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Abstract: The operating room (OR) is an important department in a hospital, and the scheduling of 
surgeries in ORs is a challenging combinatorial optimization problem. In this paper, we address the 
problem of multiple resource allocation of ORs and propose a surgery scheduling scheme for OR 
units. To solve this problem, a multi-phase and integrated multi-objective linear programming 
model is proposed. The first phase of the proposed model is a resource allocation model, which 
mainly focuses on the allocation of ORs for each surgical specialty (SS). Based on the results of the 
first phase, the second phase is the cyclic Master Surgical Schedule model, which aims to schedule 
the surgeries in each SS. The proposed models are solved by the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II), which was improved. Finally, two numerical experiments based on 
practical data are provided to verify the effectiveness of the proposed models as well as to evaluate 
the performance of the improved NSGA-II. Our final results illustrate that our proposed model can 
provide hospital managers with a series of “optimal” solutions to effectively allocate relevant 
resources and ORs for surgeries, and they show that the improved NSGA-II has high 
computational efficiency and is more suitable in solving larger-scale problems. 

Keywords: operating room scheduling; optimization in healthcare service; multi-objective integer 
linear programming; non-dominated Sorting Genetic Algorithm II 

 

1. Introduction 

Operating room (OR) scheduling is a notoriously intricate and diverse process, considering the 
involved content and amount of resources [1]. This includes a determination of the operation time 
and optimization of the allocation of various operation resources required by the ORs and various 
surgical specialties (SSs) in order to complete the whole operation process. Hospital managers 
usually try to meet conflicting goals, such as OR utilization, efficiency, patients’ waiting times, the 
quality of treatment, and labor, realizing that making everything satisfying is difficult and even 
impossible sometimes. This can explain why patients waiting, uneven utilization, and operations 
delays often occur in ORs. Therefore, the OR optimization of a hospital is an urgent problem for 
hospital administrators to solve [2]. Most OR scheduling decisions are simple strategies based on 
qualitative approaches [3,4], while more and more researchers have paid an interest to quantitative 
approaches during the past decades. Among them, mathematical models and methods for 
operations research are most commonly used [4]. Below, we introduce some of the key 
characteristics of OR planning and scheduling problems. 
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For different surgeries, the types of surgery can be generally divided into three types: elective, 
emergency, and urgent [5]. Emergency surgeries usually need to be carried out within two hours of 
going to the hospital, and they need to be carried out immediately. Elective surgeries can be 
arranged in advance. 

In addition, OR scheduling methods can be divided into block scheduling and open scheduling 
[6]. Block scheduling means that OR time is expressed in a block way. Usually half a day or one day 
of an OR is represented as a block to be allocated to the required SS, and open scheduling is mainly 
based on the needs of surgeons for OR time. Over the years of research experience by scholars, it has 
been found that block scheduling can not only arrange OR scheduling more reasonably, but can also 
let surgeons know the surgical time in advance. It can also improve the efficiency of OR scheduling. 
Block scheduling can be divided into three main phases. 

The first phase is primarily a time planning problem (TPP). The problem is the allocation of OR 
time between SSs based on the availability of OR resources. The distribution process can be based on 
historically similar OR costs, income, and OR utilization. This phase is called "advance scheduling" 
in the literature [7]. Blake and Carter [8] proposed a mathematical model based on two linear 
programming methods in order to enable a hospital to break even, while ensuring the surgeon’s 
income and minimizing the impact of these external factors on the ORs. Dexter et al. [9] addressed 
the economic impact of OR scheduling by combining relevant financial indicators and the 
uncertainty of the workload in the ward. 

When an OR time is assigned to each SS in the first phase, the second phase is mainly based on 
the results of the first phase of the master surgical schedule (MSS), in which the elective patients 
must be scheduled in each assigned OR. At present, research results on MSS are quite rich, and the 
focus of this attention is different. There is much research that has focused on OR utilization, OR 
openings, overtime and idle time costs, patient waiting times, and patient and medical staff 
preferences. Guinet and Chaabane [10] turned the MSS problem into a generalized surgical 
assignment problem in order to reduce patient waiting times and overtime in ORs. Ozkarahan [11] 
solved a surgical problem among multiple ORs, the optimization goal of which was unused and 
over-utilized OR resources: This mainly used the goal planning method. We have observed that 
some research still treats multi-objective as a single one in OR scheduling issues even if the 
importance of considering multiple conflicting goals has already been realized. Actually, 
multi-objective mathematical programming models have been considered by lots of authors (e.g., 
[12–15]), while most solution approaches have been almost on a single objective. For example, some 
have given each objective a weight (the objective program approach [16]), and some have 
approached the issue using boundary objective functions and hierarchical solving methods [17], 
which combine objective functions into a single one. We find that the disadvantage is that there 
exists a dependency on the objective function when the user decides to assign a weighting factor. 
Thus, we should know about relative importance before combining all of the objectives into one. In 
addition, users can change the weights used to define several solutions. The third phase is mainly 
based on the second phase of an MSS: The goal is to determine the optimal sequence for surgical 
cases. The two phases are referred to as “allocation scheduling” [7]. More works considering both 
advance and allocation scheduling can be found in References [18–33]. 

Although much attention has already been paid to OR scheduling problems, we also have 
found some open issues: For patients, it is important to reduce patient waiting time and to schedule 
as many surgeries as possible during the planning period to improve patient satisfaction. However, 
although most researchers are aware of the seriousness of this problem, they mainly have focused on 
the time a patient waits for surgery on the day of surgery [34], and we should be aware of optimizing 
the waiting time for all patients: Increasing surgeries and the number of scheduled surgeries is 
crucial. For hospital administrators, improving the utilization rate of ORs and maintaining a 
balanced working time is also a problem worthy of study to increase hospital income and improve 
the satisfaction of medical staff. In addition, when solving such problems, many of the optimization 
models that have been established have single objectives, but some papers have applied 
multi-objective optimization methods, such as References [35,36]. 
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In order to solve the challenges presented above, this paper considers conflicting objectives 
such as patients, hospital SSs, and ORs to conduct our research. Then, we used a multiphase OR 
scheduling method and established a multi-objective integer programming model to specify 
appropriate decisions for hospital OR scheduling. Pareto solutions ensure that standards cannot be 
improved without deteriorating other standards. Therefore, we propose an improved genetic 
algorithm approach to find a non-dominant Pareto solution in a reasonable time. As far as we know, 
(1) some papers have involved multiple decision-making levels, but (2) only one paper [37] has 
constructed a Pareto boundary through a genetic algorithm. 

The remaining part of the paper is as follows. In Section 2, we present a multi-phase and 
multi-objective integer linear programming model (MILPM). In Section 3, we introduce two 
approaches to solve the proposed models in detail. In Section 4, two numerical experiments based on 
practical data and comparison discussion are provided. Finally, in Section 5, a conclusion completes 
and sums up the paper. 

2. Multiphase and Integrated Multi-objective Linear Programming Model 

When scheduling for multiple SSs and multiple ORs, decision-makers find it difficult to know 
in advance how to allocate OR time to SSs and arrange surgeries once OR time is allocated to SSs. It 
is not a simple problem to allocate OR time to SSs because of the following reasons: (1) An allocation 
to an SS may not be exactly the scattered time period it needs, but an entire OR block, and it is not 
necessarily assigned to the specified block; and (2) the time allocated to SSs may be affected by the 
availability of resources and professional equipment in the ORs.  

