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Abstract

:

This paper considers the Lie symmetry analysis of a class of fractional Zakharov-Kuznetsov equations. We systematically show the procedure to obtain the Lie point symmetries for the equation. Accordingly, we study the vector fields of this equation. Meantime, the symmetry reductions of this equation are performed. Finally, by employing the obtained symmetry properties, we can get some new exact solutions to this fractional Zakharov-Kuznetsov equation.
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1. Introduction


As one of the important high dimensional nonlinear evolution equations, the Zakharov-Kuznetsov (ZK) equation was first used to discuss the evolution of the propagation of plane waves in magnetized plasma containing cold ions and isothermal electrons [1]. The dimensionless form in renormalized variables of the ZK equation is as follows:


ut+auux+buxxx+cuxyy=0,



(1)




where u=u(t,x,y) is the normalized electric potential. a,b,c are all normalized constants with respect to different physical meanings. For details of these coefficients, see [1,2]. Due to its wide application in maths and physics, the study of this equation was a wide range of theoretical and practical significance. There are various results about the ZK equation, for more details, one can see [3,4,5,6,7,8,9,10,11].



In paper [12], Blaha et al. considered the following modified version of ZK equation.


ut+au2ux+uxxx+uxyy=0,



(2)




where the signs of a represents different physical phenomenon. In addition, Wazwaz [13] did a further study about a nonlinear dispersive modified ZK equation(mZK) as follows:


ut+a(un2)x+buxxx+kuxyy=0,



(3)




where n≥3 is odd and the sign is either positive or negative.



To include as many physical applications as possible, lots of papers discuss the generalized Zakharov-Kuznetsov equation of the following form [14,15].


ut+a(up)x+b(uq)xxx+c(ur)xyy=0.



(4)







Please note that the paper [15] systematically illustrated the detailed group classification algorithm and the process of reduction by discussing Equation (4).



Recently, many important phenomena in various areas of science were well described by fractional order differential equations [16]. Due to the realistic senses, a lot of attention has been given to seek solutions of fractional differential equations (FDEs). Various methods such as the homotopy perturbation method (HPM) [17], the variational iteration method (VIM) [18] and the homotopy analysis method (HAM) [19] have been applied for fractional PDEs. Unfortunately, up to now, there are no general methods effective enough to solve the fractional order systems.



Using a new extended trial equation method, the authors of [20] considered the exact solutions of the generalized fractional Zakharov-Kuznetsov equations (FZK(p,q,r)) as follows:


Dtαu+a(up)x+b(uq)xxx+c(ur)xyy=0,



(5)




where u=u(t,x,y) represents the electrostatic wave potential in plasmas, 0<α≤1 is the order of fractional derivative. a,b,c are arbitrary constants and the coefficient of a is the nonlinear term, the coefficients of b and c characterize the spatial dispersions in multi-dimensions. p,q,r≠0 are integers. They successfully constructed some new exact solutions, i.e., the elliptic integral function F,Π solutions to (5). In particular, it is important to note that the symmetry analysis of (5) is not considered yet in [20].



As one of the most efficient and important methods of studying differential equations, the symmetry group theory has been extensively used to consider the symmetry properties of Zakharov- Kuznetsov equations, see [21,22,23,24,25,26,27] for example. Furthermore, the authors of [28] provided an interesting Appendix of how to proceed in the symmetry analysis of PDEs. Moreover, there have been excellent books about the symmetry analysis, one can be referred to [29,30,31].



However, not the same as it has been done in PDEs, the symmetry Lie group method is not so efficiently used in fractional differential equations (FDEs). To the best of our knowledge, there are lots of studies on the group properties of FDEs. In [32], the authors considered the Lie symmetries of a class of fractional order differential equations with an arbitrary number of independent variables. In [33], analysis of Lie symmetries with conservation laws of a (3+1)-dimensional fractional KdV-Zakharov- Kuznetsov (mKdV-ZK) equation has been considered. Some other results can be found in [34,35,36,37].



When it comes to fractional ZK equations, Lie symmetry analysis, conservation laws and exact solutions for a modified fractional (2+1)-mZK equation was considered in paper [38]. The equation reads as


Dtαu+u2ux+uxxx+uxyy=0.



