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Abstract: The fertility detection of Specific Pathogen Free (SPF) chicken embryo eggs in vaccine
preparation is a challenging task due to the high similarity among six kinds of hatching embryos
(weak, hemolytic, crack, infected, infertile, and fertile). This paper firstly analyzes two classification
difficulties of feature similarity with subtle variations on six kinds of five- to seven-day embryos,
and proposes a novel multi-feature fusion based on Deep Convolutional Neural Network (DCNN)
architecture in a small dataset. To avoid overfitting, data augmentation is employed to generate
enough training images after the Region of Interest (ROI) of original images are cropped. Then, all the
augmented ROI images are fed into pretrained AlexNet and GoogLeNet to learn the discriminative
deep features by transfer learning, respectively. After the local features of Speeded Up Robust Feature
(SURF) and Histogram of Oriented Gradient (HOG) are extracted, the multi-feature fusion with deep
features and local features is implemented. Finally, the Support Vector Machine (SVM) is trained
with the fused features. The verified experiments show that this proposed method achieves an
average classification accuracy rate of 98.4%, and that the proposed transfer learning has superior
generalization and better classification performance for small-scale agricultural image samples.

Keywords: Transfer learning; deep feature; SPF; embryo; SURF; HOG; DCNN; agriculture

1. Introduction

A Specific Pathogen Free (SPF) chicken embryo egg is a virus culture source widely used in
the biological vaccine preparation manufacturing industry [1]. It is significant in the sense that only
normally cultivated and fertile embryo eggs can be injected with inoculated viruses in the case of
cross-contamination. Before inoculation and culture, except for the live and fertile embryo, all the
infertile, weak, crack, hemolytic, and infected chicken embryo eggs must be removed from the incubator
to keep them vaccination-secure [2]. Therefore, the large-scale detection of candling periodically in
black contamination by skilled inspectors (through human vision and traditional experience ways) is
ubiquitous [3], which has the costs of heavy manual labor, low efficiency, and produces many detection
errors due to much fatigue or differences in individual experience among inspectors. As the hatching
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of embryo eggs has different characteristics for different hatching days, how the accuracy of fertility
detection and classification of embryo eggs can be improved has become the new research focus.

With the development of the imaging system, as well as deep-learning and image-processing
techniques, high performances in the identification of fertilized eggs have been obtained [4,5]; however,
the targeting of similarity classifications of weak, cracked, or hemolytic embryos in many studies have
been able to be provided. According to the years of experience of manual candling detection for the
SPF embryo egg in a biological vaccine preparation manufacturing workshop, Figure 1 shows six
categories of five- to seven-day hatching samples of SPF chicken embryo eggs, where the live fertile
embryo, shown in Figure 1a, should be detected separately from the other embryos. From Figure 1a,e,f,
it is obvious from human visual knowledge that the fertile embryo can be easily discriminated amongst
the infected and infertile embryos due to the different contrasts of the main embryo body. However, the
detection of the other four categories is much more difficult. For the practical manual discrimination of
embryo eggs, there lies two great difficulties—the feature similarity of blood vessels in the embryo body
between fertile, weak, cracked, and hemolytic embryos, shown in Figure 1a–d, and feature similarity
between random eggshell textures of a fertile embryo and the bright cracks of a cracked embryo, shown
in Figure 1a,d. Therefore, there exists a great need for the discovery of certain recognition methods of
embryo images in an effective way for industrial application.
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Figure 1. Specific Pathogen Free (SPF) chicken embryo egg samples of five- to seven-day hatching
(captured by the industrial color camera of 120M pixels (1292 × 964) produced by China Daheng Group
Inc., with candling with LED white light directly from the top): (a) Fertile embryo, representing the
normally hatching egg with rich vascular net; (b) weak embryo, representing the late hatching egg
with less vascular net; (c) hemolytic embryo, representing the dying egg with hemolysis and gradually
becoming an infected embryo; (d) cracked embryo, representing the cracks or breakages which occurred
in the eggshell; (e) infected embryo, representing the fully dead egg which is infected by viruses and
has become inconsistent in shape and opaque; and (f) infertile embryo, representing the unfertilized
egg and where it is most transparent.

