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Abstract: In this paper, we further extend the Filon-type method to the Bessel function expansion
for calculating Fourier integral. By means of complex analysis, this expansion is effective for all
the oscillation frequencies. Namely, the errors of the expansion not only decrease as the order
of the derivative increases, but also decrease rapidly as the frequency increases. Some numerical
experiments are also presented to verify the effectiveness of the method.
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1. Introduction

Highly oscillatory problems widely appear in many fields of mathematics and engineering, such as
asymptotic analysis and electromagnetics [1–7]. Especially, the Fourier integral

∫ 1
−1 f (x)eiωxdx is often

encountered. While the parameter |ω| � 1, the integrand is highly oscillatory, and this kind of integral
is often called highly oscillatory integral. This kind of integration often appears in high frequency
acoustic scattering, which is why we study this kind of problem. However, when using the traditional
method for calculating the highly oscillatory integrals, such as Gaussian quadrature rule, usually very
small discrete steps have to be taken before they can receive a satisfactory numerical results, which
makes the computational cost quite high, thus the traditional numerical integration method usually
cannot be used for highly oscillatory integral calculation [3–7]. In 1928, Filon first proposed the Filon
method [8], which laid the foundation for the numerical method in the future. In recent years, many
numerical analysts have developed various Filon-type methods [3–5]. An excellent reference on this
topic is [3]. For a simple but classical example, the Filon-type method can be defined as

∫ 1

−1
f (x)eiωxdx ≈

∫ 1

−1
p2n+1(x)eiωxdx, f ∈ C∞[−1, 1],

where p2n+1(x) is 2n + 1 order Hermite interpolation polynomial of f (x) satisfying

p(k)2n+1(−1) = f (k)(−1), p(k)2n+1(1) = f (k)(1), k = 0, 1, . . . , n.

However, the expression and error analysis of Filon-type method are not clear enough.
Therefore, we extend the Filon-type method to the Bessel function expansion in this paper.

In addition, the upper bounds for reminders of the expansions are given by complex analysis.
The structure of the paper is as follows. Section 2 gives some basic theoretical results. The Bessel

expansion of normal Fourier integral can be found in Section 3 and the Bessel expansion of Fourier
integral with symmetric branch points are shown in Section 4. The numerical experiments are provided
in Section 5 to show the effectiveness of the new method.
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2. Some Basic Theoretical Results

We first give some theoretical results in this section. Firstly, we introduce Equations (1) and (2)

(also see [9], Equation (8) and [10]).According to eiωx = ∑∞
j=0

(iωx)j

j! and integrating item by item,

∫ 1

−1
(1− x2)αeiωxdx =

∞

∑
j=0

(iω)j

j!

∫ 1

−1
(1− x2)αxjdx = Γ(α + 1)

∞

∑
j=0

(iω)j

j!
1 + (−1)j

2
Γ(j/2 + 1/2)

Γ(α + j/2 + 3/2)
.

By m = j/2, we have

∫ 1

−1
(1− x2)αeiωxdx = Γ(α + 1)

∞

∑
m=0

(iω)2m

(2m)!
Γ(m + 1/2)

Γ(α + m + 3/2)
.

Thus, according to the series expression of Bessel function of the first kind [11] Jα(x) =

∑∞
m=0

(−1)m

m!Γ(m+α+1/2)

( x
2
)2m+α, and Γ(m+1/2)

(2m)! =
√

π
4mm! , if ω 6= 0, we have

∫ 1

−1
(1− x2)αeiωxdx =

{ √
πΓ(α + 1) (−2/ω)α+1/2 Jα+1/2(−ω), arg ω = π,√
πΓ(α + 1) (2/ω)α+1/2 Jα+1/2(ω), arg ω 6= π.

