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Abstract: The main purpose of this paper is to give several identities of symmetry for type 2 Bernoulli
and Euler polynomials by considering certain quotients of bosonic p-adic and fermionic p-adic integrals
on Zp, where p is an odd prime number. Indeed, they are symmetric identities involving type 2 Bernoulli
polynomials and power sums of consecutive odd positive integers, and the ones involving type 2 Euler
polynomials and alternating power sums of odd positive integers. Furthermore, we consider two random
variables created from random variables having Laplace distributions and show their moments are given
in terms of the type 2 Bernoulli and Euler numbers.

Keywords: type 2 Bernoulli polynomials; type 2 Euler polynomials; identities of symmetry;
Laplace distribution

1. Introduction

In this section, we are going to review some known results. We first recall the definitions of Bernoulli
and Euler polynomials together with their type 2 polynomials. Then, we introduce the bosonic p-adic
integrals and the fermionic p-adic integrals on Zp that we need for the derivation of an identity of symmetry.
As is well known, the Bernoulli polynomials are defined by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (1)

(see [1,2]).
In particular, the Bernoulli numbers are the constant terms Bn = Bn(0) of the Bernoulli polynomials.

By making use of (1), we can deduce that

n−1

∑
l=0

lk =
1

k + 1
(Bk+1(n)− Bk+1), for k = 0, 1, 2, · · · . (2)

The type 2 Bernoulli polynomials are defined by generating function

t
et − e−t ext =

∞

∑
n=0

bn(x)
tn

n!
, (3)
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(see [3,4]).
In particular, bn = bn(0) are called type 2 Bernoulli numbers. From (3), it can be seen that

bn(x) =
n

∑
k=0

(
n
k

)
bkxn−k, (4)

(see [3,4]).
Analogously to (2), we observe that

n−1

∑
l=0

e(2l+1)t =
1

et − e−t (e
2nt − 1)

=
∞

∑
k=0

(
bk+1(2n)− bk+1

k + 1

)
tk

k!
.

(5)

Thus, by (5), we get

n−1

∑
l=0

(2l + 1)k =
1

k + 1
(bk+1(2n)− bk+1), k = 0, 1, 2, · · · . (6)

Let p be a fixed odd prime number. Throughout this paper, we will use the notations Zp,Qp,Cp,
and C to denote the ring of p-adic rational integers, the field of p-adic rational numbers, the completion of
an algebraic closure of Qp, and the field of complex numbers, respectively. The normalized valuation in
Cp is denoted by | · |p, with |p|p = 1

p . For a uniformly differentiable function f on Zp, the bosonic p-adic
integral on Zp (or p-adic invariant integral on Zp) is defined by

∫
Zp

f (x)dµ0(x) = lim
N→∞

pN−1

∑
x=0

f (x)µ0(x + pNZp) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x). (7)

Then, by (7), we easily get∫
Zp

f (x + 1)dµ0(x)−
∫
Zp

f (x)dµ0(x) = f ′(0), (8)

(see [5,6]).
The fermionic integral on Zp is defined by Kim [6] as

∫
Zp

f (x)dµ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)µ−1(x + pNZp) = lim
N→∞

pN−1

∑
x=0

f (x)(−1)x. (9)

From (9), we can show that∫
Zp

f (x + 1)dµ−1(x) +
∫
Zp

f (x)dµ−1(x) = 2 f (0), (10)

(see [4,7–10]).
It is well known that the Euler polynomials are defined by

2
et + 1

ext =
∞

∑
n=0

E∗n(x)
tn

n!
. (11)
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We denote the Euler numbers by E∗n = E∗n(0), (n ≥ 0). Clearly, we have

2
n−1

∑
l=0

(−1)lelt =
2

et + 1
(ent + 1), where n ≡ 1 (mod 2). (12)

From (11) and (12), we obtain that

2
n−1

∑
l=0

(−1)l lk = E∗k (n) + E∗k , (13)

where n is a positive odd integer.
Now, we consider the type 2 Euler polynomials which are given by

2
et + e−t ext = sech(t)ext =

∞

∑
n=0

En(x)
tn

n!
. (14)

In particular, when x = 0, En = En(0) are called the type 2 Euler numbers.
In this paper, we obtain some identities of symmetry involving the type 2 Bernoulli polynomials,

the type 2 Euler polynomials, power sums of odd positive integers and alternating power sums of odd
positive integers which are derived from certain quotients of bosonic p-adic and fermionic p-adic integrals
on Zp. In the following section, we will construct two random variables from random variables having
Laplace distributions whose moments are closely related to the type 2 Bernoulli and Euler numbers. All the
results in Sections 2 and 3 are newly developed. Finally, we note that the results here have applications in
such diverse areas as combinatorics, probability, algebra and analysis (see [11–13]).

