
symmetryS S

Article

Supervised Reinforcement Learning via
Value Function

Yaozong Pan , Jian Zhang, Chunhui Yuan and Haitao Yang *

Space Engineering University, 81 Road, Huairou District, Beijing 101400, China; panyaozong1284@163.com (Y.P.);
zjconquer@126.com (J.Z.); yuanyuan19821988@163.com (C.Y.)
* Correspondence: 13400416091@sjtu.edu.cn

Received: 21 March 2019; Accepted: 22 April 2019; Published: 24 April 2019
����������
�������

Abstract: Using expert samples to improve the performance of reinforcement learning (RL) algorithms
has become one of the focuses of research nowadays. However, in different application scenarios,
it is hard to guarantee both the quantity and quality of expert samples, which prohibits the practical
application and performance of such algorithms. In this paper, a novel RL decision optimization
method is proposed. The proposed method is capable of reducing the dependence on expert samples
via incorporating the decision-making evaluation mechanism. By introducing supervised learning
(SL), our method optimizes the decision making of the RL algorithm by using demonstrations or
expert samples. Experiments are conducted in Pendulum and Puckworld scenarios to test the
proposed method, and we use representative algorithms such as deep Q-network (DQN) and Double
DQN (DDQN) as benchmarks. The results demonstrate that the method adopted in this paper can
effectively improve the decision-making performance of agents even when the expert samples are
not available.

Keywords: artificial intelligence; reinforcement learning; supervised learning; DQN; DDQN; expert
samples; demonstration

1. Introduction

In recent years, great achievements have been made in solving Sequential decision-making
problems modelled by Markov decision processes (MDPs) through deep reinforcement learning
(DRL), which is selected as one of the MIT Technology Review 10 Breakthrough Technologies in 2017.
The range of applied research on DRL is extensive. The breakthroughs mainly include the deep
Q-network (DQN) for Atari games [1,2] and strategic policies combined with tree search for the game
of go [3,4]. Other notable examples of utilising DRL includes learning robot control strategy from
video [5], playing video games [6], indoor navigation [7], managing power consumption [8], building
machine translation model [9] et al. DRL has been used to meta-learn (“learn to learn”) to obtain even
more powerful agents which can generalise to completely strange environments [10].

In many scenarios, we have previously accumulated experience (not necessarily optimal) that we
call expert samples. The combination of expert samples and reinforcement learning (RL) to improve
decision-making performance is a current research direction. The expert samples combined with
Deep Deterministic Policy Gradient (DDPG) are used as a guide for the exploration in RL to solve
the tasks where exploration is difficult [11]. The expert trajectories are used to accelerate DQN [12].
A framework was proposed to use the expert samples to pre-train actor-critic RL algorithms [13].
The expert samples were combined with DRL via value through a separate replay buffer for expert
samples [14]. Human demonstrations were also used to pre-train a deep neural network (DNN) by
supervised learning (SL) [15]. Methods combining policy gradient algorithms with expert samples
have been applied to complex robotic manipulation [16].

Symmetry 2019, 11, 590; doi:10.3390/sym11040590 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4442-6332
http://www.mdpi.com/2073-8994/11/4/590?type=check_update&version=1
http://dx.doi.org/10.3390/sym11040590
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 590 2 of 11

In real scenarios, it is difficult to guarantee the quantity and quality of expert samples in different
scenarios. The over-dependence of the algorithm on expert samples will limit the application of the
algorithm in real scenarios. The algorithm named Deep Q-Learning from Demonstrations (DQfD) [14]
is designed for scenarios with a few expert samples to reduce the dependence of expert samples. In this
work, We propose a method called supervised reinforcement learning via value function (SRLVF).
When expert samples are available, the method can combine expert samples with RL through SL.
If the expert samples are very poor or even unavailable, the method can still use the data generated
by the interaction between agent and environment to optimize agent’s decision. In both Pendulum
and Puckworld scenarios, we tested the SRLVF-based DQN (SDQN) algorithm and the SRLVF-based
double DQN (SDDQN) algorithm. The results show that the performance of SDQN and SDDQN
algorithms are significantly improved.