The two challenges above existed in a practical workshop, and were attributed to the diversity
and varieties of the eggs’ natural life development processes during incubation. The weak embryo,
shown in Figure 1b, is also live and fertile, and similar to a fertile embryo. Compared with the image
characteristics of a live fertile embryo, it expresses late development in incubation with less blood
vascular net and a slightly brighter upper region. When the weak embryo continues to incubate, it
can affect the automatic injection accuracy of specific viruses and affect the final quality of biological
vaccine products. The homolytic embryo, shown in Figure 1c, shows the dying embryo which has
recently been infected by virus. With the continuous development of the hemolytic embryo, the color
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or texture of the embryo body gradually turns darker. At the initial stage of infection, the main body
of the dead embryo is similar to the fertile embryo, where it eventually becomes the fully infected
embryo. The hemolytic embryo, similar to the infected embryo, also poses a risk to the entire incubator.
The cracked embryo, shown in Figure 1d, expresses the cracks or breakages which occurred in the
shell during the transportation and placing process. If the shell shows severe breakage, most of the
workers can quickly handle it. However, it is rather difficult for the workers to discover the majority of
small cracks in a dark or slightly dark workshop. Similarly, even in the candling detection process,
the crack is also extremely similar to the texture of the eggshell. With the continued incubation of the
cracked embryo, it eventually becomes a fully dead and infected embryo. Due to these detailed and
practical requirements, the feature representations and discriminations can be considered. The present
academic literatures of fertility detection have been investigated and are shown in Table 1, which
provides a summary comparison of most recent approaches reported in the scientific literature. From
the literature which have been published to date, it is clear that there are few methods for delivering
discriminative functions for the classification of the six categories of chicken embryos (fertile, weak,
hemolytic, cracked, infected, and infertile embryos).

In chicken embryo recognition, the feature representation of the embryo image is critical. From
the literature listed in Table 1, all of the feature representations of the embryo image lie only in
traditional features of manually crafted blood vessels, or only deep features of Convolutional Neural
Networks (CNNs) [4], the Back Propagation Neural Network (BPNN) [3], and the Learning Vector
Quantization Neural Network (LVQNN) [6]. Although the accuracy of the proposed approach is lower
than that in [4] and [7] by 0.3 and 1.1 percent, respectively, the two methods could not resolve the
two challenges above. In practical situations, the conventional feature extraction of blood vessels
has resulted in good performances, and was often affected by complex backgrounds related to color,
texture, illumination changes, and random spots [8]. With the breakthrough of the Deep Convolutional
Neural Network (DCNN) [9,10] for blood vessels, the discriminative features of embryo body images
can be automatically learned, and the DCNNs have become the mainstream in image classification and
other fields of image processing.

With the popularity of the proposed deep learning and transfer learning method, the DCNNs
have recently had wide applications with high image quality [11–14]. The DCNNs integrate image
feature extraction with classification in an end-to-end pipeline, and have achieved great breakthroughs
in the ILSVRC (ImageNet Large Scale Visual Classification Challenge), such as the GoogLeNet [15],
AlexNet [16], VGGNet [17], and ResNet [18]. Discriminative hierarchical feature learning [19] has been
related to multiscale feature fusion [20], the Sped Up Robust Feature (SURF) [21], and the Histogram of
Oriented Gradient (HOG) feature [22], and these features with classical GoogLeNet and AlexNet [23]
have provided the possibility of differentiating features of the six embryo eggs above. Generally, there
are two methods of application for deep-learning models in image processing: one is training from
scratch, and the other is transfer learning [24]. Obviously, training from scratch consists of training all
the weights and parameters of the models at the training process, while transfer learning preserves all
the weights and parameters of the pretrained convolutional layers, and only needs to learn the weights
and parameters of the last few layers and to finetune the convolutional layers. Transfer learning is
suitable for the smaller dataset with low hardware facilities and fast computational performance [25].
Hence, it is one’s choice to apply a pretrained network with transfer learning in a small SPF chicken
embryo dataset.
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Table 1. Comparison between chicken embryo image detection described in the academic literature,
and our proposed approach of uniquely discriminating the six embryos.