We only focus on the case of ω > 0 for no segmentation. If ω > 0, we have

∫ 1

−1
(1− x2)αeiωxdx =

√
πΓ(α + 1)

(
2
ω

)α+ 1
2

Jα+ 1
2
(ω), <(α) > −1. (1)

Similarly,

∫ 1

−1
x(1− x2)αeiωxdx = i

√
πΓ(α + 1)

(
2
ω

)α+ 1
2

Jα+ 3
2
(ω), <(α) > −1. (2)

Now, we derive some results about Cauchy-type integral kernel, function approximation and its
remainder estimation.

Assuming that U is a region, f is analytic in the region U and continuous in the closed region Ū,
i.e., f ∈ O(U)

⋂
C(Ū), V ⊂ U, ∂U = Γ, and P is the polynomial. We rewrite Cauchy integral formula

f (z) = 1
2πi
∫

Γ
f (ζ)
ζ−z dζ as

f (z) =
1

2πi

∫
Γ

f (ζ)
P(ζ)− P(z)

ζ − z
1

P(ζ)− P(z)
dζ,

where we define 1
P(ζ)−P(z) as Cauchy-type integral kernel. If |P(z)| < |P(ζ)| for z ∈ V ⊂ U, ζ ∈ Γ, then

the geometric series
1

P(ζ)− P(z)
=

∞

∑
k=0

Pk(z)
Pk+1(ζ)

is absolutely and consistently convergent such that we can exchange the order of integration
and summation,

f (z) =
∞

∑
k=0

ck(z)Pk(z), (3)

where coefficients ck(z) = 1
2πi
∫

Γ f (ζ) P(ζ)−P(z)
ζ−z

1
Pk+1(ζ)

dζ.
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Theorem 1. Suppose f ∈ O(U)
⋂

C(Ū) and z ∈ V ⊂ U, then the error of Equation (3) satisfies∣∣∣∣∣ f (z)− n−1

∑
k=0

ck(z)Pk(z)

∣∣∣∣∣ ≤ ML
2πd

qn |P(z)|n , (4)

where L is the length of Γ, the distance d = inf{|z− ζ||z ∈ V, ζ ∈ Γ}, and

M = max
ζ∈Γ
| f (ζ)|, q = max

ζ∈Γ

1
|P(ζ)| .

Proof. By the integral value theorem, the conclusion is obviously true according to the formula

f (z)−
n−1

∑
k=0

ck(z)Pk(z) = Pn(z)
1

2πi

∫
Γ

f (ζ)
ζ − z

1
Pn(ζ)

dζ.

3. The Bessel Expansion of Normal Fourier Integral

In this section, we focus on the normal Fourier integral of the form

I =
∫ 1

−1
f (x)eiωxdx, f ∈ C∞[−1, 1].

3.1. Hermite Series of Analytic Functions

Let P(z) = 1− z2, then according to Equation (3),

f (z) =
∞

∑
k=0

(1− z2)k −1
2πi

∫
Γ

ζ + z
(1− ζ2)k+1 f (ζ)dζ,

where Γ is a Jordan curve [12] with the points ±1 in its interior, then we derive the series of f ,

f (z) =
∞

∑
k=0

(αk + βkz)(1− z2)k, (5)

and we define it as Hermite series, in which the coefficients are

αk =
−1
2πi

∫
Γ

ζ f (ζ)
(1− ζ2)k+1 dζ, βk =

−1
2πi

∫
Γ

f (ζ)
(1− ζ2)k+1 dζ,

and they can be computed by the residue theorem. Let

σ1(ζ) =
ζ f (ζ)

(1 + ζ)k+1 , σ2(ζ) =
ζ f (ζ)

(1− ζ)k+1 ,

by Taylor expansion,

σ1(ζ) =
∞

∑
k=0

σ
(k)
1 (1)

k!
(ζ − 1)k, σ2(ζ) =

∞

∑
k=0

σ
(k)
2 (−1)

k!
(ζ + 1)k,

then we obtain the coefficients

αk = (−1)k σ
(k)
1 (1)

k!
−

σ
(k)
2 (−1)

k!
.
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Similarly, let

τ1(ζ) =
f (ζ)

(1 + ζ)k+1 , τ2(ζ) =
f (ζ)

(1− ζ)k+1 ,

we have

βk = (−1)k τ
(k)
1 (1)

k!
−

τ
(k)
2 (−1)

k!
.