The rest of the paper is organized as follows. In Section 2 related work are discussed, followed by
some background knowledge in Section 3. We present our method in Section 4 and report experimental
results in Section 5. Conclusion is in Section 6.

2. Related Work

2.1. RL Based on Value Function

Both Q-learning [17] and the SARSA [18] algorithms realize the evolution of the strategy through
the estimation and evaluation of value functions. The difference between the two is that the exploration
and exploitation of Q-learning adopts different strategies, while SARSA uses the same strategy.
DQN [2] combines the deep neural network with the Q-learning algorithm, realizes the "end-to-end"
control of agents, and achieves better results than human beings in many kinds of Atari games.
Double-DQN [19] solves the problem of overestimation in DQN. Other value-based algorithms include
Duelling-DQN [20], asynchronous advantage actor-critic (AC) [21] et al. In this paper, we use DQN
and Double-DQN (DDQN) as benchmark algorithms to verify the effectiveness of SRLVF.

2.2. Combining Expert Samples and RL Based on Value Function

In the framework of combining expert samples with AC algorithm, expert samples are combined
with AC algorithm by pre-training agents [13]. In Replay Buffer Spiking (RBS) algorithm [22], expert
samples are combined with DQN by initializing the experience replay buffer of DQN. It is similar to the
design purpose of the SRLVF algorithm to reduce dependence on expert samples, Accelerated DQN
with Expert Trajectories (ADET) [12] algorithm and DQfD [14] algorithm are designed for scenarios
with only a few expert samples. To reduce the dependence on expert samples, the ADET algorithm
and the DQfD algorithm fully exploit the potential of expert samples by using agent pre-training, loss
function design et al. For the same purpose, the SRLVF algorithm explores the potential of the data
generated by the interaction between the agent and the environment by introducing SL, constructing
the decision evaluation mechanism et al.

3. Background

3.1. Reinforcement Learning via Value Function

The RL is about an agent interacting with the environment, learning an optimal policy, by trial and
error, for sequential decision making problems [23]. The RL algorithms mainly include RL algorithms
based on value function and direct policy search. In RL via value function we evaluates the value
function and uses value function to improve the policy, e.g., Q-learning, DQN et al. A value function is
a prediction of the expected accumulative discounted future reward, measuring how good each state
or state-action pair is [23]. MDPs have become the standard formalism for learning sequential decision
making [24]. The goal of RL is to find the optimal strategy for a given MDP [18].

Symmetry 2019, 11, 590 3 of 11

The standard MDPs is defined as
〈
S, A, R, T,γ

〉
, where S is the state set, A is the action set, R is the

return function, T is the transfer function, and γ is the discount factor. When agent is in state s ∈ S,
it takes action a ∈ A to reach the new state s′ ∈ S, and gets the return r = R(s, a). The state transition
function T = P(s′

∣∣∣s, a) . Since we are using a model-free MDPs, the transfer function is unknown. State
value function vπ(s) is an estimate of future reward in state s based on strategy π.

vπ(s) =
∑

a
π(a/s)

∑
s′,r

p(s′, r/s, a)[r + γvπ(s′)] (1)

State-action value function Qπ(s, a) is an estimate of future returns when action a is taken in the
state s based on policy π.

Qπ(s, a) =
∑
s′,r

p(s′, r/s, a)[r + γvπ(s′)] (2)

The optimal Q∗(s, a) is determined by solving the Bellman equation,

Q∗(s, a) = E[r + γ
∑

s′
P(s′

∣∣∣s, a)max
a′

Q∗(s′, a′)] (3)

The State value function vπ(s) and the State-action value function Qπ(s, a) are collectively called
value function.

In recent years, DQN [2] is a breakthrough in RL via value function, which extends state space from
finite discrete space to infinite continuous space by combining deep neural network with Q-learning [17]
algorithm. The principle of DQN is shown in Figure 1.