(6)







Please note that Equation (6) is the special case of (5).



In view of the above discussion, we meant to study the group invariant properties of the fractional ZK Equation (5) studied in [20]. For the convenience of discussion, system (5) can be rewritten as follows


Dtαu+paup−1ux+bq3−3q2+2quq−3ux3+3q2−3quq−2uxuxx+quq−1uxxx+c[r3−3r2+2rur−3uxuy2+r2−rur−2uxuyy+2r2−2rur−2uyuxy+rur−1uxyy]=0



(7)







The organization of the rest of this paper is as follows: In Section 2, some preliminary results needed in later sections and some notations, definitions are stated. In Section 3, we establish our main results about Lie symmetries for the fractional ZK Equation (5). In Section 4, examples of group transformations of solutions are considered and new exact solutions are constructed. In Section 5, we study symmetry reductions to the time fractional ZK equation. Finally, we present discussions and conclusions.




2. Preliminaries


From the viewpoint of Brown motion, the modified Riemann-Liouville(RL) derivative is defined as


Dtμf(t)=dnfdtn,μ=n,dndtnIn−μf(t),0≤n−1<μ<n,



(8)




where n∈N, Iνf(t) is the RL fractional integral of order ν, i.e.,


Iνf(t)=1Γ(ν)∫0t(t−s)ν−1f(s)ds,ν>0,f(t),ν=0,



(9)




where Γ(•) is the Gamma function.



For the function u(t,x), a Riemann-Liouville time fractional partial derivative of order μ can be defined as below [35]:


Dtμu(t,x)=∂nu∂tn,μ=n,1Γ(n−μ)∂n∂tn∫0t(t−s)n−μ−1u(s,x)ds,0≤n−1<μ<n.



(10)







In this paper, we also need the following generalized definitions.



According to [32,39], the generalized Erdélyi−Kober fractional differential operator is defined as follows:


D{β1,β2,…,βm}δ,αg:=∏j=0n−1δ+j+∑k=1m−1βkξk∂∂ξkK{β1,β2,…,βm}δ+α,n−αg(ξ1,ξ2,…,ξm),



(11)




where


n=[α]+1,α∉N,α,α∈N,








and the generalized Erdélyi−Kober fractional integral operator reads


K{β1,β2,…,βm}δ,αg(ξ1,ξ2,…,ξm)=1Γ(α)∫1∞(ν−1)α−1ν−(δ+α)g(ξ1ν1β1,…,ξmν1βm)dν,α>0,g(ξ1,…,ξm),α=0.



(12)







In the following, we will give a short introduction about how to find Lie point symmetries of fractional order systems. For further information, one can refer to [30,31].



We now consider the following FDE


Dtαu(t,x,y)=F(t,x,y,u,ux,uy,uxx,uyy,uxy,uxxx,uxyy),0<α<1,



(13)




with t,x,y independent variables, u dependent variables.



According to the Lie theory, for some group parameter ε, we need to determine a one parameter Lie group of infinitesimal transformations


t⋆=t+ετ(t,x,y,u)+O(ε2),x⋆=x+εξ(t,x,y,u)+O(ε2),y⋆=y+εη(t,x,y,u)+O(ε2),u⋆=u+εϕ(t,x,y,u)+O(ε2).



(14)







The associated infinitesimal generator is defined by


X=τ∂∂t+ξ∂∂x+η∂∂y+ϕ∂∂u,








where


τ=dt⋆dε|ε=0,ξ=dx⋆dε|ε=0,η=dy⋆dε|ε=0,ϕ=du⋆dε|ε=0.











According to the infinitesimal invariance criterion [31], Equation (13) admits transformation group (14) if and only if the following equation holds


pr(α,3)X(Δ)|Δ=0=0,Δ=Dtαu−F.