Imaging Type Categories Methods Objectives Accuracy Ref.

infrared
thermal imager 1800 fertile eggs

Sobel operator; fuzzy
rules; grayscale

co-occurrence matrix

identification of
fertilized and dead

eggs
96% [26]

near-infrared
hyperspectral
imaging with

tungsten
halogen lamp

candling

156 fertile and 18
infertile eggs

Gabor filter; ROI;
Principal Component

Analysis (PCA);
K-means classifier;

1066-1076nm
wavelength

fertility detecting of
early Embryo
hatching eggs

over 74.1% [2]

hyperspectral
imaging with

halogen
tungsten lamp

at bottom

150 green shell
embryos of 0- and
4-day including 30

eggs of each

PCA; morphologic
characteristics

extraction; Learning
Vector Quantization

Neural Network
(LVQNN)

non-destructive
detection on egg

hatching properties

rate of over
97% and over
81% for weak

embryo

[6]

96 images of 6-day
embryo with 48 trial

samples

One-out cross
validation with Partial

Least Squares
Regression (PLSR)

model

egg embryo
development

detection
over 91.7% [27]

CCD imaging
with LED
candling

360 SPF eggs
including 282 fertile
and 78 infertile eggs

ROI; SUSAN for
speckle elimination;
Bottom-Hat filter for

blood vessels features

classification on
fertile and infertile

SPF eggs
97.78% [1,5]

240 5-day eggs
including 190 fertile
and 50 infertile eggs

ROI; Contrast Limited
Adaptive Histogram

Equalization (CLAHE);
binarization; BPNN

detecting fertile and
infertile eggs in

incubation industry
98.25% [3]

22,000 images of
9-day embryo

including 20,000 for
training set

CNNs with Squeeze-
and -excitation

weighing module

classification on
fertile and dead eggs 98.7% [4]

2,000 images of 5-day
hatching eggs

including 1,200 for
training

CNNs features
classification on

fertile, infertile and
dead hatching eggs

99.5% [7]

60 fertile and 40
infertile eggs

Least Square Support
Vector Machine

(LSSVM)

identification of
white fertile eggs 92.5% [28]

CCD imaging
with LED
candling

10,000 SPF eggs
including 6 kinds of

embryos

ROI; Features fusion
on AlexNet and

GoogLeNet deep
features, SURF and

HOG; Support Vector
Machine (SVM)

classification of 6
kinds: fertile, weak,

hemolytic, crack,
infected & infertile)

over 98.4% Ours

In regard to the two difficulties in SPF embryo recognition, this paper proposes a novel approach
of multi-feature fusion based on transfer learning for chicken embryo classification, shown in Figure 2.
Based on the preprocessing of input original images and fine-tuning AlexNet and GoogLeNet, the
deep features are extracted from the two DCNNs, and then the deep features are fused with local
features of SURF and HOG. Finally, SVM is trained with the fused features. The main contributions
are listed as follows:

1. In order to resolve the issues of insufficient embryo samples and overfitting of the DCNNs during
the training process, this paper employed data augmentation to greatly expand the dataset.
Original images were preprocessed to obtain the Region of Interest (ROI), and then the ROI was
augmented with image processing technologies. Two pretrained state-of-the-art AlexNet and
GoogLeNet models for image classification were fine-tuned with transfer learning to further
prevent over-fitting and to learn deep features. The verified results show that the accuracy of this
proposed model is higher than that of training from scratch.

2. Multi-feature fusion of local features of SURF and HOG features, as well as deep features,
provided complementary information for better generalization ability to illuminate the various
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changes and random spots of the eggshell. A comparable analysis of the classification accuracy
rate between different DCNNs on the same embryo sample dataset has been provided. The
experimental results show that the accuracy rate of this proposal is higher than that of other
popular learning methods based on the color and texture of chicken embryos.
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The experimental results verify that the proposed DCNN-based model achieves an accuracy
of over 98.0% on the hold-out embryo test samples, which is higher than the other DCNNs and
classical recognition models. The remainder of this paper is organized as follows. In Section 2,
image preprocessing of ROI extraction is introduced and summarized. Section 3 describes the novel
DCNN models, transfer learning, and feature extractions. In Section 4, the analysis and discussions
of experimental results are provided by the classification approach to chicken embryo images with
transfer learning. Finally, this paper is summarized in Section 5.

