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Abstract: In this paper, we introduce the extended degenerate r-central factorial numbers of the second
kind and the extended degenerate r-central Bell polynomials. They are extended versions of the
degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials, and
also degenerate versions of the extended r-central factorial numbers of the second kind and the extended
r-central Bell polynomials, all of which have been studied by Kim and Kim. We study various properties
and identities concerning those numbers and polynomials and also their connections.

Keywords: extended degenerate r-central factorial numbers of the second kind; extended degenerate
r-central bell polynomials

1. Introduction

For λ ∈ R, we recall that the degenerate exponential function ex
λ(t) is defined by (see [1–7])

ex
λ(t) = (1 + λt)

x
λ (1)

When x = 1, we let eλ(t) = e1
λ(t). Note that lim

λ→0
ex

λ(t) = ext.

We use the notation (x)n to denote the falling factorial sequence (x)n, which is defined by (see [8–14])

(x)0 = 1, (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1) (2)

More generally, for λ ∈ R, the λ-falling factorial sequence (x)n,λ is given by (see [4])

(x)0,λ = 1, (x)n,λ = x(x− λ)(x− 2λ) · · · (x− (n− 1)λ), (n ≥ 1) (3)

Obviously, it is noted that lim
λ→1

(x)n,λ = (x)n, lim
λ→0

(x)n,λ = xn, (n ≥ 0).

In Reference [4], the λ- binomial expansion is defined by

(1 + λt)
x
λ =

∞

∑
l=0

(
x
l

)
λ

tl =
∞

∑
l=0

(x)l,λ
tl

l!
, (4)
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where (
x
l

)
λ

=
(x)l,λ

l!
=

x(x− λ)(x− 2λ) · · · (x− (l − 1)λ)
l!

.

The central factorial sequence is given by

x[0] = 1, x[n] = x(x +
n
2
− 1)(x +

n
2
− 2) · · · (x− n

2
+ 1), (n ≥ 1).

One can then easily show that the generating function of central factorial x[n], (n ≥ 0), is given by
(see [3,15–20]) (

t
2
+

√
1 +

t2

4

)2x

=
∞

∑
n=0

x[n]
tn

n!
(5)

As is defined in [18], for any non-negative integer n, the central factorial numbers of the first kind are
given by

x[n] =
n

∑
k=0

t(n, k)xk. (6)

Then, from (5) and (6), we can show that the generating function of t (n, k) satisfies the following equation:

1
k!

(
2 log

( t
2
+

√
1 +

t2

4

))k

=
∞

∑
n=k

t (n, k)
tn

n!
.

As the inverse to the central factorial numbers of the first kind, the central factorial numbers of the
second kind are defined by (see [18,20–22])

xn =
n

∑
k=0

T2(n, k)x[k], (n ≥ 0) (7)

The generating function of T2(n, k) can be easily derived from (7), which is given by (see [18])

1
k!

(
e

t
2 − e−

t
2

)k
=

∞

∑
n=k

T2(n, k)
tn

n!
, (k ≥ 0) (8)

It can immediately be seen from (8) that

k!T2(n, k) =
k

∑
j=0

(
k
j

)
(−1)j(

1
2

k− j)n. (9)

In Reference [22] were introduced the central Bell polynomials defined by

e
x
(

e
t
2−e−

t
2

)
=

∞

∑
n=0

B(c)
n (x)

tn

n!
. (10)

The Dobinski-like formula for B(c)
n (x) is given by (see [22])

B(c)
n (x) =

∞

∑
l=0

∞

∑
k=0

(
l + k

k

)
(−1)k 1

(l + k)!

(
l
2
− k

2

)l+1
(11)
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In Reference [3], the degenerate central factorial polynomials of the second kind are defined by

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

ex
λ(t) =

∞

∑
n=k

T2,λ(n, k|x) tn

n!
, (k ≥ 0). (12)

When x = 0, T2,λ(n, k) = T2,λ(n, k|0), these are called degenerate central factorial numbers of the
second kind.

Let us recall that the degenerate central Bell polynomials are defined by (see [3])

e
x

(
e

1
2
λ (t)−e

− 1
2

λ (t)

)
=

∞

∑
n=0

B(c)
n,λ(x)

tn

n!
, (13)

In particular, B(c)
n,λ = B(c)

n,λ(1) are called the degenerate central Bell numbers.