According to Theorem 1, we estimate the truncation errors of Equation (5) as follows.

Corollary 1. Suppose f (z) is analytic in the disk |z| < R, R ≥
√

2, then∣∣∣∣∣ f (z)− n−1

∑
k=0

(αk + βkz)(1− z2)k

∣∣∣∣∣ ≤ RMR

(R− 1)(R2 − 1)n

∣∣∣1− z2
∣∣∣n , |z| ≤ 1. (6)

where
MR = max

|z|=R
| f (z)|.

3.2. The Bessel Expansion of Fourier Integral With Analytic Function

Theorem 2. Suppose f (z) is analytic in the disk |z| < R, R ≥
√

2, then for ω > 0, 0 ≤ a ≤ 1,

∫ 1
−1 f (x)eiωxdx = ∑n−1

k=0 αk
√

πΓ(k + 1)
( 2

ω

)k+ 1
2 Jk+ 1

2
(ω)

+i ∑n−1
k=0 βk

√
πΓ(k + 1)

( 2
ω

)k+ 1
2 Jk+ 3

2
(ω) + ρn.

(7)

where the remainder satisfies

|ρn| ≤
RMR

(
1 + 4a2)(n+1)/2

(R− 1) (R2 − 1)n

∫ 1

−1

(
1− t2

)n
e−ωa(1−t2)dt. (8)

Proof. The path γ is shown in Figure 1, and can be represented as

γ =
{

z|z = t + ia(1− t2),−1 ≤ t ≤ 1, 0 ≤ a ≤ 1
}

.

Let

$n(z) = f (z)−
n−1

∑
k=0

(αk + βkz)(1− z2)k,

according to Cauchy theorem, the error estimation

ρn =
∫ 1

−1
$n(x)eiωxdx =

∫
γ

$n(z)eiωzdz. (9)

According to the inequality in Equation (6),

|$n(z)| ≤
RMR

(R− 1)(R2 − 1)n

∣∣∣1− z2
∣∣∣n , |z| ≤ 1,

and
∣∣1− z2

∣∣ ≤ (1 + 4a2)1/2 (1− t2) , z ∈ γ, then

|$n(z)| ≤
(
1 + 4a2)n/2 RMR

(R− 1)(R2 − 1)n

(
1− t2

)n
, z ∈ γ.
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In the integral on the right side of Equation (9), since |eiωz| = e−ωa(1−t2),
∣∣∣ dz

dt

∣∣∣ ≤ (1 + 4a2)1/2 on
the path γ, it is true that

∣∣∣∣∫
γ

$n(z)eiωzdz
∣∣∣∣ ≤ RMR

(
1 + 4a2)(n+1)/2

(R− 1)(R2 − 1)n

∫ 1

−1

(
1− t2

)n
e−ωa(1−t2)dt.

According to Equations (1) and (2), the conclusion is true.

Figure 1. The homotopy deformation of integral path.

Letting a = 0, the right side of the inequality in Equation (8) behaves as

const
1√

n(R2 − 1)n → 0, for n→ ∞,

then we have the following.

Corollary 2. Under the assuming condition in Theorem 2, it is true that

∫ 1
−1 f (x)eiωxdx = ∑∞

k=0 αk
√

πΓ(k + 1)
( 2

ω

)k+ 1
2 Jk+ 1

2
(ω)

+i ∑∞
k=0 βk

√
πΓ(k + 1)

( 2
ω

)k+ 1
2 Jk+ 3

2
(ω).

(10)

Remark 1. In Theorem 2, if ω < 0, we should rewrite the path as γ ={
z|z = t− ia(1− t2),−1 ≤ t ≤ 1, 0 ≤ a ≤ 1

}
. For real number ω 6= 0, it is obvious that

∫ 1

−1
f (x)eiωxdx =

∞

∑
k=0

αk
√

πΓ(k + 1)
(

2
|ω|

)k+ 1
2

Jk+ 1
2
(|ω|)

+i · sign(ω)
∞

∑
k=0

βk
√

πΓ(k + 1)
(

2
|ω|

)k+ 1
2

Jk+ 3
2
(|ω|).