Thus, due to the reasons above, the procedure of OR scheduling is very complicated. In this 
process, not only should ORs, patients, and other factors be considered, but also the constraints of 
OR resources should be comprehensively considered. Therefore, the problem of OR scheduling can 
be transformed into multi-constraint and multi-objective optimizing problems. According to a more 
effective idea, hospital OR scheduling is divided into two phases: The first phase is an OR resource 
allocation model. The goal is to optimize the allocation of OR resources to each SS during the 
planning period. The second phase is the master surgical schedule model. Based on the OR time 
having been allocated to SSs in the previous phase, the specific surgery schedule of each SS is 
worked out. 

2.1. Problem Description 

The main problem to be solved in our paper is the allocation of ORs between different SSs 
belonging to the same hospital department, and then the surgical arrangements within a single SS. 
In the surgical department of a hospital, there is a Surgery Management Center (SMC) that arranges 
surgeries for the entire department. In a scheduling period (this paper considers three days), each 
SS has a patient waiting list. This list can include new arrivals and unscheduled surgeries from the 
last period, and this paper only considers elective surgery. Before the start of the period, the SS 
reports the surgical information to be performed to the SMC for the next three days. The 
information about the surgeries mainly includes patients’ personal information, examination 
statuses, and deadlines for the surgeries. The SMC assigns each SS to available ORs for the next 
period according to the report information of the patient waiting list for each SS, and then each SS 
arranges the OR and surgical time for each patient according to the urgency of the patient's 
condition (the deadline of the surgery), according to the available ORs. 

As with most papers in this field, in order to apply the method proposed in this paper to a real 
hospital scene, the paper made the following assumptions before the modeling: (a) The surgery time 
is transformed into the number of ORs to be allocated; (b) this paper considers the use of mixed 
public ORs, all of which are of the same grade; (c) the requirements for the surgery to be performed 
in each SS are at the same phase of health requirements or lower for the phase of hygiene; (d) the 
duration of the surgery in this paper includes preoperative and postoperative time; (e) the ORs are 
fully resourced before the surgery begins; (f) in this paper, we mainly consider elective surgeries (in 
hospitals, extra ORs are usually reserved to arrange for emergencies and outpatients); (g) doctors 
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can predict the length of surgery and the time of the latest surgery according to the patient's 
condition; and (h) before the start of surgery (i.e., when the patient is admitted to the hospital), the 
doctor judges the patient's latest operation time based on disease type characteristics and an 
examination report of the initial patient, so in order to treat the patient in time, each patient must be 
operated on before the latest deadline. 

2.2. Operating Room Resource Allocation Model (Phase 1) 

The Operating Room Resource Allocation Model is formulated based on the following rule: For 
an OR department in a hospital, each SS reports specific information about patients to the SMC in a 
period. The SMC allocates ORs to each SS according to the surgical time required by each SS. 

When establishing the model, we first designed the problem notations used in the model, which 
are described in Table 1. 

The formulation of the model and notations are as follows. 

Table 1. Problem notations in Phase 1. OR: operating room; SS: surgical specialty. 

Symbol Description 
M set of surgical specialties 
m index for surgical specialties in M 
T scheduling period 
K set of ORs 
H normal open hours per OR per day 

Maxk maximum overtime allowed per day per OR 
RT total time required by each SS during the scheduling period 
rtm time required by the SS m during the scheduling period 

profitm surgical benefit per unit time of the SS m 
costm the overtime cost of the SS m 
allocm the number of ORs assigned to the SS m 
Minm the minimum OR time requirement for the SS m during the scheduling period 

The objective function ( ) ( ) ( ) =  opt f x f x f x1 2,  is 

m

M

m
m

profit rt
1

max
=
 , (1)

( )
M

m m m
m

rt H alloc T t
1

min cos
=

− ∗ ∗ , (2)

Subject to 

( )
M

m k
m

H alloc T H Max K T m m M
1

, 1,2,...,
=

∗ ∗ ≤ + ∗ ∗ ∀ = , (3)

M

m
m

alloc K
1=

≤ , (4)

malloc m m M1 , 1,2,...,≥ ∀ = ,  (5)

m mH alloc T Min m m M, , 1,2, ,∗ ∗ ≥ ∀ =  . (6)

The objective function Equation (1) maximizes the income of each SS, and the function in 
Equation (2) aims to minimize the overtime cost when the allocated time cannot meet the demand of 
the SS. The constraint in Equation (3) is that the total OR time allocated to each SS cannot exceed the 
total open time of the ORs. The constraint in Equation (4) ensures that the total ORs allocated to SSs 
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cannot exceed the ORs provided. The constraint in Equation (5) means that at least one OR should be 
allocated to each SS. The constraint in Equation (6) is that the total OR time allocated to each SS must 
meet the minimum requirements. 

2.3. Multiobjective Cyclic Master Surgery Schedule (MSS) Model (Phase 2) 

After the first phase has been assigned (ORs to each SS), the results of the first phase are taken 
as the maximum resource limit when scheduling the patient waiting list for each SS in the second 
phase. 

The cyclic schedule method is used in the industry to arrange the surgeries for SSs among ORs, 
and is a kind of dynamic scheduling method. This refers to the way in which production scheduling 
is carried out dynamically in one time period after another as the schedule optimization time goes 
by. Cyclic scheduling can be carried out either on the basis of the original static scheduling or 
directly, and the ultimate goal is to get optimal or suboptimal scheduling within the current 
optimization area. 

On the basis of the above assumptions, the specific process of the cyclic schedule is as follows: 
Step 1. Because only elective surgeries are considered here, the SSs in a hospital get all of the 

surgeries that need to be conducted in the next period (three days), and the surgeons mark the 
patients’ deadlines for the surgeries and the standard duration of the surgeries through patient 
severity and the results of the examinations (so that the initial surgery pool-L1 in the schedule is 
obtained). 

Step 2. First of all, the scheme needs to pick out the surgeries from the initial surgery pool-L1 on 
the first day and then arrange a suitable OR and surgical sequence for them. The process uses an 
integrated multi-objective model with four specific indicators selected: (1) the number of surgeries 
arranged every day, (2) the total OR overtime, (3) the total OR idle time, and (4) the equilibrium rate 
between ORs in order to select the surgeries and make the specific surgery schedule. 

Before establishing the model, the notations used in the model were obtained (described in 
Table 2). The decision variables are defined as follows: 





m ki kn
arrange =

1
0  

if surgery mi is selected and arranged in the nth order in OR k 

Otherwise. 

Table 2. Problem notations in Phase 2. 

Symbol Description 
Im set of surgeries in SS m 
im index for surgery in Im 
K set of ORs 
k index for OR in K 

Nk the number of surgeries scheduled in OR k 
nk the nth surgery in OR k 

m
itime   the duration of surgery im 

m
idd   the deadline of surgery im 

Tnormal the normal working hours in the OR 
Topenk the open hours in OR k for one day 
Tover the overtime in all ORs during the day 
Toverk the overtime of OR k 
Num the total number of surgeries scheduled during the day 

The mathematic model is described as follows: 
Objective function ( ) ( ) ( ) ( ) =  opt f x f x f x f x1 2 3, , is  
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1

1 1
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+
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The first objective function, Equation (7), aims to maximize the number of scheduled patients in 
all ORs in a certain SS, and the second one, Equation (8), minimizes underutilization and overall 
overtime cost in the OR. The third one, Equation (9), aims for a balance between the ORs according 
to the standard deviation of the OR working time. The constraint in Equation (10) is the 0–1 variable. 
It seems that when the deadline is more than 1 day, mi

variable  equals 0: Otherwise, it is 1. The 

constraint in Equation (11) means that when the deadline for the surgery (latest completion time) is 1 
day, the surgery must be completed on the same day. The constraint in Equation (12) prevents the 
surgery from being repeatedly arranged within the ORs. The constraint in Equation (13) indicates 
that the total time of the surgeries scheduled in an OR cannot exceed the maximum OR open time. 
The constraint in Equation (14) ensures that at most one surgery can be performed in one OR in the 
same period of time. The constraint in Equation (15) assures that the next surgery can be performed 
only after the current one has been completed in an OR. 