Note that lim
λ→0

B(c)
n,λ(x) = B(c)

n (x), (n ≥ 0).

Carlitz [1] introduced the degenerate Stirling, Bernoulli, and Eulerian numbers as the first degenerate
special numbers. Broder [23] investigated the r-Stirling numbers of the first and second kind as the
numbers counting restricted permutations and restricted partitions, respectively. We recall here that the
r-Stirling numbers of the second kind are given by (see [23])

1
k!

ert(et − 1)k =
∞

∑
n=k

S(r)
2 (n + r, k + r)

tn

n!
, (14)

In this paper, we will introduce the extended degenerate r-central factorial numbers of the second
kind and the extended degenerate r-central Bell polynomials. Central analogues of Stirling numbers of
the second kind and Bell polynomials are, respectively, the central factorial numbers of the second kind
and the central Bell polynomials. Degenerate versions of the central factorial numbers of the second kind
and the central Bell polynomials are, respectively, the degenerate central factorial numbers of the second
kind and the degenerate central Bell polynomials. Extended versions of the degenerate central factorial
numbers of the second kind and the degenerate central Bell polynomials are, respectively, the extended
degenerate r-central factorial numbers of the second kind and the extended degenerate r-central Bell
polynomials. The central factorial numbers of the second kind have many applications in such diverse
areas as approximation theory [21], finite difference calculus, spline theory, spectral theory of differential
operators [24,25], and algebraic geometry [26,27]. For broad applications of the related complete and
incomplete Bell polynomials, we let the reader consult the introduction in [11]. Here, we will study various
properties and identities relating to those numbers and polynomials, and also their connections. Finally,
we note that the present paper can be useful in the area of non-integer systems and let the reader refer
to [28] for more research in this direction.

2. Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate
r-Central Bell Polynomials

From (12) and (13), we note that

∞

∑
n=0

B(c)
n,λ(x)

tn

n!
=

∞

∑
k=0

xk
∞

∑
n=k

T2,λ(n, k)
tn

n!

=
∞

∑
n=0

n

∑
k=0

xkT2,λ(n, k)
tn

n!
.

(15)
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One can compare the coefficients on both sides of (15) to obtain

B(c)
n,λ(x) =

n

∑
k=0

T2,λ(n, k)xk, (n ≥ 0). (16)

Throughout this paper, we assume that r is a nonnegative integer. The following definition is motivated
by (14).

Definition 1. The extended degenerate r-central factorial numbers of the second kind T(r)
λ (n + r, k + r) are defined as

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
n=k

T(r)
λ (n + r, k + r)

tn

n!
. (17)

Note that lim
λ→0

T(r)
λ (n + r, k + r) = T(r)(n + r, k + r), (n, k ≥ 0),

where T(r)(n + r, k + r) is the extended r-central factorial numbers of the second kind given by

1
k!

ert
(

e
t
2 − e−

t
2

)k
=

∞

∑
n=k

T(r)(n + r, k + r)
tn

n!
. (18)

Theorem 1. For n, k ∈ N∪ {0}, with n ≥ k, we have

T(r)
λ (n + r, k + r) =

n

∑
l=k

(
n
l

)
T2,λ(l, k)(r)n−l,λ.

Proof. By (17), we get

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

er
λ(t) =

∞

∑
l=k

T2,λ(l, k)
tl

l!

∞

∑
m=0

(r)m,λ
tm

m!

=
∞

∑
n=k

n

∑
l=k

(
n
l

)
T2,λ(l, k)(r)n−l,λ

tn

n!
.

(19)

Therefore, by (17) and (19), we obtain the result.

We note that by taking the limit as λ tends to 0, we get

T(r)(n + r, k + r) =
n

∑
l=k

(
n
l

)
rn−lT2(l, k). (20)

Theorem 2. For n, k ≥ 0, with n ≥ k, we have

T(r)
λ (n + r, k + r) =

n

∑
m=k

m

∑
l=k

(
m
l

)
S1(n, m)T2(l, k)λn−mrm−l , (21)

where S1(n, m) are the signed Stirling numbers of the first kind.
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Proof. Replacing t by 1
λ log(1 + λt) in (18), we obtain

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

er
λ(t) =

∞

∑
m=k

λ−mT(r)(m + r, k + r)
1

m!

