothing known about the oscillation of (1) to be oscillatory
under the ∫ ∞

y0

1
mi (y)

dy = ∞. (2)

Our primary goal is to fill this gap by presenting simple criteria for the oscillation of all
solutions of (1). So the main advantage of studying (1) essentially lies in the direct application
of the well-known Kiguradze lemma [23] (Lemma 1), which allows one to classify the set of possible
nonoscillatory solutions.
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In what follows, all occurring functional inequalities are assumed to hold eventually, that is,
they are satisfied for all t large enough. As usual and without loss of generality, we can deal only with
eventually positive solutions of (1).

2. Main Results

In this section, we state some oscillation criteria for (1). For convenience, we denote

πi (y) =
∫ y

y1

1
mi (s)

ds, i = 1, 2, 3, I2 (y) =
∫ y

y1

1
m1 (s)

π2 (s) ds.

A2 (y) =
∫ y

y1

1
m2 (s)

π3 (s) ds , A3 (y) =
∫ y

y1

1
m1 (s)

A2 (s) ds.

Ē0z (y) = z (y) , Ēiz (y) = mi (Ēi−1z (y))′ , i = 1, 2, 3, Ē4z (y) = (Ē3z (y))′ .

where y1 is sufficiently large.
The main step to study Equation (1) is to determine the derivatives sign Ēiz (y) according to

Kiguradze’s lemma [23]
Ē4z (y) + q (y) f (z (σ (y))) = 0‚

the set Φ of nonoscillatory solutions can be divided into two parts

Φ = Φ1 ∪Φ3,

say positive solution z (y) satisfies

z (y) ∈ Φ1 ⇐⇒ Ē1z (y) > 0, Ē2z (y) < 0, Ē3z (y) > 0, Ē4z (y) < 0,

or
z (y) ∈ Φ3 ⇐⇒ Ē1z (y) > 0, Ē2z (y) > 0, Ē3z (y) > 0, Ē4z (y) < 0.

Theorem 1. Let (2) hold. Assume that z(y) be a positive solution of Equation (1). If (i) z (y) ∈

Φ1, then
z (y)
π1(y)

is decreasing.

(ii) z (y) ∈ Φ3, then
z (y)
A3(y)

is decreasing and Ē1z (y) ≥ A2 (y) Ē3z (y) .

Proof. Let z (y) be a positive solution of (1) and z (y) ∈ Φ1. It follows from the monotonicity of
Ē1z (y) that

z (y) > z (y)− z (y1)

=
∫ y

y1

1
m1 (s)

Ē1z (s) ds,

≥ Ē1z (y)
∫ y

y1

1
m1 (s)

ds,

≥ Ē1z (y)π1(y) > m1 (y) z′ (y)π1(y).

Therefore, (
z (y)
π1(y)

)′
=

z′ (y)π1(y)− z (y) 1
m1(y)

(π1(y))
2 < 0, (3)
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case (i) is proved. Now let z (y) ∈ Φ3. Since

Ē2z (y) = Ē2z (y1) +
∫ y

y1

1
m3 (s)

Ē3z (s) ds

> Ē3z (y)π3 (y)

then (
Ē2z (y)
π3(y)

)′
=

Ē
′
2z (y)π3(y)− Ē2z (y) 1

m3(y)

(π3(y))
2 < 0. (4)

Thus
Ē2z (y)
π3(y)

is decreasing. Moreover,

Ē1z (y) = Ē1z (y1) +
∫ y

y1

π3(s)
m2 (s)

Ē2z (s)
π3(s)

ds,

>
Ē2z (y)
π3(y)

A2(y).

we obtain Ē1z (y) ≥ A2(y)Ē3z (y) and

(
Ē1z (y)
A2(y)

)′
=

Ē
′
1z (y) A2(y)− 1

m2(y)
π3(y)Ē1z (y)

(A2(y))
2 < 0. (5)

Thus
Ē1z (y)
A2(y)

is decreasing. On the other hand,

z (y) = z (y1) +
∫ y

y1

A2(s)
m1 (s)

Ē1z (s)
A2(s)

ds,

>
Ē1z (y)
A2(y)

A3(y),

which implies (
z (y)
A3(y)

)′
=

z
′
(y) A3(y)− 1

m1(y)
A2(y)z (y)

(A3(y))
2 < 0. (6)

So that
z (y)
A3(y)

is decreasing. Theorem is proved.