2. Some Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials

In virtue of (8), we readily see that

1
2

∫
Zp

e(2x+1)tdµ0(x) =
t

et − e−t . (15)

Hence, by (15), we get
1
2

∫
Zp
(2x + 1)ndµ0(x) = bn, (n ≥ 0). (16)

In addition, it follows from (15) that

1
2

∫
Zp

e(2y+x+1)tdµ0(y) =
t

et − e−t ext =
∞

∑
n=0

bn(x)
tn

n!
. (17)

Hence, by (17), we get

1
2

∫
Zp
(2y + x + 1)ndµ0(y) = bn(x), (n ≥ 0). (18)

Using (15) and (17), one can easily check that

1
2

(∫
Zp

e(2x+2n+1)tdµ0(x)−
∫
Zp

e(2x+1)tdµ0(x)
)
= t

n−1

∑
l=0

e(2l+1)t. (19)



Symmetry 2019, 11, 613 4 of 14

Next, we let Tk(n) =
n
∑

l=0
(2l + 1)k, (k ∈ N∪ {0}). Note that Tk(n) represents the kth power sums of

consecutive positive odd integers. By (19), we easily get

∫
Zp

e(2x+1+2n)tdµ0(x)−
∫
Zp

e(2x+1)tdµ0(x) =
2nt
∫
Zp

e(2x+1)tdµ0(x)∫
Zp

e2nxtdµ0(x)
. (20)

Let w1, w2 be positive integers. Then, we observe that

w1
∫
Zp

e(2x+1)tdµ0(x)∫
Zp

e2w1xtdµ0(x)
=

w1−1

∑
l=0

e(2l+1)t

=
∞

∑
k−0

w1−1

∑
l=0

(2l + 1)k tk

k!

=
∞

∑
k=0

Tk(w1 − 1)
tk

k!
.

(21)

Now, we consider the next quotient of bosonic p-adic integrals on Zp from which the identities of
symmetry for the type 2 Bernoulli polynomials follow:

I(w1, w2) =
w1w2

2

∫
Zp

∫
Zp

e(2w1x1+w1+2w2x2+w2+w1w2x)tdµ0(x1)dµ0(x2)∫
Zp

e2w1w2xtdµ0(x)
. (22)

From (22), we have

I(w1, w2) =
w2

2

∫
Zp

e(2x1+w2x+1)w1tdµ0(x)
w1
∫
Zp

e(2w2x2+w2)tdµ0(x2)∫
Zp

e2w1w2xtdµ0(x)

= w2

∞

∑
k=0

bk(w2x)
wk

1
k!

tk
∞

∑
l=0

Tl(w1 − 1)
wl

2
l!

tl

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
bk(w2x)Tn−k(w1 − 1)wk

1wn−k+1
2

tn

n!
.

(23)

We note from (22) that I(w1, w2) = I(w2, w1). Interchanging w1 and w2, we get

I(w2, w1) =
∞

∑
n=0

n

∑
k=0

(
n
k

)
bk(w1x)Tn−k(w2 − 1)wk

2wn−k+1
1

tn

n!
. (24)

Therefore, by (23) and (24), we obtain the following theorem.

Theorem 1. For w1, w2 ∈ N and n ∈ N∪ {0}, we have

n

∑
k=0

(
n
k

)
bk(w2x)Tn−k(w1 − 1)wk

1wn−k+1
2 =

n

∑
k=0

(
n
k

)
bk(w1x)Tn−k(w2 − 1)wk

2wn−k+1
1 .

Setting x = 0 in Theorem 1, we obtain the following corollary.
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Corollary 1. For w1, w2 ∈ N and n ∈ N∪ {0}, we have

n

∑
k=0

(
n
k

)
bkTn−k(w1 − 1)wk

1wn−k+1
2 =

n

∑
k=0

(
n
k

)
bkTn−k(w2 − 1)wk

2wn−k+1
1 .

Furthermore, let us take w2 = 1 in Corollary 1. Then, we have

n

∑
k=0

(
n
k

)
bkwn−k+1

1 =
n

∑
k=0

(
n
k

)
bkTn−k(w1 − 1)wk

1. (25)

Therefore, by (4) and (25), we obtain the following corollary.