Remark 2. We further enlarge the inequality in Equation (8): Firstly, if n → ∞ with a = 0 and ω fixed,
the right side of Equation (8) behaves as const 1√

n(R2−1)n → 0. Secondly, if ω → +∞ with a = 1 and n fixed,

|ρn| ≤ const
∫ 1

−1

(
1− t2

)n
e−ω(1−t2)dt = O(ω−n−1).
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In brief, the errors of Equation (7) not only decrease as the order n of the derivatives increases, but also
decrease rapidly as the frequency ω increases.

4. The Bessel Expansion of Fourier Integral with Symmetric Branch Points

Let U =
{
(z1, z2) ∈ C2 : |zv| < rv, rv > 1, v = 1, 2

}
. In this section, we consider the case that

there are symmetric branch points z = ±1 for f . Namely, f (z) = ϕ(z1, z2), ϕ ∈ O(U)
⋂

C(Ū) with

z1 = z, z2 = (1− z2)
1
p , p ∈ Z+.

4.1. Hermite Series with Symmetric Branch Points

The function ϕ can be expressed by the multiple Cauchy integral formula

ϕ(z1, z2) =
1

(2πi)2

∫
Γ

ϕ(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ1dζ2,

where Γ is the skeleton of U, and, if
∣∣∣∣ 1−z2

1
1−ζ2

1

∣∣∣∣ < 1,
∣∣∣ z2

ζ2

∣∣∣ < 1 for (z1, z2) ∈ V ⊂ U, (ζ1, ζ2) ∈ Γ, then the

above integral kernel can be written as

1
(ζ1 − z1)(ζ2 − z2)

= − ζ1 + z1

(1− ζ2
1)ζ2

∑
pk1+k2≤n−1

(
1− z2

1
1− ζ2

1

)k1 ( z2

ζ2

)k2

− ζ1 + z1

(1− ζ2
1)ζ2

∑
pk1+k2≥n

(
1− z2

1
1− ζ2

1

)k1 ( z2

ζ2

)k2

.

Since

− ζ1 + z1

(1− ζ2
1)ζ2

∑
pk1+k2≥n

(
1− z2

1
1− ζ2

1

)k1 ( z2

ζ2

)k2

=
zn

2
(
1− z2

1
)1/p

ζn
2 (ζ1 − z1)

[
ζ2
(
1− z2

1
)1/p − z2

(
1− ζ2

1
)1/p

] ,

by variable substitutions z1 = z, z2 = (1− z2)
1
p and noting that f (z) = ϕ(z1, z2), we have

f (z) = − 1
(2πi)2 ∑pk1+k2≤n−1

(
1− z2)k1+k2/p ∫

Γ
(ζ1+z)ϕ(ζ1,ζ2)

(1−ζ2
1)

k1+1ζ
k2+1
2

dζ1dζ2

+
(1−z2)

n/p

(2πi)2

∫
Γ

ϕ(ζ1,ζ2)
(ζ1−z)ζn

2

1
ζ2−(1−ζ2

1)
1/p dζ1dζ2,

(11)

Letting the coefficients

αk =
−1

(2πi)2 ∑
pk1+k2=k

∫
Γ

ζ1 ϕ(ζ1, ζ2)(
1− ζ2

1
)k1+1

ζk2+1
2

dζ1dζ2,

βk =
−1

(2πi)2 ∑
pk1+k2=k

∫
Γ

ϕ(ζ1, ζ2)(
1− ζ2

1
)k1+1

ζk2+1
2

dζ1dζ2,

we can rewrite Equation (11) as Hermite series of f ,

f (z) =
n−1

∑
k=0

αk

(
1− z2

) k
p
+ z

n−1

∑
k=0

βk

(
1− z2

) k
p
+ ρn, |z| ≤ 1, (12)
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where the remainder is

ρn =

(
1− z2)n/p

(2πi)2

∫
Γ

ϕ(ζ1, ζ2)

(ζ1 − z)ζn
2

1

ζ2 −
(
1− ζ2

1
)1/p dζ1dζ2.