(
log(1 + λt)

)m

=
∞

∑
m=k

λ−mT(r)(m + r, k + r)
∞

∑
n=m

S1(n, m)
λntn

n!

=
∞

∑
n=k

n

∑
m=k

λn−mS1(n, m)T(r)(m + r, k + r)
tn

n!
.

(22)

Now, by substituting the expression of T(r)(m + r, k + r) in (20) into (22), we finally get

1
k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

er
λ(t) =

∞

∑
n=k

n

∑
m=k

m

∑
l=k

(
m
l

)
S1(n, m)T2(l, k)λn−mrm−l tn

n!
,

from which the result follows.

Example 1. Here, we will illustrate the formula (21) for small values of n. The following values of T2(n, k) can be
determined, for example, from the formula in (9):

T2(n, n) = 1, T2(n, 0) = δn,0, T2(2, 1) = T2(3, 2) = T2(4, 1) = T2(4, 3) = 0, T2(3, 1) = 1
4 , T(4, 2) = 1. (23)

In addition, we recall the following values of S1(n, k):

S1(n, n) = 1, S1(n, 0) = δn,0, S1(2, 1) = −1, S1(3, 1) = 2,

S1(3, 2) = −3, S1(4, 1) = S1(4, 3) = −6, S1(4, 2) = 11.
(24)

Now, from (21), (23), and (24), we easily have

T(r)
λ (n + r, n + r) = 1, T(r)

λ (1 + r, r) = r, T(r)
λ (2 + r, r) = −λr + r2,

T(r)
λ (3 + r, r) = 2λ2r− 3λr2 + r3, T(r)

λ (4 + r, r) = −6λ3r + 11λ2r2 − 6λr3 + r4,

T(r)
λ (2 + r, 1 + r) = −λ + 2r, T(r)

λ (3 + r, 1 + r) = 2λ2 − 6λr + 3r2 +
1
4

,

T(r)
λ (3 + r, 2 + r) = −3λ + 3r, T(r)

λ (4 + r, 1 + r) = −6λ3 + 22λ2r− 18λr2 − 3
2

λ + 4r3 + r,

T(r)
λ (4 + r, 2 + r) = 11λ2 − 18λr + 6r2 + 1, T(r)

λ (4 + r, 3 + r) = −6λ + 4r.

Theorem 3. For n, k ≥ 0, with n ≥ k, we have

T(r)
λ (n + r, k + r) =

n−k

∑
m=0

(
m + k

m

)
m!
(

r
m

)
T2,λ(n, m + k|m

2
).
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Proof. Now, we observe that

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
1
k!

e
r
2
λ (t)

(
e

1
2
λ (t)− e−

1
2

λ (t) + e−
1
2

λ (t)
)r (

e
1
2
λ (t)− e−

1
2

λ (t)
)k

=
1
k!

∞

∑
m=0

(
r
m

)(
e

1
2
λ (t)− e−

1
2

λ (t)
)m+k

e
m
2

λ (t)

=
∞

∑
m=0

(
r
m

)
(m + k)!

k!
1

(m + k)!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)m+k

e
m
2

λ (t)

=
∞

∑
m=0

(
r
m

)
m!
(

m + k
m

) ∞

∑
n=m+k

T2,λ(n, m + k|m
2
)

tn

n!

=
∞

∑
n=k

n−k

∑
m=0

(
r
m

)
m!
(

m + k
m

)
T2,λ(n, m + k|m

2
)

tn

n!
.

(25)

Therefore, by (17) and (25), we obtain the theorem.

One can easily show that the inverse function of eλ(t) is given by

logλ(t) =
tλ − 1

λ
, (t > 0),

so that eλ(logλ(t)) = logλ(eλ(t)) = t, lim
λ→0

logλ(t) = log(t).

If g(t) = e
1
2
λ (t)− e−

1
2

λ (t), then one can see that

g−1(t) = logλ

(
t
2
+

√
1 +

t2

4

)2

, (26)

where g ◦ g−1(t) = g−1 ◦ g(t) = t.