Corollary 2. For w1 ∈ N and n ∈ N∪ {0}, we have

bn(w1) =
n

∑
k=0

(
n
k

)
bkTn−k(w1 − 1)wk−1

1 =
n

∑
k=0

(
n
k

)
bkwk−1

1

w1−1

∑
l=0

(2l + 1)n−k.

From (22), we observe that

I(w1, w2) =
w2

2
ew1w2xt

∫
Zp

e2w1x1t+w1tdµ0(x1)
w1
∫
Zp

e(2w2x2+w2)tdµ0(x1)∫
Zp

e2w1w2xtdµ0(x)

=
w2

2
ew1w2xt

∫
Zp

e(2w1x1+w1)tdµ0(x1)
w1−1

∑
l=0

e(2l+1)w2t

=
w2

2

w1−1

∑
l=0

∫
Zp

e
(

2x1+1+w2x+(2l+1) w2
w1

)
w1tdµ0(x1)

=
∞

∑
n=0

w2

w1−1

∑
l=0

bn

(
w2x + (2l + 1)

w2

w1

)
wn

1 tn

n!
.

(26)

By interchanging w1 and w2, we obtain the following equation:

I(w2, w1) =
∞

∑
n=0

w1

w2−1

∑
l=0

bn

(
w1x + (2l + 1)

w1

w2

)
wn

2 tn

n!
. (27)

As I(w1, w2) = I(w2, w1), the following theorem is immediate from (26) and (27).

Theorem 2. For w1, w2 ∈ N and n ∈ N∪ {0}, we have

wn
1 w2

w1−1

∑
l=0

bn

(
w2x + (2l + 1)

w2

w1

)
= wn

2 w1

w2−1

∑
l=0

bn

(
w1x + (2l + 1)

w1

w2

)
.

Example 1. We check the result in Theorem 2 in the case of n = 2, w1 = 3, and w2 = 7. We first note that
b2(x) = 1

2 (x2 − 1
3 ). This can be obtained from B2(x) = x2 − x + 1

6 and the relation bn(x) = 2n−1Bn(
x+1

2 ) which
follows from (1) and (3). Thus, we have to see that

2

∑
l=0

{(
7x +

7
3
(2l + 1)

)2 − 1
3

}
=

7
3

6

∑
l=0

{(
3x +

3
7
(2l + 1)

)2 − 1
3

}
. (28)
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Now, we can easily show that both the left and the right side of (28) are equal to 147x2 + 294x + 1706
9 .

Let us take w1 = 1. Then, by Theorem 2, we get

w2bn(w2x + w2) = wn
2

w2−1

∑
l=0

bn

(
x + (2l + 1)

1
w2

)
. (29)

Equivalently, by (29), we have

bn(w2x + w2) = wn−1
2

w2−1

∑
l=0

bn

(
x + (2l + 1)

1
w2

)
. (30)

Similarly to (13), we observe that

2
n−1

∑
l=0

(−1)le(2l+1)t =
∞

∑
k=0

(Ek + Ek(2n))
tk

k!
, (31)

where n ∈ N with n ≡ 1 (mod 2). Thus, by (31), we get

2
n−1

∑
l=0

(−1)l(2l + 1)k = Ek + EK(2n), (32)

where k ∈ N∪ {0} and n ∈ N with n ≡ 1 (mod 2).
From (14), we easily note that

En(x) =
n

∑
k=0

(
n
k

)
Ekxn−k, (n ≥ 0). (33)

By (10), we get ∫
Zp

e(2y+x+1)tdµ−1(y) =
2

et + e−t ext =
∞

∑
n=0

En(x)
tn

n!
. (34)

Thus, we have ∫
Zp
(2y + x + 1)ndµ−1(y) = En(x), (n ≥ 0).

The next equation follows immediately from (10):

∫
Zp

e(2y+2n+1)tdµ−1(y) +
∫
Zp

e(2x+1)tdµ−1(x) = 2
n−1

∑
l=0

e(2l+1)t(−1)l , (35)

where n ∈ N with n ≡ 1 (mod 2).