Let

δ (y) =
1

m1 (y)

(∫ σ−1(y)

y

1
m2 (s)

∫ σ−1(y)

s

1
m3 (ν)

dνds
∫ ∞

σ−1(y)
kq (s) ds

)
.

Theorem 2. Let (2) hold. Let z(y) be a positive solution of Equation (1). If (i) z (y) ∈ Φ1, then z
′
(y) ≥

δ (y) z (y) .
(ii) z (y) ∈ Φ3, then z

′
(y) ≥ 1

m1(y)π1(y)
z (y) .

Proof. Assume that z (y) is a positive solution of (1) and z (y) ∈ Φ1. For any u > y, we have Ē1z (y) that

−Ē2z (y) = Ē2z (u)− Ē2z (y) ,

=
∫ u

y

1
m3 (s)

Ē3z (s) ds, (7)

> Ē3z (u)
∫ u

y

1
m3 (s)

ds.
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Multiplying by
1

m2 (s)
and then integrating from y to u, one gets

Ē1z (y) ≥
∫ u

y
Ē3z (y)
m2 (s)

∫ u
s

1
m3 (ν)

dνds,

> Ē3z (u)
∫ u

y
1

m2 (s)
∫ u

s
1

m3 (ν)
dνds.

(8)

An integration of (1) from u to ∞, yields

Ē3z (u) ≥
∫ ∞

u
kq (s) z (σ (s)) ds,

≥ z (σ (s))
∫ ∞

u
kq (s) ds.

Combining (7) together with (8) and setting u = σ−1 (y), we get

z
′
(y) ≥ 1

m1 (y)

(∫ σ−1(y)
y

1
m2 (s)

∫ σ−1(y)
s

1
m3 (ν)

dνds
∫ ∞

σ−1(y) kq (s) ds
)

z (y) .

≥ δ (y) z (y) .
(9)

and case (i) is proved. Now let z (y) ∈ Φ3. Employing (H2), the monotonicity of Ē1z (y) and the fact
that Ē1z (y)→ ∞ as y→ ∞, we get

z (y) = z (y1) +
∫ y

y1

1
m1 (s)

Ē1z (s) ds,

≤ z (y1) + Ē1z (y)
∫ y

y1

1
m1 (s)

ds,

= z (y1)− Ē1z (y)
∫ y1

0
1

m1 (s)
ds + Ē1z (y)

∫ y
0

1
m1 (s)

ds,

≤ Ē1z (s)
∫ y

0
1

m1 (s)
ds.

(10)

The proof is complete now.

Now, we apply the results of the previous cases to obtain the oscillation conditions of Equation (1).
We denote

δ1 (y) = q (y)
π1 (σ (y))

π1 (y)
,

δ2 (y) = kq (y)
A3 (σ (y))

A3 (y)
.

Theorem 3. Let (2) hold. Assume there exists a positive continuously differentiable functions ρ, ϑ ∈
C ([y0, ∞)) such that

lim sup
y→∞

∫ ∞

y1

[
ρ (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu− m1 (ν) (ρ

′ (ν))2

4ρ (ν)

]
dν = ∞, (11)

and

lim sup
y→∞

∫ ∞

y1

[
δ2 (ν) ϑ (s)− m1 (s) (ϑ′ (ν))

2

4ρ (ν) A2 (s)

]
ds = ∞. (12)

Then every solution of Equation (1) is oscillatory.
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Proof. Assume that (1) has a nonoscillatory solution z(y). Without loss of generality, we can assume
that z (y) is a positive solution of (1). Then either z (y) ∈ Φ1 or z (y) ∈ Φ3. Now assume that
z (y) ∈ Φ1. Theorem 1 implies that

z (σ (y)) ≥ π1 (σ (y))
π1 (y)

z (y)

On the other hand, it follows from Theorem 2 that

z
′
(y) ≥ δ (y) z (y) .

Setting both estimates into (1), we get

Ē4z (y) + δ1 (y) ≤ 0.

Integrating from y to ∞ one gets

−Ē3z (y) ≥
∫ ∞

y δ1 (s) z (s) ds,
≥ z (y)

∫ ∞
y δ1 (s) ds.