2. Preprocessing

As shown in Figure 1, in regard to fertility detection and classification of SPF chicken embryo
egg images, there are some unnecessary things in embryo images, such as the LED light shade and
egg trays. Hence, it is necessary to preprocess the input embryo image to save time and prevent
over-fitting of the deep learning models. For fertile feature representation of different embryos, only
the amount and growing status of the main blood vessels are the curial judgment. In order to obtain
better computation capacity, the ROI could be extracted, which lies mainly in the whole embryo egg.
With the life knowledge of chicken egg hatching, the embryo egg can basically be divided into three
parts, including the air cell, embryo body, and excretory region, shown in Figure 3. Under the industrial
candling light, the air cell always appears to be yellow and bright, whereas the excretory region of
the chicken embryo is always of a dim color, and the embryo’s body shows bright red blood vessels,
expressing the normal growing status.
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Automatic partitioning of ROIs from original images is performed through the long-term
investigation of original samples shown in Table 1. With the mean value range of color channels in
Table 2, the ROI can be partitioned into three steps, with its results shown in Figure 3.

Table 2. Mean value of color channels of each part of the embryo.

Channel Value Red Channel Green Channel Blue Channel

Air cell 200 200 15
Excretory Region 113 30 5

Uninteresting Region 30 10 4

(1) The air cell region is the brightest of the three parts under the candling LED light, and its
green channel values are mostly over 200, with the green channel value of other uninteresting regions
mostly being less than 30. Therefore, the air cell region and the uninteresting region can be partitioned
according to green channel values. Suppose that m and n represent the rows and columns of the input
embryo image, respectively; a sliding window is given below as Equation (1), where the variable gi
represents the value of the green channel of the input image.

array1 = [g1, g2, . . . , gi . . . , gn] (1)

The sliding window array1 runs from top to bottom, and assigns the green values of each row to
array1. In array1, gi expresses the number of green values over 230, and there is a comparison between
gi with T1 (the threshold T1 is 20). If gi > T1, then the array1 is used to segment the upper uninteresting
part, and the air cell area is determined.

(2) The red channel values of the excretory area are mostly less than 130, while the red values of
the bottom part are mostly less than 50. According to the red channel value, the excretory area and
bottom part could be segmented. Another sliding window is given below as Equation (2), where the
variable ri represents the value of the red channel of the input image.

array2 = [r1, r2, . . . , ri . . . , rn] (2)

The window array2 should be slid from bottom to top, and the red channel values of each row
should be assigned to array2. Similarly, in array2, ri expresses the number of red values over 50, and ri
should be compared with T2 (the threshold T2 is 40). If ri > T2, array2 is used to segment the excretory
area and bottom uninteresting region.

(3) The left and right windows can be determined by the ordinate of the leftmost and rightmost
pixel points of the embryo body. The ROI of the input image can be cropped with four sliding windows.

Due to the clear differences in feature expressions among the three partitions, it is unsuitable for
global filtering to reduce the effect of random spots of the embryo. To better extract deep features to
the maximum extent, ROI can be divided into 4 × 4 blocks, where each block is filtered by local median
filtering with red, green, and blue channels, respectively. Thus, this can ensure the detection of even
minimal differences among each block caused by eventual shadows or bright-light spots, and is able to
better obtain the features of each block.

3. Methodology

3.1. Transfer Learning

In this proposal, two different DCNN models, AlexNet and GoogLeNet, are combined to classify
chicken embryos. These two DCNN models have learned rich feature representations from ImageNet,
which can be helpful to the classification task of chicken embryo images. According to the existing
embryo image dataset, the transfer learning to this new task can be applied to avoid overfitting.
By stacking two models, better deep-feature representations can be obtained [25]. In the proposed
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method, parameter transfer is employed, which needs to train the last few layers and finetune previous
convolutional layers with a new dataset. Fine-tuning a network with transfer learning is usually much
faster and easier than training a network with randomly initialized weights from scratch, which will
enable faster convergence and allow for better generalization.