Now, we let Ak(n) =
n
∑

l=0
(−1)l(2l + 1)k, (k ∈ N∪ {0}). Here we note that Ak(n) is the alternating kth

power sums of consecutive odd positive integers. From (35), we have

∫
Zp

e(2x+2n+1)tdµ−1(x) +
∫
Zp

e(2x+1)tdµ−1(x) =
2
∫
Zp

e(2x+1)tdµ−1(x)∫
Zp

e2nxtdµ−1(x)
. (36)
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Let a, b be positive integers with a ≡ 1 (mod 2) and b ≡ 1 (mod 2). Then, by using the fermionic
p-adic integral on Zp, we get

2
∫
Zp

e(2x+1)tdµ−1(x)∫
Zp

e2axtdµ−1(x)
=2

a−1

∑
l=0

e(2l+1)t(−1)l

=
∞

∑
k=0

2
a−1

∑
l=0

(2l + 1)k(−1)l tk

k!

=
∞

∑
k=0

2Ak(a− 1)
tk

k!
.

(37)

We now consider the next quotient of the fermionic p-adic integrals on Zp from which the identities
of symmetry for the type 2 Euler polynomials follow:

J(a, b) =

∫
Zp

∫
Zp

e(2ax1+a+2bx2+b+abx)tdµ−1(x1)dµ−1(x2)∫
Zp

e2abxtdµ−1(x)
. (38)

From (38), we can derive the following equation given by

J(a, b) =
1
2

∫
Zp

ea(2x1+1+bx)tdµ−1(x1)
2
∫
Zp

e(2bx2+b)tdµ−1(x2)∫
Zp

e2abxtdµ−1(x)

=
1
2

∞

∑
k=0

Ek(bx)
aktk

k!
2

∞

∑
l=0

Al(a− 1)
bltl

l!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Ek(bx)An−k(a− 1)akbn−k tn

n!
.

(39)

We note from (38) that J(a, b) = J(b, a). Interchanging a and b, we get

J(b, a) =
∞

∑
n=0

n

∑
k=0

(
n
k

)
Ek(ax)An−k(b− 1)bkan−k tn

n!
. (40)

The following theorem is an immediate consequence of (39) and (40).

Theorem 3. For n ≥ 0, a, b ∈ N with a ≡ 1 (mod 2) and b ≡ 1 (mod 2), we have

n

∑
k=0

(
n
k

)
Ek(bx)An−k(a− 1)akbn−k =

n

∑
k=0

(
n
k

)
Ek(ax)An−k(b− 1)bkan−k.

The next corollary is now obtained by setting x = 0 in Theorem 3.

Corollary 3. For n ≥ 0, a, b ∈ N, with a ≡ 1 (mod 2) and b ≡ 1 (mod 2), we have

n

∑
k=0

(
n
k

)
Ek An−k(a− 1)akbn−k =

n

∑
k=0

(
n
k

)
Ek An−k(b− 1)bkan−k.

Taking b = 1 in Corollary 3 gives us the following identities.
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Corollary 4. For n ≥ 0, a ∈ N with a ≡ 1 (mod 2), we have

En(a) =
n

∑
k=0

(
n
k

)
Ek An−k(a− 1)ak

=
n

∑
k=0

(
n
k

)
Ekak

a−1

∑
l=0

(−1)l(2l + 1)n−k.

From (38), we have

J(a, b) =
eabxt

2

∫
Zp

e(2ax1+a)tdµ−1(x1)
2
∫
Zp

e(2bx2+b)tdµ−1(x2)∫
Zp

e2abxtdµ−1(x)

=
eabxt

2

∫
Zp

e(2ax1+a)tdµ−1(x1) 2
a−1

∑
l=0

(−1)le(2l+1)bt

=
a−1

∑
l=0

(−1)l
∫
Zp

e(2x1+1+bx+(2l+1) b
a )atdµ−1(x1)

=
∞

∑
n=0

an
a−1

∑
l=0

(−1)lEn(bx + (2l + 1)
b
a
)

tn

n!
,

(41)

where a, b ∈ N with a ≡ 1 (mod 2) and b ≡ 1 (mod 2). Interchanging a and b, we get

J(b, a) =
∞

∑
n=0

bn
b−1

∑
l=0

(−1)lEn(ax + (2l + 1)
a
b
)

tn

n!
. (42)

As J(a, b) = J(b, a), by (41) and (42), we obtain the following theorem.

Theorem 4. For n ≥ 0, a, b ∈ N with a ≡ 1 (mod 2) and b ≡ 1 (mod 2), we have

an
a−1

∑
l=0

(−1)lEn(bx + (2l + 1)
b
a
) = bn

b−1

∑
l=0

(−1)lEn(ax + (2l + 1)
a
b
).