Step 3. When surgeries are scheduled on the first day, they are removed from the surgery 
pool-L1, and the deadlines for unscheduled surgeries are reduced by one day, m m

i idd dd 1= − . The 
unselected surgeries form a new surgery pool-L2. The next two days in the period cycle through the 
above steps. Through the above three steps in the daily cycle, one can get a cyclic master surgery 
schedule. 

3. Solution Approaches 
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For a mathematical programming model with multi-objectives, a general purpose model with a 
wide range of applications is shown below: 

( )F x s t G x H xmax ( ) . . ( ) 0 0≤ =， , (16)

where x represents decision variables that are vectors, and a vector with k objective functions forms 

( ) ( ) ( ) ( ) ( )kF x f x f x f x f x1 2 3, , ,..., ′ =   . Finally, for constraints, G(x) denotes inequalities, and H(x) 

denotes equality. 
The solutions for multi-objective models are very broad. We conduct two approaches here to 

solve the models: the Goal Programming Approach (GPA) with ILOG CPLEX and the improved 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) with MATLAB. 

3.1. Goal Programming Approach (GPA) 

When using the GPA to solve a multi-objective model, we must optimize the high-priority 
objectives first and then optimize the low-priority objectives. Thus, the Analytic Hierarchy Process 
(AHP) is proposed to determine the priority of the objectives. 

3.1.1. Determining the Priority of the Objectives via AHP 

AHP is a decision approach that decomposes decision-making elements into goals, criteria, and 
programs. On this basis, qualitative and quantitative analysis methods are used. The 
implementation of AHP is mainly divided into three steps: (1) build a hierarchical model, (2) 
construct a judgment matrix and calculate the weights of the four objectives, and (3) test the 
consistency of the judgment matrix. 

First, by dividing the decision objectives, the factors considered, and the decision objects into 
the objective layer, the standard layer, and the decision layer according to the mutual relationship 
between them, the hierarchical structure diagram is drawn (Figure 1). In this section, minimizing 
overtime and idle time should be considered separately, and the three objectives can be divided into 
four. 

 
Figure 1. Hierarchical structure diagram in Phase 2. 

Second, the most important step is to construct a comparison judgment matrix by pairwise 
comparison to obtain the priority of each objective. We need to make a pairwise comparison 
between the elements of each layer to construct a comparison judgment matrix. For one element, we 
get the pairwise comparison judgment matrix ( )

×
= ij n n

A a , where aij represents the relative 

importance scale between the two indicators. The relative importance scales are mainly based on 1 to 
9 and their reciprocals as a scale to reflect their importance. The method of scaling is shown in Table 
3.  

In our paper, according to the scores of the doctors and nurses in the hospital SMC, the 
importance of the comparison between the indicators is made, and then the comparison matrix of 
the layers is compared according to the 1–9 matrix. The final judgment matrix comparing the 
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decision-making layers is shown in Table 4: That is, the pairwise comparison of the two pairs is 
performed in the 4 x 4 judgment matrix. First, the values in the judgment matrix are multiplied by 
rows, and then the values obtained in the first step are raised to the fourth power. Next, these values 
are normalized: That is, the relative importance ωi of these four indicators is obtained. 

Table 3. Scale method for judging matrix elements. 

Scale Meaning 
1 the same importance compared to two factors 
3 one is slightly more important than the other 
5 one is significantly more important than the other 
7 one is obviously strongly more important than the other 
9 one is extremely more important than the other 

2, 4, 6, 8 the median value of the above two adjacent judgments 
1, 1/3, 1/5, 

etc.  
the judgment comparing the factors i with j is aij, the judgment of the factor 

j, and i is aji = 1/aij 

Table 4. Judgment matrix. 

Objectives (1) (2) (3) (4) Relative Importance 
the number of surgeries scheduled per day 1 3 5 6 0.5761 

OR overtime 1/3 1 2 3 0.2224 
OR idle time 1/5 1/2 1 2 0.1251 

OR equalization rate 1/6 1/3 1/2 1 0.0764 

Last, a consistency check of the judgment matrix is required when the relative importance is 
obtained. The indicators for checking the consistency are C.I. = (λ-n) / (n-1), where λ is the largest 
eigenvalue. For all =ija 1 , there is λ

=
= n

ii
n

1
, and n is the matrix dimension. This stipulates that 

when C.I. = 0, there is complete consistency, and when C.I. is close to 0, there is satisfactory 
consistency. The larger the C.I., the more serious the inconsistency is. From above, it can be 
concluded that C.I. = 0.0045 is close to 0, so it can be said that the consistency of the judgment matrix 
is acceptable. 

Therefore, the priority of the objectives can be obtained, that is, the maximum number of 
surgeries scheduled per day, minimum OR overtime, minimum OR idle time, and maximum OR 
equalization rate. The priority is P1 > P2 > P3 > P4. 

3.1.2. Transforming Models via GPA 

The main idea of the GPA is to treat the objective functions and constraints all as constraints 
and then divide the constraints into two categories. One is treated with strict equality or inequality 
constraints that should be satisfied, and the other is called a flexible constraint that can be satisfied 
without strict requirements. For models in Phase 2, Equations (10–15) are the first one. Besides, four 
objectives can be viewed as four flexible constraints. For flexible constraints, we convert them into an 
equality constraint by setting a deviation variable. 

A deviation variable represents the difference between the calculated value and the objective 
value, ( )if x  and ( )if xˆ , respectively: If ( ) ( )i if x f xˆ> , then ( ) ( )i i id f x f xˆ+ = −  and id 0− = . That is, +

id is 

the part of ( )if x exceeding ( )if xˆ , so that id+ is a positive deviation variable. If ( ) ( )i if x f xˆ< , then 

( ) ( )− = −i i id f x f xˆ  and id 0+ = . That is, −
id is the part of ( )if x that does not reach ( )if xˆ , so id− is 

called a negative deviation variable. If ( ) ( )i if x f xˆ< , then i id d 0+ −= = . 

For practical problems, if the calculated value ( )if x desires to exceed the objective value ( )if xˆ  

as much as possible, the negative deviation variable is minimized, { }idmin − , while on the contrary, 
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the positive deviation variable is minimized, { }idmin + . If ( )if x is as close as possible to ( )if xˆ , while 

minimizing positive and negative deviation variables, { }i id dmin − ++ . 

Consequently, the four flexible constraints are converted into the following expressions: 
(1) Arranging as many surgeries as possible every day to make them exceed the number of 

surgeries “Num”, as is possible, 

{ }
m k

m k
m k

I K N

i kn
ki n

d

d Nuarra mnge

1

1
11 1

min −

−

== =





+ =



; (17)

(2) Guaranteeing there is no overtime in the ORs, as is possible, 

{ }
m k

m k
m k

I K N
m
i normali kn

ki n

d d
when there is overtime in O

arr
Rs

time T dan e dg

2 2

2 2
11 1

min

0

+ −

− +

== =

 +



∗ − + − =



; (18)

(3) Guaranteeing there is no idle time in the ORs, as is possible, 

{ }
m k

m k
m k

I K N
m

normal ii kn
ki n

d d
when there is idle time i

arran
n ORs

T time dg de

3 3

3 3
11 1

min

0
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== =
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
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− ∗ + − =



; and (19)

(4) Making the total utilization time between the ORs as uniform as possible, 

{ }
k

m km k
k

m k
m k

K N
m
ii knI N

km n
ii kn

i n

arrange
a

d

rra

d

time
time dn e d

K
g

4 4

1 1
4 4

1 1

min

0

+ −

= − +=

= =

 +

  
 ∗   ∗ − + − =       


 

. (20)

The corresponding objective function is as follows: 

( ) ( ) ( ) ( )Z P d P d d P d d P d d1 1 2 2 2 3 3 3 4 4 4min − + − + − + −= + + + + + + . (21)

3.2. Improved Nondominated Sorting Genetic Algorithm II (NSGA-II) 

For the general formulation of multi-objective mathematical programming in Section 3, there 
are n design variables. Combining the design variables, the collection of these combinations 
constitutes the search space. In the search space, if there is a region that satisfies all the constraints, 
then this region becomes a feasible domain, denoted by X.  