(15)







By keeping the essential terms, the operator pr(α,3)X takes the following form


pr(α,3)X=X+ϕα,t∂∂Dtαu+ϕx∂∂ux+ϕy∂∂uy+ϕxx∂∂uxx+ϕxy∂∂uxy+ϕyy∂∂uyy+ϕxxx∂∂uxxx+ϕyyy∂∂uyyy+ϕxyy∂∂uxyy,



(16)




where


ϕα,t=Dtα(ϕ)+ξDtα(ux)+ηDtα(uy)−Dtα(ξux)−Dtα(ηuy)+Dtα(uDt(τ))−Dtα+1(τu)+τDtα+1(u),ϕx=Dx(ϕ)−utDx(τ)−uxDx(ξ)−uyDx(η),ϕy=Dy(ϕ)−utDy(τ)−uxDy(ξ)−uyDy(η),ϕxx=Dx(ϕx)−uxtDx(τ)−uxxDx(ξ)−uxyDx(η),ϕyy=Dy(ϕy)−uytDy(τ)−uxyDy(ξ)−uyyDy(η),ϕxy=Dy(ϕx)−uxtDy(τ)−uxxDy(ξ)−uxyDy(η),ϕxxx=Dx(ϕxx)−uxxtDx(τ)−uxxxDx(ξ)−uxxyDx(η),ϕxyy=Dx(ϕyy)−uyytDx(τ)−uyxyDx(ξ)−uyyyDx(η),ϕyyy=Dy(ϕyy)−uyytDy(τ)−uyxyDy(ξ)−uyyyDy(η)



(17)







Here, the total derivative operator Di is defined by


Di=∂∂xi+uip∂∂up+uijp∂∂ujp+⋯,i,j=1,2,3,p=1,



(18)




and (x1,x2,x3)=(t,x,y),(u1)=(u). We see that the explicit expression for the above ones can be obtained in a standard procedure [31]. In addition, according to [40], after similar calculation as [35], we can have the explicit expression for ϕα,t:


ϕα,t=∑n=1∞αn∂tnϕu−αn+1Dtn+1(τ)∂tα−nu−∑n=1∞αnDtn(ξ)∂tα−n(ux)−∑n=1∞αnDtn(η)∂tα−n(uy)+∂tαϕ+(ϕu−αDt(τ))∂tαu−u∂tαϕu+μtα



(19)




where


μtα=∑n=2∞∑m=2n∑k=2m∑r=0k−1αnnmkrtn−α(−u)rk!Γ(n+1−α)dmdtm(uk−r)∂n−m+kϕ∂tn−m∂uk.



(20)







Because we will use FracSym [40] in our paper, as request, hereafter, we only consider symmetries where ϕ is linear in u (assume μtα=0), i.e.,


ϕ(t,x,y,u)=uG(t,x,y)+H(t,x,y).



(21)







According to (15), by applying the operators pr(α,3)X to Equation (13), after splitting the obtained relations by independent variables, we obtain a system of linear PDEs and FDEs by equating these coefficients to zero. Finally, by solving this over-determined system, we can obtain the vector fields X admitted by FDE (13).




3. Lie Symmetries for the Generalized Fractional Zakharov-Kuznetsov Equation


Applying the third prolongation pr(α,3)X to (7), we obtain


ϕα,t+ap(p−1)ϕup−2ux+apup−1ϕx+b[(q3−3q2+2q)[(q−3)ϕuq−4ux3+uq−3(ϕx)3]+(3q2−3q)[(q−2)ϕuq−3uxuxx+uq−2ϕxuxx+uq−2uxϕxx]+q[(q−1)ϕuq−2uxxx+uq−1ϕxxx]]+c[(r3−3r2+2r)[(r−3)ϕur−4uxuy2+ur−3ϕxuy2+ur−3ux(ϕy)2]+(r2−r)[(r−2)ϕur−3uxuyy+ur−2ϕxuyy+ur−2uxϕyy]+(2r2−2r)[(r−2)ϕur−3uyuxy+ur−2ϕyuxy+ur−2uyϕxy]+r[(r−1)ϕur−2uxyy+ur−1ϕxyy]]=0.



(22)







Substituting (17) into (22), by the Maple package [40,41], we can obtain the determining equations for the symmetry group. For simplicity, we omit the long expressions of the determining equations. In addition, by the DESOLVII PDE solver pdesolv [42], we obtain the general solution of determining equations with respect to τ,ξ,η,ϕ:


τ(t,x,y,u)=(3p−q−2)c4t+c3η(t,x,y,u)=(p−r)αc4y+c2ξ(t,x,y,u)=(p−q)αc4x+c1ϕ(t,x,y,u)=−2αc4u



(23)




where ci(i=1,2,3,4) are arbitrary constants.