Theorem 4. For n ≥ 0, we have

(x + r)n,λ =
n

∑
k=0

T(r)
λ (n + r, k + r)x[k]

=
n

∑
k=0

T2,λ(n, k| k
2
+ r)(x)k.
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Proof. By (1) and (4), we get

ex+r
λ (t) = er

λ(t) (eλ(t)− 1 + 1)x

= er
λ(t)

∞

∑
k=0

(x)k
1
k!

(eλ(t)− 1)k

=
∞

∑
k=0

(x)k
1
k!

e
k
2+r
λ (t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
k=0

(x)k

∞

∑
n=k

T2,λ(n, k| k
2
+ r)

tn

n!

=
∞

∑
n=0

n

∑
k=0

(x)kT2,λ(n, k| k
2
+ r)

tn

n!
.

(27)

Now, from the observations in (26) and (5), we have

ex+r
λ (t) = er

λ(t)e
x
λ(t)

= er
λ(t)

eλ

logλ

(
g(t)

2
+

√
1 +

g(t)2

4

)2
x

= er
λ(t)

(
g(t)

2
+

√
1 +

g(t)2

4

)2x

=
∞

∑
k=0

x[k]
1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
k=0

x[k]
∞

∑
n=k

T(r)
λ (n + r, k + r)

tn

n!

=
∞

∑
n=0

n

∑
k=0

x[k]T(r)
λ (n + r, k + r)

tn

n!
.

(28)

From (4), we note also that

ex+r
λ (t) =

∞

∑
n=0

(x + r)n,λ
tn

n!
. (29)

Therefore, by (27), (28), and (29), we have the desired result.

Note that, taking the limit as λ tends to 0, we have

(x + r)n =
n

∑
k=0

T(r)(n + r, k + r)x[k] =
n

∑
k=0

T2(n, k| k
2
+ r)(x)k .

Definition 2. The extended degenerate r-central Bell polynomials B(c,r)
n,λ (x) are defined by

er
λ(t)e

x

(
e

1
2
λ (t)−e

− 1
2

λ (t)

)
=

∞

∑
n=0

B(c,r)
n,λ (x)

tn

n!
. (30)

Specifically, B(c,r)
n,λ (1) = B(c,r)

n,λ are called the extended degenerate r-central Bell numbers.
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Theorem 5. For n ≥ 0, we have

B(c,r)
n,λ (x) =

n

∑
k=0

xkT(r)
λ (n + r, k + r).

Proof. From (30), we note that

er
λ(t)e

x

(
e

1
2
λ (t)−e−

1
2 (t)

)
=

∞

∑
k=0

xk 1
k!

(
e

1
2
λ (t)− e−

1
2 (t)

)k
er

λ(t)

=
∞

∑
k=0

xk
∞

∑
n=k

T(r)
λ (n + r, k + r)

tn

n!

=
∞

∑
n=0

n

∑
k=0

xkT(r)
λ (n + r, k + r)

tn

n!
.

(31)

Therefore, from (30) and (31), the theorem follows.

The central difference operator δ for a given function f is given by

δ f (x) = f (x +
1
2
)− f (x− 1

2
),

and by induction we can show

δk f (x) =
k

∑
l=0

(
k
l

)
(−1)k−l f (x + l − k

2
), (k ≥ 0). (32)

Theorem 6. Let n, k be nonnegative integers. Then, we have

1
k!

δk(r)n,λ =

{
0, if n < k,

T(r)
λ (n + r, k + r), if n ≥ k.

Proof. By the binomial theorem, we have

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2 (t)

)k
=

1
k!

er− k
2

λ (t)
k

∑
l=0

(
k
l

)
(−1)k−lel

λ(t)

=
1
k!

k

∑
l=0

(
k
l

)
(−1)k−ler− k

2+l
λ (t)

=
∞

∑
n=0

1
k!

k

∑
l=0

(
k
l

)
(−1)k−l(r− k

2
+ l)n,λ

tn

n!
.

(33)

If we choose f (x) = (x)n,λ, (n ≥ 0) in (32), then we have

δk(r)n,λ =
k

∑
l=0

(
k
l

)
(r + l − k

2
)n,λ(−1)k−l . (34)
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From (33) and (34), the following equation is obtained.