When using the Pareto optimization to process the multi-objective models, for each solution x
∈ X corresponding to the vector objective function ( ) ( ) ( ) ( ) ( )kF x f x f x f x f x1 2 3, , , ..., =   , the 

trade-off is generally made in the k objective functions at the time of selection. If a multi-objective 
function has only two objective functions f1 and f2, we define the solution x1 to dominate x2 as 
follows: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x f x f x f x f x f x f x f x1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2   ≥ ∧ > ∨ > ∧ ≥    . If all solutions are 

not dominated by any other solutions in X, then this set constitutes the Pareto optimal front. 
However, in general, it can only be local Pareto optimality, and there is no guarantee that global 
Pareto optimality will be obtained. We use the following definitions to describe this more clearly: 

Definition 1. For the vector objective function ( ) ( ) ( ) ( ) ( )kF x f x f x f x f x1 2 3, , , ..., =   , there are two 

decision vector variables x x X1 2, ∈ . ( ) ( )F x F x1 2 means that ( )F x1 dominates ( )F x2 , if and only 
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if ( ) ( )i if x f x i k1 2 , 1,...,≥ ∀ = , and { } ( ) ( )j jj k f x f x1 21,..., :∃ ∈ > , where ( )if x and ( )jf x are the 

objective function values for the ith and jth objective; 

Definition 2. For the vector objective function ( ) ( ) ( ) ( ) ( )kF x f x f x f x f x1 2 3, , , ..., =   , if point x∗ is 

defined as globally Pareto optimal if and only if ( ) ( )F x F x* , x X x x*,∈ ≠ does not exist. Where 

( )F x*  is globally efficient, this means that ( )F x*  is efficient in the entire feasible space, and ( )F x*  

is called a globally efficient point. The image of the set of globally efficient points is called a Pareto 
front; 

Definition 3. For the vector objective function ( ) ( ) ( ) ( ) ( )kF x f x f x f x f x1 2 3, , , ..., =   , if point x∗ is 

defined as locally Pareto optimal if and only if there exists an open neighborhood ( )B x∗ of x∗ , and 

there is no ( ) ( )F x F x∗>  when ( )x B x X∗∈ ∩ . ( )F x∗  is called locally efficient, which means that 

( )F x∗  is efficient in the locally feasible space. The image of the set of locally efficient points ( ( )F x∗ ) 

is called a local Pareto front. 
When dealing with multi-objective programming models, heuristic algorithms are often used, 

and genetic algorithms are ones in which good solutions can be obtained. Among them, we chose 
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to deal with our models, which was 
proposed by Srinivas and Deb [38] on the basis of a non-dominated sorting genetic algorithm 
(NSGA). The NSGA ([39]) is a non-dominated algorithm used to solve multi-objective optimization, 
and its basic principle is mainly based on a genetic algorithm. The algorithm is efficient, but there are 
also some application deficiencies, such as its lack of elitism, its computational complexity, and the 
selection of optimal parameter values shareσ  for sharing parameters. In response to some of the 
shortcomings of the NSGA mentioned above, Reference [38] developed an improved version of the 
NSGA, called the NSGA-II, which is a more expensive dominated sorting algorithm that improves 
the deficiencies of the NSGA and is now the most widely used. Simultaneously, it is one of the 
heuristic evolutionary algorithms that find Pareto optimal solutions for multi-objective 
programming models. 

The NSGA-II is based on an elite principle, and it adopts an explicit diversity retention 
mechanism and emphasizes non-dominated solutions. Initial populations of size N are generated 
randomly, and then a first-generation offspring population is obtained by the selection, crossover, 
and mutation of the genetic algorithm after non-dominant sequencing. Second, it is different from 
the first generation in following generations. It mainly combines the populations of the parent and 
the offspring, and after they are quickly non-dominated, it calculates the crowding degree of the 
individual in the non-dominant layer. The appropriate individuals are selected by non-dominant 
relationships and the results of individual crowding degrees to form a new population. At last, a 
new subpopulation is created by the basic operation of the genetic algorithm. Then these operations 
repeat until the conditions for program termination are satisfied. The specific implementation 
process of the NSGA-II is depicted in Figure 2. 

Before we started the formal experiment, we did some preliminary pre-experimental 
calculations. We found that when the generations of the iteration are too high, for example, 100,000, 
the NSGA-II usually cannot find a feasible solution because the dimension of the search space is too 
high. Moreover, for most evaluation functions, the decision variables are one-dimensional, but in 
our paper, m ki kn

arrange  is three-dimensional. Therefore, in order to improve the performance of the 

NSGA-II in finding a Pareto solution, we designed the following improved algorithm. The following 
is a detailed description of some of the key steps in the proposed algorithm. 

3.2.1. Initial population  

In order to improve the quality of the Pareto solution and reduce the optimization time, we 
improved the initialization phase and defined a new initialization process, mainly by adding 
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constraints to randomly generate the initial population IniPop. More specifically, the constraints in 
(10–15) are imposed on the initialization function, so that the generated chromosomes are the 
feasible solutions that satisfy the proposed model constraints, thus forming the initial population of 
N feasible solutions. The initial population generated affects the convergence of the algorithm: It is 
also better and more meaningful than the purely randomly generated population of the NSGA-II, 
and IniPop is also a good seed for the solution of the next generation. On the basis of initialization, 
the population evolves until the defined number of generations. The pseudo code of the construction 
process of the initial population IniPop is shown in Table 5. 

Table 5. Construction Algorithm of IniPop. 

Algorithm: Construction of IniPop 
Data: N 
Result: IniPop of N individuals 
i: =0; 
IniPop = Φ; 
While i! = N do 

/* imposed the constraints */ 
/* find the chromosomes randomly */ 
Find a chromosomei as a feasible solution (or suboptimal) satisfying the 

constraints; 
IniPop = IniPop ∪ chromosomei; 
i: = i+1; 

end 

3.2.2. Non-dominant sorting and crowding distance calculation 

The initial population is sorted using a non-dominated sort. This process returns the sorting 
value and the crowding distance corresponding to each individual, which is a two-column matrix, 
and adds sorting values and crowding distances to the chromosome matrix. What is obtained at last 
is a population matrix that already contains rank and crowding distance and that has been sorted by 
sorting rank.  

3.2.3. Selection, crossover, and mutation 

The selection process uses a tournament selection approach, which randomly selects two 
individuals at a time and preferentially selects individuals with a high ranking. If the ranking is the 
same, it prefers to select individuals with a large crowding distance. 

The crossover algorithm selects the simulated binary crossover (SBX). SBX mainly simulates the 
principle of a single-point crossover based on binary strings and applies it to chromosomes 
expressed in real numbers. The two parent chromosomes are cross-operated to produce two 
progeny chromosomes, so that the relevant pattern information of the parent chromosome is 
protected in the subchromosomes. The mutation uses a general polynomial mutation. 