Furthermore, due to transformation (14), to preserve the invariance of the RL fractional derivative operator, we need


τ(0,x,y,u)=0⇒c3=0.



(24)







In fact, transformation (14) is required to leave the lower limit of the integral in the expression of (8), and therefore the equation t=0 should keep the invariant form under this transformation.



Hence, the final symmetry for the time fractional ZK equation is:


τ(t,x,y,u)=(3p−q−2)c4tη(t,x,y,u)=(p−r)αc4y+c2ξ(t,x,y,u)=(p−q)αc4x+c1ϕ(t,x,y,u)=−2αc4u



(25)







Finally, the symmetry group of the time fractional ZK equation is given by the follwing vector fields


X1=∂∂x,X2=∂∂y,X3=(3p−q−2)t∂∂t−2uα∂∂u+(p−q)αx∂∂x+(p−r)αy∂∂y.



(26)







From (26), we can find the symmetry generators. They form a closed Lie algebra as shown in Table 1.



Here, the entry in row i and column j means [Xi,Xj]. It is the commutator for the Lie algebra defined by


[Xi,Xj]=XiXj−XjXi.












4. Examples of Group Transformations of Solutions


In this part, by solving the following initial problems, we can get the Lie symmetry group from the related symmetries to get some new exact solutions from the known ones.


dt⋆dε=τ,t⋆|ε=0=t,dx⋆dε=ξ,x⋆|ε=0=x,dy⋆dε=η,y⋆|ε=0=y,du⋆dε=ϕ,u⋆|ε=0=u.



(27)







Therefore, for the infinitesimal generator X1=∂∂x, the corresponding Lie symmetry group are translation along the x-axis


g1:(t⋆,x⋆,y⋆,u⋆)→(t,x+ε1,y,u),



(28)




where ε1 is an arbitrary real number. The group g1 shows the space-invariance of the equation along the x-axis. Hence, if u=f(t,x,y) is a solution of (5), by group g1, we can obtain the corresponding new solutions of (5), i.e.,


u1=f(t,x−ε1,y).



(29)







For X2=∂∂y, the corresponding Lie symmetry group are translation along the y-axis


g2:(t⋆,x⋆,y⋆,u⋆)→(t,x,y+ε2,u),



(30)




where ε2 is an arbitrary real number. The group g2 shows the space-invariance of the equation along the y-axis. Hence, if u=f(t,x,y) is a solution of (5), by group g2, we can obtain the corresponding new solutions of (5), i.e.,


u2=f(t,x,y−ε2).



(31)







In addition, X3=(3p−q−2)t∂∂t−2uα∂∂u+(p−q)αx∂∂x+(p−r)αy∂∂y corresponds to the nonhomogeneous scaling group


g3:(t⋆,x⋆,y⋆,u⋆)→(te(3p−q−2)ε3,xeα(p−q)ε3,yeα(p−r)ε3,ue−2αε3),



(32)




where ε3 is an arbitrary real number. The group g3 is the well-known scaling transformations. Hence, if u=f(t,x,y) is any solution of (5), by group g3, we can obtain the corresponding new solutions of (5), that is,


u3=e2αε3f(te−(3p−q−2)ε3,xe−α(p−q)ε3,ye−α(p−r)ε3).



(33)







Moreover, the above scaling transformations either expand or contract the size of not only the independent variables but also the dependent ones. In addition, scaling transformation can provide a way to associate the behavior of the solution from different perspectives, for example, a short time solution with large initial values can be rescaled to a longer time solution with small initial values.



To illustrate this, we consider the following example discussed in [20]:



Consider p=q=r=n in the Equation (5), i.e.,


Dtαu+a(un)x+b(un)xxx+c(un)xyy=0,0<α≤1.



(34)







The author of [20] obtained two exact solutions of (34):


u1(t,x,y)=exp[1A(x+y−λtαΓ(1+α)−η0)]+α11n−1,u2(t,x,y)=exp[1A(x+y−λtαΓ(1+α)−η0)]+(α1−α2)2exp[−1A(x+y−λtαΓ(1+α)−η0)]+2(α1+α2)41n−1.