Let us take a = 1 in Theorem 4. Then, we have

En(bx + b) = bn
b−1

∑
l=0

(−1)lEn(x + (2l + 1)
1
b
).

Example 2. Here, we illustrate Theorem 2 in the case of n = 2, a = 7, and b = 3. First, we note that E2(x) =
x2 − 1. This follows from E∗2 (x) = x2 − x and the relation En(x) = 2nE∗n(

x+1
2 ) that can be deduced from (11) and

(14). Here, we need to show that

6

∑
l=0

(−1)l
{(

3x +
3
7
(2l + 1)

)2 − 1
}

=
(3

7
)2

2

∑
l=0

(−1)l
{(

7x +
7
3
(2l + 1)

)2 − 1
}

. (43)

Indeed, we can easily check that both the left- and right-hand side of (43) are equal to 9x2 + 18x + 824
49 .
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3. Further Remarks

For s ∈ C, the Riemann zeta function is defined by

ζ(s) =
∞

∑
n=1

1
ns , (Re(s) > 1),

(see [14–16]).
It is well known that

ζ(2n) = (−1)n−1 22n−1

(2n)!
π2nB2n, (n ≥ 0), (44)

(see [14,16]).
By (44), we get

z cot(z) = z
cos(z)
sin(z)

= z
eiz+e−iz

2
eiz−e−iz

2i

, (i =
√
−1)

= iz
(

1 +
2

e2iz − 1

)
= iz +

∞

∑
k=0

Bk
(2iz)k

k!

= 1 +
∞

∑
k=1

B2k
(2k)!

22ki2kz2k

= 1− 2
∞

∑
k=1

ζ(2k)
π2k z2k

= 1− 2
∞

∑
n=1

(
∞

∑
k=1

z2k

(nπ)2k

)

= 1− 2
∞

∑
n=1

( z
nπ

)2
(

1−
( z

nπ

)2
)−1

.

(45)

Thus, by (45), we get

cot(z)− 1
z
= −

∞

∑
n=1

2z
(nπ)2

(
1−

( z
nπ

)2
)−1

. (46)

From (39), we easily note that

d
dz

(log(sin(z))− log(z)) =
∞

∑
n=1

d
dz

(
log
(

1−
( z

nπ

)2
))

. (47)

By (47), we easily get
sin(z)

z
=

∞

∏
n=1

(
1−

( z
nπ

)2
)

. (48)

It is not difficult to show that

z cot(z)− 2z cot(2z) = z tan(z). (49)
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From (45) and (49), we have

z tan(z) = z cot(z)− 2z cot(2z)

= 2
∞

∑
n=1

(
2z
nπ

)2
(

1−
(

2z
nπ

)2
)−1

− 2
∞

∑
n=1

( z
nπ

)2
(

1−
( z

nπ

)2
)−1

.
(50)

By (50), we get

d
dz

(− log(cos(z))) = −
∞

∑
n=1

d
dz

(
log
(

1− 4z2

(nπ)2

))
+

∞

∑
n=1

d
dz

(
log
(

1−
( z

nπ

)2
))

. (51)

Thus, from (51), we have

sec(z) =
∞

∏
n=1

(
1−

( z
nπ

)2

1−
( 2z

nπ

)2

)
=

∞

∏
n=1

(
1−

(
2z

(2n− 1)π

)2
)−1

, (52)

which is equivalent to

cos(z) =
∞

∏
n=1

(
1−

(
2z

(2n− 1)π

)2
)

. (53)

A random variable has the Laplace distribution with positive parameter µ and b if its probability
density function is

f (x|µ, b) =
1
2b

exp
(
−|x− µ|

b

)
, (54)

(see [17]).
The shorthand notation X ∼ Laplace(µ, b) is used to indicate that the random variable X has the

Laplace distribution with positive parameters µ and b. If µ = 0 and b = 1, the positive half-time is exactly
an exponential scaled by 1

2 .
We assume that the independent random variables X1, X2, X3, · · · have the Laplace distribution with

parameters 0 and 1, (i.e., Xk ∼ Laplace(0, 1), k ∈ N). Let us put

Y =
∞

∑
k=1

Xk
(2k− 1)π

. (55)

Then, the characteristic function of Y is given by

∞

∑
n=0

E[Yn]
(2it)n

n!
= E

[ ∞

∑
n=0

Yn (2it)n

n!

]
= E[e2iYt]

= E
[
e(∑

∞
k=1

Xk
(2k−1)π )2it

]
=

∞

∏
k=1

E
[
e

Xk
(2k−1)π 2it

]
.