3.2.4. Generating new populations (elite strategy)  

The elite strategy keeps the good individuals in the parent directly within the offspring to 
prevent the obtained Pareto optimal solution from being lost. First, the parent population iC and the 

child population iD are synthesized into a population iR . Then, a new parent population iC 1+  from 

the population iR  is generated according to the following rules: 
(1) According to the order of Pareto rank from low to high, the whole layer population is put 

into the parent population iC 1+  until a layer of the individual cannot be put into the parent 

population iC 1+ ; 
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(2) The individuals of the layer are sorted according to the crowding distance from large to 
small and then placed in the parent population iC 1+  until the parent population iC 1+  fills up. 

3.2.5. Evaluation function stage 

Generally, a chromosome is one-dimensional, but in our paper, the decision variable 
s ki kn

arrange  is three-dimensional. Thus, we proposed a new conversion method after generating a 

new population (replace chromosome): When a new population is generated, we convert 
one-dimensional variables into three-dimensional variables using the corresponding rules of the 
design based on solid geometry properties. The one-dimensional vectors are divided into 
multidimensional cube vectors of s ki k n∗ ∗  in order to calculating fitness values. 

Meanwhile, after the feasible chromosomes undergo crossover, mutation, and other processes, 
they may be not feasible. Thus, in order to get a completely feasible solution again, we judge if the 
obtained chromosomes are feasible in the evaluation function calculation stage. If they meet all the 
constraints, the evaluation objective values are calculated, and if not, they re-enter initialization. 

 
Figure 2. Non-dominated Sorting Genetic Algorithm II (NSGA-II) solution approach. 

4. Case Study and Computational Results 

In terms of the series of surgical scheduling problems described in Section 2.1, the following 
cases were used to verify the comparison: (1) Based on the GPA, (2) based on the improved 
NSGA-II, and (3) based on the actual scheduling of the hospital, thereby verifying the pros and cons 
of each approach. 

In this section, we verify the correctness of the proposed MILPM (1)-(15) and evaluate the 
effectiveness of the proposed algorithms through two case experiments. First, we used a case to 
verify the models for Phases 1 and 2 and the proposed GPA solution. Then another case was used 
to demonstrate the superiority and effectiveness of the improved NSGA-II approach for solving 
multi-objective models in Phase 2. 
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The case study involved the SSs of a hospital in Beijing, China. In the public OR department, 
there were 16 public ORs (one of which was a special OR) that could be allocated to 10 SSs, so 15 
ORs were available. The normal opening time of each OR was 8 hours per day. However, when a 
surgery was not completed, overtime work was allowed, and the extra work was paid. The data 
were collected from October 2018 to November 2018 for a period of one month, with about 1200 
elective patients admitted for treatment. The data mainly included the date of admission, the 
surgery date, the type of illness, the surgery’s start and end time, the attending doctors and nurses, 
and OR cost, etc. 

4.1. Case 1: The Exact Algorithm (GPA) 

Generally, each SS could get surgery data 3 days in advance, so the period of allocation was 3 
days. In order to match the actual situation, we selected a total of 85 cases of surgeries in the 
hospital on 15, 16, and 17 October 2018 for discussion in case 1. 

4.1.1. Computational Results of Phases 1 and 2 

Phase 1. According to the data, for the next 3 days, the available time of 15 ORs in the hospital 
was 360 hours, and the planned surgery time of 10 SSs was 381.32 hours, exceeding the 360 hours 
that the ORs could provide. The total minimum demand was 360 hours, which was equal to the total 
OR time of 360 hours, which could meet the minimum demand of the SSs, so these data were 
feasible.  

We summarize the raw data for each SS in Table 6: total estimated duration of surgery, income 
per unit time, overtime cost unit time, and number of ORs allocated to each SS. The estimated 
duration here mainly includes (1) anesthesia time before the surgery starts, (2) operation time in the 
OR, and (3) anesthesia recovery time after surgery. The estimated duration depends on the 
complexity of the procedure and the experience of the medical staff. All models were coded on a 
64-bit PC by using ILOG CPLEX 12.8. Table 7 reports the computational results. 

Table 6. Raw data for each SS in Phase 1. 

Surgical Specialty 

Surgery time 
Income 
per Unit 

Overtime 
Cost 

Number of 
ORs (New) 

Total 
Time 

(h) 

Minimum 
Time (h) 

Gynecology 36.11 33 978 600 1 
Otorhinolaryngology 26.41 22 547 342 1 

Hepatobiliary 43.29 38 324 212 1 
Orthopedics 27.73 23 923 322 1 
Stomatology 30.11 26 567 122 1 

Urology 29.01 28 1200 860 1 
General surgery 30.78 29 300 120 1 
Neurosurgery 56.63 54 250 100 3 

Pediatrics 48.26 46 344 200 2 
Oncology 52.99 50 134 100 3 

Table 7. Computational results for each SS in Phase 1. 

Surgical Specialty 

Surgery time 
Income 
per Unit 

Overtime 
Cost 

Number of 
ORs (New) 

Total 
Time 

(h) 

Minimum 
Time (h) 

Gynecology 36.11 33 978 600 2 
Otorhinolaryngology 26.41 22 547 342 1 

Hepatobiliary 43.29 38 324 212 2 
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Orthopedics 27.73 23 923 322 1 
Stomatology 30.11 26 567 122 1 

Urology 29.01 28 1200 860 1 
General surgery 30.78 29 300 120 1 
Neurosurgery 56.63 54 250 100 2 

Pediatrics 48.26 46 344 200 2 
Oncology 52.99 50 134 100 2 

Phase 2. In our case study, 10 instances were generated corresponding to 10 different SSs based 
on Phase 1. As in the above, OR time allocation was completed in Phase 1. On this basis, the 10 
instances are listed in Table 8. 

Table 8. Problem instances. 

Instance OR OR Time (h)*3 
days 

Patient 
List 

Total Surgery Time 
(h) 

Mean Surgery Time 
(h) 

I1 2 16*3 9 36.11 4.01 
I2 1 8*3 6 26.41 4.40 
I3 2 16*3 9 43.29 4.81 
I4 1 8*3 6 27.73 4.62 
I5 1 8*3 9 30.11 3.35 
I6 1 8*3 5 29.01 5.80 
I7 1 8*3 5 30.78 6.16 
I8 2 16*3 15 56.63 3.78 
I9 2 16*3 8 48.26 6.03 
I10 2 16*3 13 52.99 4.08 

In our models, the solution idea of the cyclic schedule was that it was necessary to select the 
surgeries from the initial surgery pool L1 (patient list) and schedule them on the first day. Then the 
remaining surgeries constituted a new surgical pool L2. After that, we selected surgeries from L2 and 
arranged them on the second day according to the first day’s schedule, and so on, so as to realize the 
essence of the cyclic schedule. Our scheduling period was 3 days. All surgical cases we considered 
were elective and the surgical duration was predicted by surgeons, so this schedule would take a 
three-day cycle. 

The solution idea of the GPA was to give the objective priority according to its importance and 
find the optimal solution of the next priority objective according to the optimal solution of the 
previous priority objective until the common optimal solution was found. All transformed models 
were solved by using ILOG CPLEX 12.8. Because the models had four objectives, the final results 
were gotten after four computations.  

Instance 10 was chosen to be presented here. There were 13 surgeries arranged over 3 days in 
the patient list (Instance 10), as shown in Table 7. First, we selected surgeries from the patient list and 
arranged them for the first day, then did the same for the second day and the third day. Others 
besides Instance 10 were done in the same way. The original schedule and the results for Instance 10 
are presented in Tables 9 and 10. 

Table 9. The original schedule of Instance 10. 

Day in 
Period 

OR Surgery Serial 
Number 

Duration of Surgery 
(h) 

Total Surgery Time 
(h) 

1 
1 

1 3.57 

8.33 2 1.75 
3 1.00 
4 2.01 

2 5 4.58 4.58 
3 6 9.87 9.87 
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2 
1 

7 4.74 
8.32 8 1.25 

9 2.33 
2 10 4.33 4.33 
3 11 8.00 8.00 

3 
1 12 3.89 9.56 

13 5.67 
2 and 

3 
unscheduled - - 

Table 10. The results of Instance 10. 