(35)







Then, one can obtain the following two new exact solutions of (34) by applying the group (32).


u13(t,x,y)=e2αε3[exp(Θ)+α1]1n−1,u23(t,x,y)=e2αε3exp(Θ)+(α1−α2)2exp(−Θ)+2(α1+α2)41n−1,



(36)




where Θ=1A(xe−α(p−q)ε3+ye−α(p−r)ε3−λ(te−(3p−q−2)ε3)αΓ(1+α)−η0). Compared with the existed solutions, we see that these new solutions are the size dilations of not only the independent variables but also the dependent ones.



For the other two symmetry groups, new invariant solutions can be found through existed solutions for the time fractional ZK equation. Maybe more interesting solutions from the physics point of view can be found by applying the full group to the equation. Thus we enrich the former results in [20].




5. Symmetry Reductions and Exact Solutions to the Time Fractional ZK Equation


In this section, we mainly consider the symmetry reductions to the time fractional ZK Equation.



	(i)

	
For the generator X1=∂∂x, we have the invariant


u=g(τ,η),



(37)




where τ=t,η=y are the group-invariant. Substituting it into (5) yields the following reduced fractional ODE


Dταg(τ,η)=0.



(38)







To solve (38), we need the Laplace transform


L{f(t)}=∫0∞e−stf(t)dt≡F(s).



(39)







After taking the inverse transform to F(s), we have the solution, which is


g(τ,η)=f4(η)C0Γ(α)τα−1,



(40)




where f4(η) is an arbitrary function about η, C0 is a constant.



Hence, for Equation (5), we give the following group-invariant solution:


u=f4(y)C0Γ(α)tα−1.



(41)







Please note that this solution can be viewed as a kind of standing wave solution and it is independent of the space variable x. In addition, due to 0<α<1, it decays in time. This solution has not appeared in previous papers.




	(ii)

	
For the generator X2=∂∂y, we have the invariant


u=g(τ,ξ),



(42)




where τ=t,ξ=x are the group-invariant. Substituting it into (5), we obtain the following reduced fractional differential equation


Dταg+apgp−1gξ+b(q3−3q2+2q)gq−3gξ3+(3q2−3q)gq−2gξgξξ+qgq−1gξξξ=0.



(43)








	(iii)

	
For the generator X3=(3p−q−2)t∂∂t−2uα∂∂u+(p−q)αx∂∂x+(p−r)αy∂∂y, by integrating the invariant condition


dt(3p−q−2)t=dx(p−q)αx=dy(p−r)αy=du−2uα,








we obtain the invariant


u=g(ξ,η)t2α3p−q−2,



(44)




where ξ=xt−(p−q)α3p−q−2,η=yt−(p−r)α3p−q−2 are the group-invariant.



Hereafter, for simplicity, we note a0=−(p−q)α3p−q−2,b0=−(p−r)α3p−q−2,c0=2α3p−q−2.



Substituting (44) into (5), for 0<α<1, according to the definition of RL fractional derivative, we obtain


∂αu∂tα=1Γ(1−α)∂∂t[∫0t(t−s)−αsc0g(xsa0,ysb0)ds].



(45)







Let τ=ts, then ds=−tτ2dτ, then (45) can be rewritten as


∂αu∂tα=1Γ(1−α)∂∂t[t1+c0−α∫1∞(τ−1)−ατ−((1+c0)+(1−α))g(ξτ−a0,ητ−b0)dτ].



(46)







By the generalized Erdélyi−Kober fractional integration operator, from (46) we have


∂αu∂tα=∂∂tt1+c0−αK{−1a0,−1b0}1+c0,1−αg(ξ,η)=tc0−α1+c0−α+a0ξ∂∂ξ+b0η∂∂ηK{−1a0,−1b0}1+c0,1−αg(ξ,η).



(47)







In addition, by the generalized Erdélyi−Kober fractional differential operator, (47) becomes


∂αu∂tα=tc0−αD{−1a0,−1b0}1+c0−α,αg(ξ,η).



(48)







Then, by (48), Equation (5) is reduced into the following nonlinear fractional partial differential equation


D{−1a0,−1b0}1+c0−α,αg(ξ,η)+aptc0(p−1)+a0+αgp−1gξ+bqtc0(q−1)+3a0+α[(q−1)gq−3(q−2)gξ+3ggξgξξ+gq−1gξξξ]+crtc0(r−1)+a0+2b0+α[(r−1)gr−3ggξgηη+2ggηgξη+(r−2)gξgη2+gr−1gξηη]=0.