(13)

Integrating once more, we have

Ē2z (y) +
(∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu

)
z (y) ≤ 0. (14)

Define the function ω (y) by

ω (y) := ρ (y)
Ē1z (y)

z (y)
, (15)

then ω (y) > 0 and

ω′ (y) = ρ′ (y)
Ē1z (y)

z (y)
+ ρ (y)

Ē2z (y)
m2 (y) z (y)

− ρ (y)
Ē1z (y) z′ (y)

z2 (y)

≤ − ρ (y)
m2 (y) z (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu +

ρ′ (y)
ρ (y)

ω (y)− ω2 (y)
m1 (y) ρ (y)

(16)

≤ − ρ (y)
m2 (y) z (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu +

m1 (y) (ρ′ (y))
2

4ρ (y)
.

Integration of the previous inequality yields

∫ y

y1

[
ρ (ν)

m1 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu− m1 (ν) (ρ

′ (ν))2

4ρ (ν)

]
dν ≤ ω (y1) ,

this contradicts with (11) as y→ ∞. Now assume that z (y) ∈ Φ3. Theorems 1 and 2 guarantee that

z (σ (y)) ≥ A3 (σ (y))
A3 (y)

z (y) , z
′
(y) ≥ 1

m1 (y)π1 (y)
z (y) , Ē1z (y) ≥ A2 (y) Ē3z (y) ,

what in view of (1) provides
Ē4z (y) + δ2 (y) ≤ 0.

Now define ψ (y) by

ψ (y) := ϑ (y)
Ē3z (y)

z (y)
, (17)
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then ψ (y) > 0 and

ψ′ (y) = ϑ′ (y)
Ē3z (y)

z (y)
+ ϑ (y)

Ē4z (y)
z (y)

− ϑ (y)
Ē3z (y) z′ (y)

z2 (y)

≤ −ϑ (y) δ2 (y) +
ϑ′ (y)
ϑ (y)

ψ (y)− A2 (y)ψ2 (y)
m1 (y) ϑ (y)

(18)

≤ −ϑ (y) δ2 (y) +
m1 (y) (ϑ′ (y))

2

4ϑ (y) A2
.

Integrating from y1to y and letting y→ ∞, we get

∫ ∞

y1

[
δ2 (ν) ϑ (s)− m1 (s) (ϑ′ (ν))

2

4ρ (ν) A2 (s)

]
ds ≤ ψ (y1) ,

which contradicts with (12) and the proof is complete.

Corollary 1. Let (2) hold and

lim sup
y→∞

∫ ∞

y1

[
π1 (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu− 1

4m1 (ν)π1 (ν)

]
dν = ∞, (19)

lim sup
y→∞

∫ ∞

y1

[
kq (s) A3 (σ (s))− A2 (s)

4m1 (s) A3 (s)

]
ds = ∞. (20)

Then every solution of Equation (1) is oscillatory.

Now, we use the comparison method to obtain other oscillation results. It is well known (see [10])
that the differential equation[

a (y)
(
z′ (y)

)]′
+ q (y) z (σ (y)) = 0‚ y ≥ y0, (21)

where a , q ∈ C[y0‚ ∞), a (y) , q (y) > 0, is nonoscillatory if and only if there exists a number y ≥ y0,
and a function υ ∈ C1[y‚ ∞), satisfying the inequality

υ′ (y) + αa−1 (y) υ2 (y) + q (y) ≤ 0‚ on [y‚ ∞).

Lemma 1. (see [10]) Let ∫ ∞

y0

1
a (s)

ds = ∞

holds, then the condition

lim inf
y→∞

(∫ ∞

y0

1
a (s)

ds
) ∫ ∞

y
q (s) ds >

1
4

.

Theorem 4. Let (2) hold. Assume that the equation

[
m1 (y) z′ (y)

]′
+

(
1

m2 (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu

)
z (y) = 0‚ (22)

and (
m1 (y)
π3 (y)

z′ (y)
)′

+ δ2 (y) z (y) = 0, (23)

are oscillatory, then every solution of (1) is oscillatory.
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Proof. Proceeding as in proof of the Theorem 3. We get (16). If we set ρ (y) = 1 in (16), then we obtain

ω′ (y) +
1

m1 (y)
ω2 (y)− 1

m2 (y)

∫ ∞

y

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu ≤ 0.