Day in Period OR Surgery Serial Number Duration of Surgery (h) Total Surgery Time (h) 

1 

1 10 4.33 8.22 12 3.89 

2 

1 3.57 

9.16 
8 1.25 
4 2.01 
9 2.33 

2 
1 5 4.58 9.32 

7 4.74 
2 6 9.87 9.87 

3 

1 11 8.00 8.00 

2 
13 5.67 

8.42 3 1.00 
2 1.75 

4.1.2. Comparison and Discussion of GPA Solutions with Real Schedules 

As for OR allocation results among SSs, which are presented in Table 7, the total number of ORs 
was equal, but other indexes changed. It can be seen from Figure 3 that the idle ratio and the 
overtime ratio decreased, while net income increased, which proved that OR efficiency increased in 
the new allocation scheme. 

 

Figure 3. Some indexes before and after optimization. 
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According to the results in Table 10 about Instance 10, 6 surgeries were arranged on the first 
day, 3 surgeries on the second day, and 4 surgeries on the third day. The specific scheduling results 
are shown in the Gantt chart in Figure 4 and are compared to the original hospital schedule plan in 
Figure 5. The red blocks represent the first day, the blue represent the second day, and the green 
represent the third day. 

 

Figure 4. Scheduling Gantt chart in Instance 10 via Goal Programming Approach (GPA) (2 allocated 
ORs). 

 
Figure 5. Scheduling Gantt chart in Instance 10. 

In the above, we can see that the total number of scheduled surgeries was the same, but OR 
utilization and equilibrium varied too much. For the second objective in the models, the overtime 
and idle time are the differences between the total time for each OR over the three days and the 
normal opening time (8 hours). As shown in Table 11, when comparing the total OR time to the 
standard time, it can be seen that the original schedule had a long overtime and idle time. The total 
idle time was 23.34 hours, and the OR utilization rate was 67.58%. There was no idle time after 
optimization, the overtime was relatively small, and it was relatively balanced. Simultaneously, the 
OR utilization rate was 89.61%, which achieved a basic optimization goal, improved the OR 
utilization rate, and increased hospital income.  
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Table 11. Comparison of various indicators (overtime and idle time). 

 OR 1 2 3 

Day 1 
Original 0.33 -3.42 1.87 

New 0.22 1.16 - 

Day 2 Original 0.32 -3.67 - 
New 1.32 1.87 0.00 

Day 3 
Original 1.56 -8.00 -8.00 

New 0.00 0.42 - 

For the third objective (minimizing the working time equalization rates among ORs), we first 
conducted a qualitative analysis. Figures 6–8 are plotted for comparison according to the total time 
of each OR in the three days before and after the optimization. As shown in the figures, the curve of 
the original schedule changed greatly, and the utilization rate of each OR was different. Besides, 
there was a load difference in each OR, and this difference was embodied in the fact that some of the 
ORs had too many patients, resulting in a crowded situation, while the others were relatively idle. 
This service efficiency was uneven, which inevitably resulted in low overall service efficiency and 
unimproved patient satisfaction. The reason for the imbalance in the utilization rate of the ORs was 
that the SSs had adopted the principle of FCFS, and there was no comprehensive scheduling of the 
ORs according to the specific situation. 

 
Figure 6. Comparison of the total time in each OR before and after scheduling (Day 1). 

 
Figure 7. Comparison of the total time in each OR before and after optimization (Day 2). 
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Figure 8. Comparison of the total time in each OR before and after optimization (Day 3). 

After optimization, the whole curve was relatively smooth. It seems that the utilization rate 
among the ORs was approximately the same, the completion time between the ORs was balanced, 
and the equalization rate was significantly improved. Besides a qualitative analysis by line chart, 
SPSS 19.0 was used to describe the statistical characteristics of the OR time before and after the 
optimization for a quantitative analysis. 

According to the results of the descriptive statistics in Table 12, the standard deviation was 0.44 
after optimization, which was significantly smaller than the pre-optimization of 13.24. It can be 
concluded that the equilibrium rate between ORs significantly improved, and the mean OR time was 
closer to that of the real ORs. All of these results proved the effectiveness of the proposed models 
and the GPA. 

Table 12. Variance analysis of total OR time. 

State N Minimum Value Maximum Value Mean Value Variance 
Original 3 0.00 9.87 5.89 13.24 

New 2 8.00 9.87 8.83 0.44 

As described in the introduction in Section 1, besides the three objectives considered in this 
paper, patient waiting time is also a key indicator considered in the OR scheduling research field 
today. However, patient waiting time in the optimized scheme obtained in Instance 10 seems to have 
been more than before. This was because we considered OR cost and other factors in Phase 1, and 
the number of assigned ORs to an SS was reduced from the previous 3 to 2. Then, in Phase 2, 
although the number of surgeries scheduled, the overtime and idle time in the ORs, and the OR 
balance rate for the optimized scheme were similarly better than those of the original scheme, 
patient waiting time was not satisfactory. In order to verify the optimization of patient waiting time 
in our optimized scheme, we assumed that Instance 10 was assigned 3 ORs in Phase 1, and then we 
recalculated the models through the GPA proposed in Phase 2. The resulting Gantt chart is shown in 
Figure 9. 
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Figure 9. Scheduling Gantt chart in Instance 10 via GPA (3 allocated ORs). 

From Figure 9, we found that when patient waiting time was the measured standard and OR 
cost was not particularly important, we could open three ORs. As a result, all of the surgeries in the 
SS could be completed within 2 days in our solution, significantly reducing patient waiting time and 
increasing patient satisfaction.  

4.2. Case 2: The Heuristic Algorithm (Improved NSGA-II) 

In Section 4.1, some small-sized cases were discussed in detail. Especially in Phase 2, there was 
a multi-objective model, and while using the GPA and CPLEX is sometimes subjective, this 
approach may not solve the large-sized cases. In response to these shortcomings, we conducted 
another experiment to verify the application of the improved NSGA-II approach. Based on the 
situation, the real data generated realistic random instances to study more complex SSs and ORs, 
and the constructed instances were allocated ORs (so Phase 1 could be omitted). To investigate the 
interaction between objective functions and how management strategies affected patient lists and 
OR efficiency, we conducted different experiments. Meanwhile, the computational results with two 
approaches are presented below and discussed. 

4.2.1. Data Description, Experiment Design, and Model Coding 

In our computational experiments, by using the real surgical data obtained from a top three 
hospital in Beijing, we randomly generated the number of ORs allocated to each SS in Phase 1 
according to the nth power of 2 and selected the actual surgical information of 10, 100, or 1000 
patients to form the test cases. Then, 9 different sets of benchmark instances were generated. This 
was done by considering three different SS sizes (2, 8, and 16 ORs) and three different waiting lists 
according to 10, 100, or 1000 surgical cases for each SS. In more detail, we refer to these sets as (a, b, 
c), where a is the SS size, b is the waiting list, and c is the SS (i.e., (2, 10, 1) refers to an instance with 2 
ORs and 10 surgical cases on the waiting list of an SS). The nine instances were (2, 10, 1), (8, 10, 1), 
(16, 10, 1), (2, 100, 1), (8, 100, 1), (16, 100, 1), (2, 1000, 1), (8, 1000, 1). and (16, 1000, 1). 