(49)











For X1, we have discussed the reduced equation (38) and obtained its solution (41). For X3, we also have obtained the reduced equation (49). However, this equation is a nonlinear fractional partial differential equation with generalized Erdelyi-Kober fractional differential operator and it is difficult to discuss this FPDE.



In the following, we will do further study on symmetry reductions and exact solutions of (43) in detail.



If Equation (43) is invariant under the point transformations


τ*=τ+ϵτ¯(ξ,τ,g)+O(ϵ2),ξ*=ξ+ϵξ¯(ξ,τ,g)+O(ϵ2),g*=g+ϵg¯(ξ,τ,g)+O(ϵ2),



(50)




with the group parameter ϵ, the associated Lie algebra is spanned by


V=τ¯(ξ,τ,g)∂∂τ+ξ¯(ξ,τ,g)∂∂ξ+g¯(ξ,τ,g)∂∂g,



(51)




in which τ¯(ξ,τ,g),ξ¯(ξ,τ,g),g¯(ξ,τ,g) are to be determined.



If the vector fields above generates a symmetry of (43), we obtain the following Lie symmetry condition


pr(α,3)V(Δ1)|Δ1=0=0,



(52)




where


Δ1=Dταg+apgp−1gξ+b(q3−3q2+2q)gq−3gξ3+(3q2−3q)gq−2gξgξξ+qgq−1gξξξ.











As with the similar discussion given in previous sections, again by using the Maple package [31,40,41], we can have the symmetry algebra of (43), which is spanned by the following vector fields


V1=∂∂ξ,V2=(3p−q−2)τ∂∂τ−2gα∂∂g+(p−q)αξ∂∂ξ.



(53)







For V1, we obtain the group invariant


g=f5(τ).



(54)







Inserting it into (43), we have the following reduced fractional ODE


Dταf5(τ)=0,



(55)




which indicates that f5(τ)=C1τα−1, where C1 is a constant. As a result, we obtain a group-invariant solution of (5) of the form


u=C1tα−1.



(56)







This solution is only related to the time variable. In addition, it also decays in time.



For V2, we have the group invariant


g=h(ξ˜)τc0



(57)




where ξ˜=ξτa0,τ=t,ξ=x.



As the similar discussion in (iii), we can see that (43) can be reduced into the following fractional differential equation


D{−1a0}1+c0−α,αh(ξ˜)+aptc0(p−1)+a0+αhp−1hξ˜+bqtc0(q−1)+3a0+α(q−1)hq−3((q−2)hξ˜+3hhξ˜hξ˜ξ˜)+hq−1hξ˜ξ˜ξ˜=0,



(58)




where D is the Erdélyi−Kober fractional differential operator.




6. Conclusions


In this paper, by using the Lie symmetry analysis method, we have considered the invariance properties of a class of generalized fractional Zakharov-Kuznetsov equations. Lie point symmetries to this equation is performed. The Lie algebra and the symmetry reductions of this fractional Zakharov-Kuznetsov equation are obtained. Finally, some new exact solutions were constructed to the fractional Zakharov-Kuznetsov equation. Although there have been lots of symmetry results for the time fractional Zakharov-Kuznetsov equations, all those models considered can be viewed as the special cases of the one we considered in this paper. Hence, we have extended some existing results. However, as we see, the coefficients a,b and c are all normalized constants according to different physical meanings. To stay closely to the former research and to keep its specific physical meaning of parameters, therefore, we only consider the fractional Zakharov-Kuznetsov equation with constant coefficients. Furthermore, note that in [24], a class of generalized Zakharov-Kuznetsov equations with variable coefficients was considered. Perhaps we will pay our attention to this more generalized model for future studies.
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Table 1. Commutator table of Lie algebra (26).






Table 1. Commutator table of Lie algebra (26).





	[Xi, Xj]
	X1
	X2
	X3





	X1
	0
	0
	(p−q)αX1



	X2
	0
	0
	(p−r)αX2



	X3
	−(p−q)αX1
	−(p−r)αX2
	0
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