The coefficients can be computed by the multi-dimension residue theorem. Letting

σ1(ζ1, ζ2) = −
ζ1 ϕ(ζ1, ζ2)

(1 + ζ1)k1+1 , σ2(ζ1, ζ2) = −
ζ1 ϕ(ζ1, ζ2)

(1− ζ1)k1+1 ,

by multi-Taylor expansion,

σ1(ζ1, ζ2) =
∞

∑
k1,k2=0

1
k1!k2!

∂k1+k2 σ1

∂ζk1
1 ∂ζk2

2

∣∣∣∣∣
(1,0)

(ζ1 − 1)k1 ζk2
2 ,

σ2(ζ1, ζ2) =
∞

∑
k1,k2=0

1
k1!k2!

∂k1+k2 σ2

∂ζk1
1 ∂ζk2

2

∣∣∣∣∣
(−1,0)

(ζ1 + 1)k1 ζk2
2 ,

then we obtain the coefficients

αk = ∑
pk1+k2=k

1
k1!k2!

(−1)k1+1 ∂k1+k2 σ1

∂ζk1
1 ∂ζk2

2

∣∣∣∣∣
(1,0)

+
∂k1+k2 σ2

∂ζk1
1 ∂ζk2

2

∣∣∣∣∣
(−1,0)

 .

Similarly, letting

τ1(ζ1, ζ2) = −
ϕ(ζ1, ζ2)

(1 + ζ1)k1+1 , τ2(ζ1, ζ2) = −
ϕ(ζ1, ζ2)

(1− ζ1)k1+1 ,

we have

βk = ∑
pk1+k2=k

1
k1!k2!

(−1)k1+1 ∂k1+k2 τ1

∂ζk1
1 ∂ζk2

2

∣∣∣∣∣
(1,0)

+
∂k1+k2 τ2

∂ζk1
1 ∂ζk2

2

∣∣∣∣∣
(−1,0)

 .

Theorem 3. For the Hermite series in Equation (12), if f (z) = ϕ(z1, z2), ϕ ∈ O(U)
⋂

C(Ū) with z1 =

z, z2 = (1− z2)
1
p , p ∈ Z+ and r1 > 1, r2 > (1 + r2

1)
1/p, then we have the error estimation of the remainder∣∣∣∣∣ f (z)− n−1

∑
k=0

αk

(
1− z2

) k
p − z

n−1

∑
k=0

βk

(
1− z2

) k
p

∣∣∣∣∣ ≤ C
∣∣∣1− z2

∣∣∣ n
p , |z| ≤ 1, (13)

where

C =
max|ζ1|=r1,|ζ2|=r2

|ϕ(ζ1, ζ2)|
(r1 − 1)rn−1

2

r1

r2 − (1 + r2
1)

1/p .

Proof. In Equation (12), ρn can be rewritten as

ρn =

(
1− z2)n/p

(2πi)2

∫
Γ

ϕ(ζ1, ζ2)

(ζ1 − z)ζn
2

1

ζ2 −
(
1− ζ2

1
)1/p , dζ1dζ2

then

|ρn| ≤
max|ζ1|=r1,|ζ2|=r2

|ϕ(ζ1, ζ2)|
(r1 − 1)rn−1

2

r1

r2 − (1 + r2
1)

1/p

∣∣∣1− z2
∣∣∣n/p

, |z| ≤ 1.
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4.2. The Bessel Expansion of Fourier Integral with Symmetric Branch Points

Similar to Theorem 2, we have the Bessel expansion of Fourier integral with symmetric branch
points, and the error estimation is as follows.