The scheduling of each procedure was encoded with a binary chromosome. After the 
three-dimensional chromosomes were tiled into one-dimensional chromosomes, in each OR, the 
position of each chromosome represented the surgical sequence in which the surgery was arranged 
in the OR (example shown in Figure 10). Table 13 lists some of the parameter values we used in the 
calculation of the experiment, where the mutation rate = 1/k, where k is the length of the string of the 
relevant instance. At the same time, MILPM (7–15) was coded in MATLAB R2016a. When the 
program ran the set generation, the program terminated. 
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Figure 10. Presentation of a surgical schedule encoded with a binary chromosome. 

Table 13. Parameter settings. 

Parameter Values of the Improved 
NSGA-II 
pop = 200 
gen = 5000 
Tour = 2 
mu = 20 

mum = 20 
crossover rate = 0.9 
mutation rate = 1/k 

4.2.2. Experiment Results and Analysis 

As for our cases, the problem we solved was based on the description in Section 2.1. In this 
section, mainly in order to verify the effectiveness of the improved NSGA-II approach for solving 
large-scale multi-objective problems, the problem we consider is mainly about Phase 2 scheduling 
in a single SS in a scheduling period. First we selected surgeries from the patient waiting list, and 
then we arranged the specific ORs and times for them. In this section, the idea that we are ignoring 
Phase 1 is also reflected in the process of generating test cases in Section 4.2.1. The experimental 
framework proposed in this paper was based on the complexity and characteristics of the proposed 
correlation models and nine scene instances based on actual background features. The specific 
instance descriptions are presented in Table 14.  

Table 14. Experiment design: identifier of the experiment. 

Instance (SS 
Size, Waiting 
Lists, One SS) 

Number of 
Constraints 

Length of 
Chromosomes 

(m) 

Max 
Surgery 
Time (h) 

Min 
Surgery 
Time (h) 

Mean 
Surgery 
Time (h) 

(2, 10, 1) 40 200 8.35 1.92 4.02 
(8, 10, 1) 100 800 6.75 2.12 4.41 

(16, 10, 1) 180 1,600 10.58 2.45 4.81 
(2, 100, 1) 400 40,000 14.33 1.80 4.62 
(8, 100, 1) 1,000 80,000 7.83 1.74 3.35 

(16, 100, 1) 1,800 160,000 9.27 4.59 5.82 
(2, 1000, 1) 4,000 4,000,000 9.25 3.50 6.16 
(8, 1000, 1) 10,000 8,000,000 7.23 0.41 3.78 
(16, 1000, 1) 18,000 16,000,000 11.33 1.24 6.03 



Symmetry 2019, 11, 599 21 of 27 

 

Maximizing the number of scheduled patients in all ORs in a certain SS, minimizing 
underutilization and overall overtime cost in the ORs, and aiming to balance between the ORs 
according to the standard deviation of the OR working time were the optimization bases. 
Considering the basic condition of the patient waiting list in each SS, each scheduling schedule 
defined four aspects: (1) the number of ORs (i.e., OR time) allocated for each SS (already solved in 
Phase 1), (2) the surgeries selected from the surgery pool, (3) appointed ORs for the selected 
surgeries, and (4) the surgical sequence in each OR. 

Our computational experiments were performed on MATLAB R2016a with a 2.8 GHz 64-bit 
PC by running the NSGA-II. After computation with sufficient generations, a set of Pareto solutions 
could be obtained, called the Pareto front, which was a trade-off between the three objectives and 
could represent a set of OR scheduling schemes. In general, since different scheduling schemes may 
have had the same objective function value, the number of solutions obtained was smaller than the 
actual population N. In order to prove the validity of the proposed method, we selected the first 10 
solutions of the output in the example (16, 100, 1) and show the details in Table 15.  

Actually, we could get a set of Pareto solutions in this case. For this paper, we selected the first 
10 feasible solutions in order from the output results for a concrete display. For a set of feasible 
solutions, they had three conflicting objectives: the number of scheduled surgeries, the overtime in 
the ORs, and the idle time in the ORs. In the decision-making process, this is mainly based on the 
preferences of hospital managers to make balanced choices among these three objectives. If the 
manager wants to arrange as many surgeries as possible to improve patient satisfaction, then he/she 
can select the one with a maximum value of Objective 1: The maximum number of scheduled 
surgeries is the priority measure, and the solution with a maximum value of Objective 1 is selected 
as the optimal solution. On the other hand, if the hospital measures the surgical cost of the ORs and 
the satisfaction of the medical staff, the minimum value of Objective 2 is the considered solution 
when selecting the optimal solution. If the surgical time in each OR should be consistent in the 
surgical department, the hospital managers should select the solution with the minimum value of 
Objective 3 as the optimal solution. 

Table 15. First 10 non-dominated Pareto solutions for (16, 100, 1). 

Objective 
Function 

Schedules Min Max 
1 2 3 4 5 6 7 8 9 10   

(max) Objective 1 22 35 16 16 25 34 37 37 33 39 16 39 
(min) Objective 2 7.67 22.43 6.04 5.34 14.54 19.93 21.13 23.43 20.06 31.56 5.34 31.56 
(min) Objective 3 0.296 1.161 0.474 0.238 2.471 2.523 2.519 2.633 2.419 2.903 0.238 2.903 

By observing Table 15, we can see that for OR scheduling scheme 10, the number of scheduled 
surgeries was the largest. If only the patient's satisfaction was considered, scheme 10 could be 
chosen as the best solution, but this was at the expense of increasing the overtime and free time in 
the ORs. Besides, the OR imbalance rate also reached a maximum. On the other hand, for scheme 4, 
the optimal value of Objective 2 was achieved, but Objective 1 was the worst value here. At the same 
time, there was a similar phenomenon between Objective 3 and Objective 1. However, it was 
gratifying that OR utilization seemed to be more balanced when there was less overtime and idle 
time in the ORs, but there were some anomalies, as in scheme 1.  

Table 16 summarizes the maximum and minimum values of each objective function and their 
calculation times in nine instances. As we found and expected, the optimization of one objective was 
always accompanied by the loss of other objectives: This is the meaning of Pareto optimization. 

Table 16. Computational results: minimum and maximum values of the three objective functions 
and CPU time (in min). 

Instance (SS 
Size, Waiting 
Lists, One SS) 

(max) Objective 1 (min) Objective 2 (min) Objective 3 CPU 
time/min min max min max min Max 
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(2, 10, 1) 8 10 3.88 5.78 0.083 1.472 6 
(8, 10, 1) 8 10 98.50 113.01 0.079 0.991 7 

(16, 10, 1) 9 10 267.30 301.69 0.071 1.688 11 
(2, 100, 1) 13 16 2.07 12.41 0.112 4.654 21 
(8, 100, 1) 50 56 10.05 30.08 0.097 1.066 32 

(16, 100, 1) 33 39 5.34 23.55 0.238 2.903 50 
(2, 1000, 1) 14 15 13.55 24.368 0.076 5.966 98 
(8, 1000, 1) 57 62 3.18 10.12 0.107 3.994 150 
(16, 1000, 1) 98 102 4.72 34.51 0.067 1.554 230 

The above methods we propose could be used to generate a Pareto solution that could be used 
to balance the multiple criteria we considered: maximizing the scheduled surgery time, minimizing 
overtime and idleness in the ORs, and increasing the balance rate of the ORs, etc. The basic principle 
of a Pareto solution is that there is no guarantee that the objective value will be optimized without 
worsening other criteria. A histogram can be intuitive in helping decision-makers understand 
content. Figures 11 and 12 show the first five non-dominated solutions of (8, 100, 1), which were 
characterized by 8 ORs and 100 surgeries in an SS. Figure 11 shows the respective objective function 
values for the five scheduling schemes, and Figure 12 shows a comparison of each objective function 
value in each scheme. 

 
Figure 11. A synoptic representation of the five non-dominated solutions of (8, 100, 1). 
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Figure 12. Comparison of the three objective values of the five non-dominated solutions of (8, 100, 1). 