Symmetry 2019, 21, x FOR PEER REVIEW 3 of 11

The standard MDPs is defined as , , , ,S A R T γ< > , where S is the state set, A is the action set,
R is the return function, T is the transfer function, and γ is the discount factor. When agent is in
state s S∈ , it takes action a A∈ to reach the new state s S′ ∈ , and gets the return (,)r R s a= . The
state transition function (| ,)T P s s a′= . Since we are using a model-free MDPs, the transfer function is
unknown. State value function ()v sπ is an estimate of future reward in state s based on strategy π
.

,

() (/) (, / ,)[()]
a s r

v s a s p s r s a r v sπ ππ γ
′

′ ′= +  (1)

State-action value function (,)Q s aπ is an estimate of future returns when action a is taken in

the state s based on policy π .

,
(,) (, / ,)[()]

s r
Q s a p s r s a r v sπ πγ

′
′ ′= + (2)

The optimal (,)Q s a∗ is determined by solving the Bellman equation，

 ()(,) E[| , max (,)]
as

Q s a r P s s a Q s aγ∗ ∗
′′

′ ′ ′= +  (3)

The State value function ()v sπ and the State-action value function (,)Q s aπ are collectively
called value function.

In recent years, DQN [2] is a breakthrough in RL via value function, which extends state space
from finite discrete space to infinite continuous space by combining deep neural network with Q-
learning [17] algorithm. The principle of DQN is shown in Figure 1.

env

state

action

return

Replay buffer

policy

batch
sample

U
pd

at
e n

et
wo

rk

pa
ra

m
ete

rs

s

r

a

s

s′

(, , ,)s a r s′

Agent

Main networkTarget network

Loss function

Update
parameters

Figure 1. The principle of DQN.

The data (, , ,)s a r s′ generated by the interaction between agent and environment are stored in
the replay buffer, which is randomly extracted and provided to the main network and target network.
The policy realized evolution through minimizing the Loss function and updating the main network
parameters by gradient descent method. The parameters of the target network are updated by
copying the main network parameters, after a certain interval. The loss function of DQN is

 2
target main[(max((,)) (,))]

a A
L r Q s a Q s aγ

′∈
′ ′= + − . (4)

Where targetmax((,))
a A

r Q s aγ
′∈

′ ′+ is generated by the target network, and main (,)Q s a is generated by the

main network.
The DQN algorithm sets experience replay mechanism [25] and target network with updating

parameters asynchronously to break the correlation during training data and then guarantee the
stability of the neural network.

Hado et al. proposed the Double-DQN algorithm (DDQN) to solve the problem of
overestimation in the DQN algorithm [19]. DDQN does not directly select the max Q value in the

Figure 1. The principle of DQN.

The data (s, a, r, s′) generated by the interaction between agent and environment are stored in
the replay buffer, which is randomly extracted and provided to the main network and target network.
The policy realized evolution through minimizing the Loss function and updating the main network
parameters by gradient descent method. The parameters of the target network are updated by copying
the main network parameters, after a certain interval. The loss function of DQN is

L = [(r + γmax
a′∈A

(Qtarget(s′, a′)) −Qmain(s, a))2]. (4)

where r + γmax
a′∈A

(Qtarget(s′, a′)) is generated by the target network, and Qmain(s, a) is generated by the

main network.
The DQN algorithm sets experience replay mechanism [25] and target network with updating

parameters asynchronously to break the correlation during training data and then guarantee the
stability of the neural network.

Symmetry 2019, 11, 590 4 of 11

Hado et al. proposed the Double-DQN algorithm (DDQN) to solve the problem of overestimation
in the DQN algorithm [19]. DDQN does not directly select the max Q value in the target network but
uses the corresponding action of the max Q value in the main network to determine the target Q value
in the target network. The Loss function of DDQN is

L = E[(r + γQtarget(s′, argmaxa′(Qmain(s′, a′))) −Qmain(s, a))2]. (5)

DQN and DDQN are the most representative RL algorithms via value function, which are also the
benchmarks in our paper.

3.2. Supervised Learning

The goal of SL is to build a concise model of the distribution of class labels in terms of predictor
features [26]. In this paper, the agent has been motivated to make favourable decisions in the states with
certain characteristics, by using the classification technology in the SL. The demonstrations database
for SL consists of (s, a), where s represents state and a represents action. In this paper, cross entropy is
used as losses for SL.