Thus, we can see that Equation (22) is nonoscillatory for every constant λ1 ∈ (0, 1) , which is
a contradiction. If we now set ϑ (y) = 1 in (18), then we find

ψ′ (y) +
A2 (y)
m1 (y)

ψ2 (y) + δ2 (y) ≤ 0.

Hence, Equation (23) is nonoscillatory, which is a contradiction.
Theorem 4 is proved.

In view of Lemma 1, oscillation criteria for (1) of Hille–Nehari-type are easily acquired.
Please note that

Corollary 2. Assume that

lim inf
y→∞

π1 (y)
∫ ∞

y

1
m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu >

1
4

,

lim inf
y→∞

(∫ y

y0

A2 (s)
m1 (s)

ds
) ∫ ∞

y
δ2 (s) ds >

1
4

.

Then every solution of (1) is oscillatory.

3. Example

In this section, we give the following example to illustrate our main results.

Example 1. Let us consider the fourth-order differential equation of type(
y1\2

(
y1\2z′ (y)

)′′)′
+

1
y3 z (βy) = 0, y ≥ 1, (24)

where 0 < β < 1 is a constant. Let

m3 (y) = y1\2, m2 (y) = y1\2, m1 (y) = 1 > 0, q (y) =
1
y3 , σ (y) = βy,

and
πi (s) :=

∫ ∞

y◦

1
mi (s)

ds = ∞.

If we now set k = 1, It is easy to see that all conditions of Corollary 1 are satisfied.

A3 (σ (s)) =
∫ σ(s)

σ1(s)

1
m1 (σ (s))

A2 (σ (s)) ds

=
∫ σ(s)

σ1(s)

(∫ σ(s)

σ1(s)

1
m2 (σ (s))

π3 (σ (s)) ds
)

ds

=
∫ σ(s)

σ1(s)

(∫ σ(s)

σ1(s)

1

(βs)1/2

(∫ ∞

σ1(s)

1

(βs)1/2 ds

)
ds

)
ds
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A2 (s) =
∫ s

s1

1
m2 (s)

π3 (s) ds

=
∫ s

s1

1
s1/2

(∫ ∞

s1

1
s1/2 ds

)
ds

now

lim sup
y→∞

∫ ∞

y1

[
kq (s) A3 (σ (s))− A2 (s)

4m1 (s) A3 (s)

]
ds

lim sup
y→∞

∫ ∞

y1

[
1
s3

∫ σ(s)

σ1(s)

(∫ σ(s)

σ1(s)

1

(βs)1/2

(∫ ∞

σ1(s)

1

(βs)1/2 ds

)
ds

)
ds

]
ds

= ∞

and

lim sup
y→∞

∫ ∞

y1

[
π1 (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu− 1

4m1 (ν)π1 (ν)

]
dν = ∞.

Hence, by Corollary 1, every solution of Equation (25) is oscillatory.

Example 2. Consider a differential equation(
y
(

y
(
yz′ (y)

)′)′)′
+ yz (y) = 0, y ≥ 1, (25)

we see
m3 (y) = m2 (y) = m1 (y) = y > 0, q (y) = y, σ (y) = y,

and
πi (s) :=

∫ ∞

y◦

1
mi (s)

ds = ∞.

If we now set k = 1, It is easy to see that all conditions of Corollary 1 are satisfied.

lim sup
y→∞

∫ ∞

y1

[
π1 (ν)

m2 (ν)

∫ ∞

ν

1
m3 (u)

∫ ∞

u
δ1 (s) dsdu− 1

4m1 (ν)π1 (ν)

]
dν = ∞,

lim sup
y→∞

∫ ∞

y1

[
kq (s) A3 (σ (s))− A2 (s)

4m1 (s) A3 (s)

]
ds = ∞.

Hence, by Corollary 1, every solution of Equation (25) is oscillatory.

4. Conclusions

The results of this paper are presented in a form which is essentially new and of high degree of
generality. To the best of our knowledge, there is nothing known about the oscillation of (1) under the
assumption (2), our primary goal is to fill this gap by presenting simple criteria for the oscillation of all
solutions of (1) by using the generalized Riccati transformations and comparison technique, so the
main advantage of studying (1) essentially lies in the direct application of the well-known Kiguradze
lemma [23] (Lemma 1). Further, we can consider the case of σ (y) ≥ y in the future work.
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