In the proposed parameter transfer learning model, the parameters of five previous convolutional
layers are kept, and these parameters of AlexNet are fine-tuned. The standard AlexNet consists of
three fully-connected (fc) layers (fc6, fc7, and fc8) [29]. Here, shown in Figure 4, the last three layers of
fc6–fc8 were removed, and two new fc layers and the Softmax layer have been added, respectively. The
number of neurons of the new layers of fc6 and fc7 are 2048 and 6, respectively. The weights of fc6 and
fc7 were initialized from a zero-mean Gaussian distributed with a standard deviation of 0.001 referred
to in [16], and the biases were initialized with the constant 0.1. These parameters can be obtained after
the training of dataset samples.
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Figure 4. The process of transfer learning, including the loading of pre-trained models of AlexNet
through the removal of the last three layers and adding three new layers of AlexNet: fc6, fc7, and the
Softmax layer; and fine-tuning the previous layers and training the new layers of AlexNet with the
chicken embryo dataset.

With the pre-trained GoogLeNet from the ImageNet, only the inception5b was changed, and
only one fc layer added after the inception5b module. There were two fc layers after the AveragePool
layer named FC_1024 and FC_6, as shown in Figure 5. Compared to the original GoogLeNet, the
neuron numbers of FC_1024 and FC_6 are 1024 and 6, respectively. The parameters of the previous
convolutional layers were kept. The weights and biases of the new fc layers were initialized similarly
to the previous AlexNet. The Softmax layer was applied to compute the cross-entropy loss of the
AlexNet and GoogLeNet models during the training process.
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3.2. Network Training and Deep Feature Extraction

In experimentation, the two DCNN models were trained separately, based on parameter transfer
learning to obtain two different kinds of deep features. The parameters of all the convolution layers of
AlexNet and GoogLeNet were preserved and finetuned. All the input images were scaled to 227 × 27
and 224 × 224 pixels to fit the required input sizes of AlexNet and GoogLeNet, respectively. For
transfer learning in our approach, there is no need to train two DCNNs for much more epochs because
the training loss no longer declines after a certain number of epochs, as shown in Figures 6 and 7.
Here, the epochs of AlexNet and GoogLeNet were set as 30 and 40, respectively, where their iterations
were 9000 and 12500. During training, all hyperparameters were set empirically—the learning rates of
AlexNet and GoogLeNet were set as 0.0001 and 0.001, respectively, and then decreased to half every
four epochs.
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During the training process, a very small learning rate was selected for the two models, which
can suppress over-fitting. The two DCNNs were trained separately on a single GTX970 Graphics
Processing Unit (GPU) by using the Stochastic Gradient Descent (SGD), which is used to calculate the
gradient of the objective function to acquire the nonredundant object optimization. The minibatch
size of both models was set as 32 for the limitation of GPU memory (4GB), and the momentum was
set as 0.9. After training, the deep features of the embryo images were obtained from the fc6 layer of
AlexNet, and the FC_1024 layer of GoogLeNet.

3.3. SURF and HOG Feature Extraction

To extract the local features of ROIs with obvious illumination changes, SURF [30] is the first
choice for local feature description, as it is not sensitive to image blurring and viewpoint changes.
Referring to [21] and to avoid feature dimensional inconsistency, the 100 top strongest responses to
interest points, with 64 dimensions of each point, were extracted to be SURF feature descriptors of
each embryo image, shown in Figure 8.
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Figure 8. Speeded Up Robust Feature (SURF) of interest points of fertile embryo.

To find the cracked features of the embryo, the HOG [31] local texture feature existing at the edges
was extracted. Invariant to geometric and optical deformation, HOG is usually employed to extract the
appropriate descriptors of a cracked embryo. The ROI of the embryo was scaled to 512 × 512 pixels to
avoid the high-dimensional features. An HOG feature visualization of a cracked embryo is illustrated
in Figure 9.
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Figure 9. Histogram of Oriented Gradient (HOG) and its visualization of crack embryo.