(56)
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Now, we observe that

E
[
e

Xk
(2k−1)π 2it

]
=
∫ ∞

−∞

1
2

e
(

2it
(2k−1)π

)
xe−|x|dx

=
1
2

∫ 0

−∞
e
(

2it
(2k−1)π

)
xexdx +

1
2

∫ ∞

0
e
(

2it
(2k−1)π

)
xe−xdx

=
1
2

1
1 + 2it

(2k−1)π

+
1
2

1
1− 2it

(2k−1)π

=

(
1 +

(
2t

(2k− 1)π

)2
)−1

.

(57)

By (53), (56) and (57), we get

∞

∑
n=0

E[Yn]
(2it)n

n!
=

∞

∏
k=1

E
[
e
( Xk
(2k−1)π

)
2it
]

=
∞

∏
k=1

(
1 +

(
2t

(2k− 1)π

)2
)−1

=
2

et + e−t

=
∞

∑
n=0

En
tn

n!
.

(58)

Therefore, by comparing the coefficients on both sides of (58), we get

2ninE[Yn] = En, (n ≥ 0). (59)

Now, we assume that

Z =
∞

∑
k=1

Xk
2kπ

. (60)

Then, the characteristic function of Z is given by

∞

∑
n=0

E[Zn]
(it)n

n!
= E

[ ∞

∑
n=0

Zn (it)
n

n!

]
= E[eZit]

= E
[
e

∞
∑

k=1

( Xk
2kπ

)
it]

=
∞

∏
k=1

E
[
e
( Xk

2kπ

)
it
]
.

(61)
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Now, we note that

E
[
e
( Xk

2kπ

)
it
]
=

1
2

∫ ∞

−∞
e(

it
2kπ )xe−|x|dx

=
1
2

∫ 0

−∞
e(

it
2kπ )xexdx +

1
2

∫ ∞

0
e(

it
2kπ )xe−xdx

=
1
2

(
1

1 + it
2kπ

)
+

1
2

(
1

1− it
2kπ

)

=
1

1 +
( t

kπ

)2 .

(62)

From (61) and (62), we have

∞

∑
n=0

E[Zn]
(it)n

n!
=

∞

∏
k=1

E
[
e
( Xk

2kπ

)
it
]

=
∞

∏
k=1

(
1 +

(
t

2kπ

)2
)−1

.

(63)

On the other hand, by (48), we get

∞

∏
n=1

(
1 +

(
t

nπ

)2
)−1

=
it

sin(it)
=

2t
et − e−t . (64)

By replacing t by t
2 , we have

∞

∏
n=1

(
1 +

(
t

2nπ

)2
)−1

=
t

e
t
2 − e−

t
2

=
∞

∑
n=0

(
1
2

)n−1
bn

tn

n!
.

(65)

Therefore, by (63) and (65), we obtain the following equation

inE[Zn] =

(
1
2

)n−1
bn, (n ≥ 0). (66)

4. Conclusions

In this paper, we obtained several identities of symmetry for the type 2 Bernoulli and Euler
polynomials (see Theorems 1–4). Indeed, they are symmetric identities involving type 2 Bernoulli
polynomials and power sums of consecutive odd positive integers, and the ones involving type 2 Euler
polynomials and alternating power sums of odd positive integers. For the derivation of those identities, we
introduced certain quotients of bosonic p-adic and fermionic p-adic integrals on Zp, which have built-in
symmetries. We note that this idea of using certain quotients of p-adic integrals has produced abundant
symmetric identities (see [5,7,8,18–21] and references therein).

We emphasize here that, even though there have been many results on symmetric identities relating
to some special numbers and polynomials, this paper is the first one that deals with symmetric identities
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involving type 2 Bernoulli polynomials, type 2 Euler polynomials, power sums of odd positive integers
and alternating power sums of odd positive integers.

In [22,23], we derived some identities involving special numbers and moments of random variables
by using the generating functions of the moments of certain random variables. The related special numbers
are Stirling numbers of the first and second kinds, degenerate Stirling numbers of the first and second
kinds, derangement numbers, higher-order Bernoulli numbers and Bernoulli numbers of the second kind.

In this paper, we considered two random variables created from random variables having Laplace
distributions and showed that their moments are closely connected with the type 2 Bernoulli and Euler
numbers. Again, this is the first paper that interprets the type 2 Bernoulli and Euler numbers as the
moments of certain random variables.
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