4. Our Method

4.1. Supervised Reinforcement Learning via Value Function

SRLVF is mainly based on SL network and RL network, and constructs corresponding training
database. The demonstrations can improve the decision-making performance of RL algorithms through
SL network.

By introducing decision evaluation mechanism, SRLVF constructs demonstration sets based on
the data generated during the interaction between agent and environment, which greatly reduces the
dependence on expert samples.

Figure 2 is the framework of our SRLVF approach. In the training phase, the data (s, a, r, s′)
generated by the interaction between the agent and the environment are stored in the experience replay
buffer, and batch data are randomly selected from it to train the RL network. The decision-making
evaluation mechanism is used to select the superior decision from the experience replay buffer as the
demonstrations. The SL network is trained by randomly extracting data from the training data buffer.
In the testing phase, the RL network and the SL network jointly make decisions according to different
weights. The pseudo-code is shown in Appendix A.

Symmetry 2019, 21, x FOR PEER REVIEW 4 of 11

target network but uses the corresponding action of the max Q value in the main network to
determine the target Q value in the target network. The Loss function of DDQN is

 2
target main mainE[((, arg max ((,))) (,))]aL r Q s Q s a Q s aγ ′′ ′ ′= + − . (5)

DQN and DDQN are the most representative RL algorithms via value function, which are also
the benchmarks in our paper.

3.2 Supervised learning

The goal of SL is to build a concise model of the distribution of class labels in terms of predictor
features [26]. In this paper, the agent has been motivated to make favourable decisions in the states
with certain characteristics, by using the classification technology in the SL. The demonstrations
database for SL consists of (,)s a , where s represents state and a represents action. In this paper,
cross entropy is used as losses for SL.

4. Our Method

4.1. Supervised Reinforcement Learning via Value Function

SRLVF is mainly based on SL network and RL network, and constructs corresponding training
database. The demonstrations can improve the decision-making performance of RL algorithms
through SL network.

By introducing decision evaluation mechanism, SRLVF constructs demonstration sets based on
the data generated during the interaction between agent and environment, which greatly reduces the
dependence on expert samples.

Figure 2 is the framework of our SRLVF approach. In the training phase, the data (, , ,)s a r s′
generated by the interaction between the agent and the environment are stored in the experience
replay buffer, and batch data are randomly selected from it to train the RL network. The decision-
making evaluation mechanism is used to select the superior decision from the experience replay
buffer as the demonstrations. The SL network is trained by randomly extracting data from the
training data buffer. In the testing phase, the RL network and the SL network jointly make decisions
according to different weights. The pseudo-code is shown in appendix A.

 replay buffer

Env

batch

training data bufferbatch

()v s
evaluate

action

(, , ,)s a r s′

()v s′

RL network

SL network
Env

Jo
in

t d
ec

isi
on

 m
ak

in
g

action

Test Train

(,)s a Ex
pe

rt
sa

m
pl

es

Figure 2. The framework of SRLVF.

The SRLVF method proposed in this paper is less dependent on expert samples. When expert
samples are available, the method can combine expert samples with RL to improve agent decision
performance. When the expert samples are very poor or even unavailable, the method can still use
the data generated by the interaction between agent and environment to optimize agent’s decision.
The purpose of RL is to optimize the overall strategy of the task. There is no evaluation and correction

Figure 2. The framework of SRLVF.

Symmetry 2019, 11, 590 5 of 11

The SRLVF method proposed in this paper is less dependent on expert samples. When expert
samples are available, the method can combine expert samples with RL to improve agent decision
performance. When the expert samples are very poor or even unavailable, the method can still use
the data generated by the interaction between agent and environment to optimize agent’s decision.
The purpose of RL is to optimize the overall strategy of the task. There is no evaluation and correction
mechanism for decision-making under specific states. SL can fit the mapping model of states and
agent actions in expert samples very well. By introducing SL, we can use expert samples to optimize
agent’s specific action decision driven by RL, and then realize the combination of expert samples and
RL. In the case that the expert samples are difficult to guarantee, we select better state-action pairs from
the data generated by the interaction between agent and environment through decision evaluation
mechanism and optimize the decision-making under specific states through SL. Most of the current
algorithms focus on how to combine expert samples with RL, but less on the objective reality that it
is difficult to guarantee the availability of expert samples in different scenarios. The dependence on
expert samples greatly limits the application scenarios of the algorithm. Hester et al. proposed a DQfD
algorithm for scenarios with only a few expert samples to reduce the dependence on expert samples.
Compared with DQfD, the SRLVF method relies less on expert samples and has better applicability to
scenarios with different availability of expert samples.