1
k!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
n=0

1
k!

δk(r)n,λ
tn

n!
. (35)

Therefore, by (17) and (35), we have the result.

From Theorem 4 and Theorem 5, we have

B(c,r)
n,λ (x) =

n

∑
k=0

T(r)
λ (n + r, k + r)xk

=
n

∑
k=0

xk 1
k!

δk(r)n,λ, (n ≥ 0).
(36)

Theorem 7. For n ≥ 0, we have

B(c,r)
n,λ (x) =

n

∑
m=0

(
n
m

)
(r)n−m,λB(c)

m,λ(x).

Proof. From (30), we note that

∞

∑
n=0

B(c,r)
n,λ (x)

tn

n!
= er

λ(t)e
x

(
e

1
2
λ (t)−e

− 1
2

λ (t)

)

=
∞

∑
l=0

(r)l,λ
tl

l!

∞

∑
m=0

B(c)
m,λ

tm

m!

=
∞

∑
n=0

n

∑
m=0

(
n
m

)
(r)n−m,λB(c)

m,λ(x)
tn

n!
.

(37)

Therefore, by comparing the coefficients on both sides of (37), the desired result is achieved.

Theorem 8. For m, n, k ≥ 0, with n ≥ m + k, we have(
m + k

m

)
T(r)

λ (n + r, m + k + r) =
n−k

∑
l=m

(
n
l

)
T(r)

λ (l + r, m + r)T2,λ(n− l, k).

Proof. We further observe that

1
m!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)m 1

k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
(m + k)!

m!k!
1

(m + k)!
er

λ(t)
(

e
1
2
λ (t)− e−

1
2

λ (t)
)m+k

=

(
m + k

m

) ∞

∑
n=m+k

T(r)
λ (n + r, m + k + r)

tn

n!
,

(38)

where m, k are nonnegative integers. Alternatively, the left-hand side of (38) can be expressed by

1
m!

er
λ(t)

(
e

1
2
λ (t)− e−

1
2

λ (t)
)m 1

k!

(
e

1
2
λ (t)− e−

1
2

λ (t)
)k

=
∞

∑
l=m

T(r)
λ (l + r, m + r)

tl

l!

∞

∑
j=k

T2,λ(j, k)
tj

j!

=
∞

∑
n=m+k

n−k

∑
l=m

(
n
l

)
T(r)

λ (l + r, m + r)T2,λ(n− l, k)
tn

n!
.

(39)
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Therefore, by (38) and (39), the desired identity is obtained.

3. Conclusions

In recent years, many researchers have studied a lot of old and new special numbers and polynomials
by means of generating functions, through combinatorial methods, umbral calculus, differential equations,
p-adic integrals, p-adic q-integrals, special functions, complex analyses, and so on.

The study of degenerate versions of special numbers and polynomials began with Carlitz [1]. Kim
and his colleagues have been studying degenerate versions of various special numbers and polynomials
by making use of the same methods. Studying degenerate versions of known special numbers and
polynomials can be very a fruitful research and is highly rewarding. For example, this line of study led
even to the introduction of degenerate Laplace transforms and degenerate gamma functions (see [4]).

In this paper, we introduced the extended degenerate r-central factorial numbers of the second kind
and the extended degenerate r-central Bell polynomials. We studied various properties and identities
relating to those numbers and polynomials and also their connections. This study was done by using
generating function techniques.

Central analogues of Stirling numbers of the second kind and Bell polynomials are, respectively, the
central factorial numbers of the second kind and the central Bell polynomials. Degenerate versions of
the central factorial numbers of the second kind and the central Bell polynomials are, respectively, the
degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials.
Extended versions of the degenerate central factorial numbers of the second kind and the degenerate
central Bell polynomials are, respectively, the extended degenerate r-central factorial numbers of the
second kind and the extended degenerate r-central Bell polynomials. The central factorial numbers of the
second kind have many applications in diverse areas such as approximation theory [21], finite difference
calculus, spline theory, spectral theory of differential operators [24,25], and algebraic geometry [26,27].

For future research projects, we would like to continue to work on some special numbers and
polynomials and their degenerate versions, as well as try to explore their applications not only in
mathematics but also in the sciences and engineering [29].
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