4. Experimentation and Discussions

4.1. Datasets

The datasets included 1000 training samples and 1000 testing samples of six categories of chicken
embryo images. To resolve overfitting problems, the original image needed to be rotated or mirrored
to generate more images. The angles of rotation were 90◦, 180◦, and 270◦. respectively. Besides,
horizontal flipping, vertical flipping, and random Gaussian noises with a mean of 0 and variance
of 0.008, as well as random crop were employed to expand the dataset, as shown in Figure 10. The
augmented dataset is shown in Table 3. Specifically, ten images were generated from an original image,
including three images from rotation, one image from random noise, two images from horizontal and
vertical flipping, and four images from random cropping. After data augmentation, the total dataset
reached 10,000 images. With the trained AlexNet and GoogLeNet, the deep features from each DCNN
were extracted. Simultaneously for each embryo image, the local features of SURF and HOG were
extracted, respectively. These different features were fused and classified with the Support Vector
Machine (SVM). The recognition accuracy rate ε was calculated to evaluate the performances of the
proposed method, given as Equation (3):

ε = R/T (3)

where R is the number of successful classifying embryos and T is the number of test sample images.

Table 3. The numbers of the training and testing datasets.

Categories Training Images Test Images

fertile embryo 5000 500
weak embryo 1000 100

hemolytic embryo 1000 100
cracked embryo 1000 100
infected embryo 1000 100
infertile embryo 1000 100

total 10,000 1000
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4.2. Performance Comparison

To describe the different feature fusions conveniently, the fusion of HOG and SURF features were
simplified as HS—and similarly, the AlexNet deep feature as Alex-DF; GoogLeNet deep feature as
Google-DF; fusion of the AlexNet deep feature, HOG, and SURF as Alex-HS; fusion of the GoogLeNet
deep feature, HOG, and SURF as Google-HS; and the fusion of the AlexNet Deep Feature, GoogLeNet
deep feature, HOG, and SURF as Alex-Google-HS, respectively. For comparison with the basic
Multi-Layer Perception (MLP), a four-layer perceptron was redesigned, in which the neurons of the
first hidden layer were set as 256, the second hidden layer as 512, the third hidden layer as 512, and
the output layer as 6. The different feature fusion methods were verified, respectively with the same
samples, and the comparison results are shown in Table 4.

Table 4. Recognition comparisons of different feature fusions.

Feature Fusions MLP HS Alex-DF Google-DF Alex-HS Google-HS Alex-Google-HS

ε (%) 65.0 74.0 90.4 91.2 92.8 94.8 98.4

From Table 4, it can be seen that the basic MLP model obtained the lowest accuracy rate of 65.0%,
as MLP lost some of the image’s spatial information and was thus unable to effectively extract the
blood vessel features of the chicken embryo. The critical judgement features of blood vessels have
much spatial information, so the accuracy of the MLP method alone was lower than the traditional
hand-crafted features. Similarly, the accuracy of only the local features fused with HOG and SURF was
74.0%, which also could not satisfy the classification needs. This could be explained in that the MLP
alone, or fusion with SURF and HOG alone could not recognize subtle and slight features of chicken
embryos with high similarity. In experimental practice, due to the greatly similar life characteristics
of the four types of embryo eggs (weak, fertile, hemolytic, and cracked), it is extremely difficult to
extract all of the blood vessel features by using only the classical and traditional features of HS, or other
hand-crafted features. However, the AlexNet and GoogLeNet can improve the accuracy rate to more
than 90%. Two of the deep networks were pretrained on ImageNet, and the common features of the
images were well-preserved and expressed. They are comparably suitable for learning deeper features
of specific images on small datasets, as well as for improving classification accuracy. Deep features
can not only show a much better accuracy rate for the small training dataset, but shows superior
generalization ability for image classification. The performance of Google-HS is better than that of
Alex-HS, which shows the deeper network architecture and the better accuracy rate. The reason why
the fusion of deep features and local features can achieve better accuracy than a single deep feature
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is because these two features fused together results in a good combination of both their advantages.
Alex-Google-HS shows the highest accuracy rate, where the fusion of two deep features has a different
classification capability. GoogLeNet employs different convolution kernels of 5 × 5, 3 × 3 and 1 × 1,
which is equivalent to multi-scale feature fusion. Furthermore, with a 7 × 7 convolution kernel of
AlexNet, the combination of the two deep features greatly improves the respective performance of
each model.