4.2.3. Comparison and Discussion 

To complete and show the main differences in all of the objectives, we now discuss the 
performance of the proposed GPA and improved NSGA-II approaches in the benchmark instances. 
The idea of the GPA was to show the main differences with a single objective: We solved the 
transformed models by maximizing objective function 1, minimizing objective function 2, and 
minimizing objective function 3 based on benchmark instances by running ILOG CPLEX 12.8. In 
order to verify the validity of the proposed improved NSGA-II, we chose the best values of Objective 
1, Objective 2, and Objective 3 from Pareto solutions to compare to those of the exact solutions in the 
GPA. The found feasible solutions are reported in Table 17, where each row of the table reports the 
three objective values over nine realizations belonging to the benchmark set. The first column in the 
table shows the name of the benchmark set (a, b, c). Columns 2–5 report the performance indexes of 
the GPA, while in the next columns (6–9) we report the same performance indexes for the improved 
NSGA-II approach. More specifically, columns 2, 3, and 4 show the values of each objective value. 
Column 5 reports the CPU time required by the GPA where the gap is zero. Columns 6, 7, and 8 
show the best values of the three objective functions of the solutions found by the improved 
NSGA-II approach. Finally, column 9 indicates the CPU time required to compute the heuristic 
solution: the improved NSGA-II. 

As for the first objective function, the values between the two approaches were the same (10, 10, 
and 10) when there were small-sized instances (e.g., (2, 10, 1), (8, 10, 1), and (16, 10, 1)), because when 
the patient list was 10, there were enough ORs to serve patients correspondingly. When the instance 
size increased, the scheduled patients (with the improved NSGA-II) were 16, 56, 39, 15, 62, and 102, 
which were bigger values than those with the GPA. Moreover, when the instance size increased to a 
certain scale, the models could not be solved by the GPA. On the other hand, the OR overtimes and 
idle times of the second objective function solved by the GPA were 7.56, 132.70, 312.40, 3.93, 12.10, 
and 8.71, which was worse than with the proposed improved NSGA-II approach. The same was true 
for the third objective function. In addition, the GPA used less CPU time than the proposed 
approach did for small-sized instances (e.g., (2, 10, 1), (8, 10, 1), etc.). This exceeded the computing 
power of the GPA when the large-scale instances were created (e.g., (2, 1000, 1), (8, 1000, 1), etc.), but 
the proposed improved NSGA-II approach showed good computing performance for the models.  
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Table 17. Comparison between the GPA and the improved NSGA-II approach. 

Instance 
(SS Size, 
Waiting 

Lists, 
One SS) 

GPA Improved NSGA-II 

Objective 
1 

Objective 
2 

Objective 
3 

CPU 
time 

(max)  
Objective 

1 

(min)  
Objective 

2 

(min)  
Objective 

3 

CPU 
time 

(2, 10, 1) 10 7.56 2.764 0.566 10 3.88 0.083 6 
(8, 10, 1) 10 132.70 1.063 0.578 10 98.50 0.079 7 
(16, 10, 1) 10 312.40 1.759 0.822 10 267.30 0.071 11 
(2, 100, 1) 12 3.93 2.663 2 16 2.07 0.112 21 
(8, 100, 1) 45 12.10 2.731 9 56 10.05 0.097 32 
(16, 100, 

1) 
89 8.71 4.564 12 39 5.34 0.161 50 

(2, 1000, 
1) - - - Unsolved 15 13.55 0.076 98 

(8, 1000, 
1) - - - Unsolved 62 3.18 0.107 150 

(16, 1000, 
1) 

- - - Unsolved 102 4.72 0.067 230 

We also describe the several indexes specifically in Figure 13. The first, Figure 13a, describes the 
first objective function values between the two approaches. The second, Figure 13b, describes the 
second objective function, and Figure 13c describes the third one. The last describes the CPU time. 
For the GPA, the objective values that could not be calculated were uniformly set to 0, indicating that 
they did not exist. Obviously, the approaches that we propose had better results in all of the 
objectives and high computational efficiency in solving large-scale problems. 

Besides the better performance of the values of all objective functions and CPU time, the 
advantages of our proposed improved NSGA-II approach were mainly reflected in the decision 
solution sets. For Pareto collections with more non-dominated solutions, the decision support 
scheme (DSS) in this paper helps decision-makers make better choices from multiple solutions. For 
example, non-dominant solutions can perform an integrated analysis based on different objective 
values, thereby increasing the visual analysis of different solutions, as shown in Figures 11 and 12. 
Hospital managers can choose the appropriate schedule easily on the basis of the situation and the 
requirements. How the OR is allocated, how SS requests are met, and which patient graphical 
representations are arranged help in studying how the schedules differ between them. A more 
complex DSS can analyze OR overtime, free time, and underutilized changes by selecting different 
schedules. Other more complex DSS functions can be defined and implemented to make decisions 
easier. 

 
(a) the first objective function values  

 
(b) the second objective function values  
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(c) the third objective function values  

 
(d) the CPU time 

Figure 13. Several indexes in different instance sizes between two approaches. 

5. Conclusions 

The key to effectively solving OR scheduling problems is to balance surgical needs and 
available OR resources in an economical and effective way. To this end, we proposed a multiphase 
OR scheduling approach that addresses two different decision levels, allowing for updates to the 
waiting list status, availability of the ORs, and staff hours during the next planning period. 

The designed OR resource allocation model and the integrated multi-objective cyclic OR 
scheduling model produce a set of optimal decisions that link conflicting objectives within the SSs 
with hospital managers and patients. On the basis of completion of OR time allocation, the number 
of surgical arrangements is maximized, and overtime and idle time in the ORs are reduced to 
increase utilization of the ORs. In fact, we solved the problems of OR time allocation, the master 
surgery schedule, and other issues in an integrated and independent way. 

In the process of solving the models, we put forward the GPA combined with the AHP to 
accurately solve the MSS model and compared the solution results to the actual OR schedule of a 
hospital, verifying the effectiveness of the models and the solution approach. In addition, due to the 
convergence shortcomings of the NSGA-II, we proposed an improved genetic algorithm to 
overcome this problem effectively in the solution. The improved algorithm defines a new 
initialization process to construct a new initial population with a suitable set of feasible 
chromosomes that meet the constraints that are the seeds of evolutionary computation. In the 
evaluation phase, we determined whether the chromosomes with a cross-mutation met the 
constraints. At the same time, conformance constraints were retained, and nonconformance 
constraints were reinitialized and supplemented. The resulting set of possible Pareto solutions could 
balance conflicting objectives while ensuring that the criteria could not be improved without 
destroying other criteria. Different solutions have different qualities and costs of service, and the 
overall evaluation of different solutions allows managers to make better choices.  

In our paper, there were some assumptions about the uncertainty of the ORs and surgeries 
(such as uncertainties about surgical duration, the patients arriving, and the ORs’ other resources) 
in order to further develop a more effective OR scheduling model system. The optimization method 
and algorithm developed in this paper can consider other resources (e.g., the availability of beds, 
recovery beds, medical staff, and other factors) and different optimization objectives in evaluating 
the performance of a scheme.  

In addition, dynamic uncertainty is an important point that we should consider. The surgical 
time of a hospital has great uncertainty. The duration of a surgery is affected by many factors, such 
as the skill level of the doctor, the degree of fatigue, and the physical state of the patient. Meanwhile, 
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due to the frequent occurrence of emergency surgery, the OR schedule is unstable. Thus, our next 
step is to pay attention to these issues.  

In addition, we will also conduct an in-depth study of the NSGA-III, applying it to an OR 
schedule to improve the accuracy of the solutions. 
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