Theorem 4. For ω > 0, 0 ≤ a ≤ 1, under the assumptions of Theorem 3, we have∫ 1
−1 f (x)eiωxdx = ∑n−1

k=0 αk
√

πΓ(k/p + 1)
( 2

ω

)k/p+1/2 Jk/p+1/2(ω)

+i ∑n−1
k=0 βk

√
πΓ(k/p + 1)

( 2
ω

)k/p+1/2 Jk/p+3/2(ω) + ρn.
(14)

where the remainder satisfying

|ρn| ≤ C2

(
1 + 4a2

)(n/p+1)/2 ∫ 1

−1

(
1− t2

)n/p
e−ωa(1−t2)dt, (15)

and C2 is independent of ω and a.

5. The Numerical Experiments

In this section, for the two cases of analytic functions and branch functions, we present two
examples that verify the validity of Bessel expansion to calculate Fourier integrals. These numerical
experiments were done in Maple 16.

Example 1. We consider the case of f (x) = e1−x2
. According to Equations (7) and (8), we have∣∣∣∫ 1

−1 e1−x2
eiωxdx−

√
π ∑3

k=0
( 2

ω

)k+1/2 Jk+1/2(ω)
∣∣∣ ≤ 0.066

(
1 + 4a2)9/2 ∫ 1

−1

(
1− t2)4 e−ωa(1−t2)dt. (16)

Similarly, we have∣∣∣∫ 1
−1 e1−x2

eiωxdx−
√

π ∑4
k=0

( 2
ω

)k+1/2 Jk+1/2(ω)
∣∣∣ ≤ 0.013

(
1 + 4a2)11/2 ∫ 1

−1

(
1− t2)5 e−ωa(1−t2)dt. (17)

The two sides of the inequalities in Equations (16) and (17) are shown in Figure 2 for ω = 0.1+ 2m, m =

0, 1, · · · , 50. The absolute errors of the expansion on the left side of the inequalities in Equations (16) and (17)
are represented by diamond points. Besides, the error estimates on the right of Equations (16) and (17) are
represented by dash lines.

(a) Equation (16) (b) Equation (17)

Figure 2. The errors and their estimation of the expansions for Equations (16) and (17).
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Example 2. We consider the case of f (x) = e
√

1−x2 or f (x) = ex
√

1−x2 . According to Equations (14) and
(15), we have ∣∣∣∫ 1

−1 e
√

1−x2 eiωxdx−
√

π ∑4
k=0

Γ(k/2+1)
k!

( 2
ω

)k/2+1/2 Jk/2+1/2(ω)
∣∣∣

≤ 0.011
(
1 + 4a2)7/2 ∫ 1

−1

(
1− t2)5/2 e−ωa(1−t2)dt,

(18)

and ∣∣∣∣∫ 1
−1 ex

√
1−x2 eiωxdx−

√
π ∑4

k=0 Γ(k/2 + 1)
(

2
ω

)k/2+1/2
(αk Jk/2+1/2(ω) + iβk Jk/2+3/2(ω))

∣∣∣∣
≤ 0.25

(
1 + 4a2)7/2 ∫ 1

−1
(
1− t2)5/2 e−ωa(1−t2)dt,

(19)

where α0 = 1, α1 = 0, α2 = 1/2, α3 = 0, α4 = −11/24 and β0 = 0, β1 = 1, β2 = 0, β3 = 1/6, β4 = 0.
The two sides of the inequalities in Equations (18) and (19) are shown in Figure 3 for ω = 0.1 + 2m, m =

0, 1, · · · , 50. The absolute errors on the left side of Equations (18) and (19) are represented by diamond points.
Besides, the error estimates on the right of Equations (18) and (19) are represented by dash lines.

(a) Equation (18) (b) Equation (19)

Figure 3. The errors and their estimation of the expansions for Equations (18) and (19).

6. The Conclusions and Acknowledgement

In this article, we make the expression of the Filon-type method more concise by the Bessel
expansions for calculating Fourier integral. Moreover, we also derive the convergence rate of the
Filon-type method by means of complex analysis. In fact, both error analysis and numerical tests have
shown that the Filon-type method is efficient. On the road of frequency analysis and calculation, we
will continue to study.
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