To verify the performances of different transferred layers, the corresponding layers of AlexNet
model were trained and performed with the same samples, as shown in Table 5. It can be seen that
when the first five convolution layers are transferred, the accuracy is 98.4%, which outperforms the
layers of conv1-conv5 + fc6 by 0.3%. In general, the more layers that are transferred, the better the
results which can be obtained, with the premise being on high similarity of labelling between the
source dataset and target dataset [32,33]. However, the similarity between the source ImageNet and
the target datasets of chicken embryos is not very high. From Table 5, it can be seen that if all layers
except for the last classification layer are transferred, it shows that the highest accuracy rate could be
97.9%, which is lower than the previous five transferred layers. For the classification of specific SPF
embryo images, it is clear and significant that only the appropriate layers of the deep network can
be transferred.

Table 5. Comparison of accuracy rates on different transferred layers.

AlexNet Transferred Layers Accuracy Rate ε (%)

conv1-conv4 92.6
conv1-conv5 98.4

conv1-conv5+fc6 98.1
conv1-conv5+fc6+fc7 97.9

To verify the effectiveness of transfer learning, the AlexNet and GoogLeNet models were trained
by transfer learning and from scratch, respectively. The accuracy rate ε. and training time of the two
models were compared with the specific loss, which is shown in Table 6. The time consumption of
transfer learning is significantly less than that of training from scratch. The AlexNet requires less
training time than GoogLeNet because the architecture of the latter is deeper than that of AlexNet. The
accuracy of transfer learning in the two DCNNs is higher than that of training from scratch with our
test dataset, which demonstrates the better efficiency of transfer learning.

Table 6. Comparison of accuracy rate and training time on different training methods.

Training Method
AlexNet GoogLeNet

Training Time ε (%) Training Time ε (%)

transfer learning 16m 37s 90.4 20 m 47s 91.2
train from scratch 39m 42s 87.5 45 m34s 84.6

To illustrate the matching extent between deep networks and datasets, other DCNNs, such as
VGG16 [17] and ResNet [18] models, were trained on the same augmented sample datasets, shown
in Table 7. The VGG16, ResNet50, and ResNet101 were trained with parameter transfer learning to
prevent overfitting, because the three models have much more parameters than the proposed model.
Then, after the deep feature extraction, the local features of SURF and HOG were fused with deep
features, respectively. From Table 7, the proposed method outperforms the three deep networks of
1.2%, 0.8%, and 0.6%, respectively. In fact, the three models obtained rather ideal performances, but
their classification capacities degraded due to the small-scale datasets and too many parameters.
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Table 7. Comparisons on state-of-the-art methods.

Method Accuracy Rate ε (%)

VGG16-HS 97.2
ResNet50-HS 97.6
ResNet101-HS 97.8

Ours 98.4

The fusion with deep features and local features was able to provide complementary information,
which further improved feature representation on embryo image classification; the specific results are
shown in Table 8. Our method still has a 1.6% error rate. Most of the misclassified images are fertile,
weak, and hemolytic embryos, just because of the great similarity of blood vessels in ROI, where even
highly experienced experts could hardly distinguish between the different growing statuses of these
embryos. In this experiment, only 16 embryos were misclassified, and the confusion matrix is shown
in Figure 11. Therefore, the proposed approach still needs to be further improved to better recognize
the weak, fertile, and hemolytic embryos.

Table 8. Classification accuracy of chicken embryos.

Chicken Embryos Fertile Weak Hemolytic Crack Infected Infertile

Accuracy ε (%) 98.8 96.0 97.0 99.0 99.0 99.0
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Figure 11. Confusion matrix of the proposed Alex-Google-HS method, with an average accuracy rate
of 98.4% on the test dataset.

4.3. The Influence of Learning Rate on Learning Model

During training, the learning rate significantly influenced the performances and final results. For
the pretrained AlexNet and GoogLeNet, the transferred layers had been fully trained, and in this
proposal, only the last few new layers needed to be trained, and the previous layers needed to be
finetuned. The learning rate of GoogLeNet was initialized to a small value, as shown in Figure 10,
and the general trend of the accuracy rate curve was upward until reaching a rate of 0.001, with the
highest accuracy rate being 91.2%. However, as the learning rate continued to increase, the accuracy
rate decreased sharply because the pretrained GoogLeNet model was close to the optimal solution.
Otherwise, if the learning rate increased, the GoogLeNet model would have skipped the optimal
solution and resulted in great loss and low accuracy. Similarly, for the AlexNet model, with the learning
rate increasing to 0.0006, the accuracy rate sharply decreased and remained almost the same. From
Figure 12, the accuracy rate of AlexNet stays highest at the beginning with a learning rate of 0.0001. To
achieve better performances of chicken embryo classification, the learning rates of GoogLeNet and
AlexNet should be initialized to 0.001 and 0.0001, respectively.
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5. Conclusions

Based on the diversity and varieties in the processes of natural development of life in chicken
egg incubation, this paper has summarized two classification challenges of feature similarities of five-
to seven-day SPF embryo eggs in a practical vaccine preparation workshop, where one is feature
similarity of blood vessels in embryo bodies between fertile and weak, cracked, and hemolytic embryos,
and the other is feature similarity between random eggshell textures of fertile embryos and the bright
cracks of cracked embryos. To obtain better classification performances, a novel multi-feature fusion
of deep features, SURF and HOG local features for chicken embryo classification based on transfer
learning, was proposed. DCNN has a strong capability for generalization and has good performance
on the identification and classification tasks by applying transfer learning in the case of a small dataset.
This proposal does not need complex preprocessing, and can learn features automatically. Firstly, all
input embryo images are pre-processed and their ROI are cropped, and then the sample datasets are
augmented. These images are input into the pretrained DCNN to learn deep discriminative features.
Secondly, the deep features of AlexNet and GoogLeNet, as well as the local features of SURF and
HOG were fused as the final features. Finally, the SVM was trained to classify the input embryo
images. The experiments show the superiority of this proposed approach, and in the test dataset,
the average classification accuracy rate was 98.4%, which is better than some of the state-of-the-art
image classification methods in a small dataset. It can also be used by vaccine-makers to automatically
inspect the initially incubated five- and seven-day SPF eggs.

The DCNN based on transfer learning should not only be much faster and easier than training a
network with randomly initialized weights from scratch, but it can also obtain a high level of accuracy
in image classification. The original contribution of this paper lies in how an appropriate transfer
learning network architecture for image classification tasks with small datasets is proposed, and the
classification method of multi-feature fusion with classic local features and deep features can be verified
at a higher accuracy rate. The generalization ability of DCNN based on transfer learning and the
advantages of multi-feature fusion can accurately classify agricultural images of high similarity with
subtle variations. Our future work will focus on the image classification of nine- to eleven-day SPF
hatching chicken embryos, as well as the redefinition and reconstructions of deep network architecture
for small agricultural image samples.

Author Contributions: L.H. contributed significantly to proposing the idea, edited the English language and
rewrote this paper, and providing the research project; A.H. contributed significantly to designing the whole
experiment, and manuscript preparation and revision; M.Z. contributed the investigation, data acquisition and
whole datasets; Y.W. and R.B. assisted gathering the experimental data and manuscript; X.N. contributed the
effective experimental labeling.
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Abbreviations

The following abbreviations are used in this paper.
DCNN Deep Convolutional Neural Network
CNN Convolutional Neural Network
ROI Region of Interest
SURF Speeded Up Robust Feature
HOG Histogram Oriented Gradient
SVM Support Vector Machine
SPF Specific Pathogen Free
BPNN Back Propagation Neural Network
ILSVRC ImageNet Large Scale Visual Classification Challenge
PCA Principal Component Analysis
LVQNN Learning Vector Quantization Neural Network
PLSR Partial Least Squares Regression
CLAHE Contrast Limited Adaptive Histogram Equalization
LSSVM Least Square Support Vector Machine
fc/FC fully-connected
SGD Stochastic Gradient Descent
Alex-DF AlexNet deep feature
Google-DF fusion of GoogLeNet deep feature
Alex-HS fusion of AlexNet deep feature, HOG and SURF
Google-HS fusion of GoogLeNet deep feature, HOG and SURF
Alex-Google-HS fusion of AlexNet Deep Feature, GoogLeNet deep feature, HOG and SURF
MLP Multi-Layer Perception
GPU Graphics Processing Unit
DCNN Deep Convolutional Neural Network
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