4.2. Demonstration Sets for the SL Network

The process of constructing SL network training data buffer mainly includes the evaluation and
storage of data. In state s, agents take action a, which makes the environment become state s′. v(s) is
an estimate of future reward in state s, if v(s′) > v(s), we can believe that a is a better decision in state
s, and then store (s, a) in training data buffer. There are three different ways to calculate v(s) in this
paper. The first is

vsum = vπ(s) =
∑
a∈A

π(a/s)Qπ(s, a), (6)

where qπ(s, a) is the value function of action a in state s. The second is

vmax = vπ(s) = max
a∈A

(Qπ(s, a)), (7)

The third is

vadaption = vπ(s) = (1− ε) ∗max
a∈A

(qπ(s, a)) + ε ∗

sum
a∈(A−amax)

(qπ(s, a))

n− 1
. (8)

where ε is the exploratory ability of RL to adopt ε − greedy strategy in the training process, vadaption
adds an adaptive adjustment based on exploratory probability ε, which makes the calculation of state
value function v(s) more objective. vsum, vmax and vadaption are obtained on the basis of Equations (1)
and (2) taking into account the influence of different factors. The difference between vsum and vadaption is
that the probability used to compute vsum is obtained through softmax function, but when computing
vadaption the probability is defined by the ε− greedy policy. vmax and vadaption are identical when ε = 0.
In SRLVF method, the state value function is the criterion of selecting demonstrations, so the way of
calculating the state value function affects the quality of demonstrations, vadaption is the most accurate
computing mode, but ε gradually decreases with the training process, and the criterion for selecting
demonstrations eventually becomes vmax. Because the state value function and the state-action value
function are both estimates of the future total return under the current strategy rather than accurate
values, in order to obtain the optimal selection criteria, we will simulate and validate the performance
of three calculation models of the value function in the experimental part.

The introduction of decision evaluation mechanism has expanded the source of demonstrations
and formed a powerful supplement to the expert samples, which can effectively reduce the dependence
on expert samples.

Symmetry 2019, 11, 590 6 of 11

4.3. Generalization of SRLVF

In the SRLVF method, the demonstrations are selected from the data generated by the interaction
between agent and environment driven by RL algorithms through decision-making evaluation
mechanism and then optimizes the performance of RL algorithm by using the demonstrations and
existing expert data through SL. In SRLVF method, the data which can optimize decision-making
include the demonstrations generated by the interaction between agent and environment and the
existing expert samples in different application scenarios.

It is difficult to guarantee the availability of expert samples in different scenarios. When expert
samples can’t play a role in decision-making optimization or even have poor availability, effective
data mainly comes from the interaction between agent and environment. These data optimize
decision-making through the SL network, so there is no generalization problem for SL network. At this
time, the generalization of SRLVF is mainly influenced by RL algorithms. However, the performance
of different RL algorithms in different scenarios is different.

When the quality and quantity of expert samples can be guaranteed, the performance of SRLVF
method is affected by expert samples. The expert samples optimize the decision-making of RL
algorithms through the SL network, which has a beneficial impact on the generalization performance
of SRLVF method.

5. Experiments

For sequential decision-making tasks modelled by MDPs, each individual task instance needs a
sequence of decisions to bring the agent from a starting state to a goal state. According to the length
of the decision-making sequence from a starting state to a target state, decision tasks can be divided
into three categories: finite, fixed horizon tasks, indefinite horizon tasks, and infinite horizon tasks.
In finite, fixed horizon tasks the length of the decision-making sequence is fixed. In indefinite horizon
tasks, the decision-making sequence can have arbitrary length and end at the goal state. In the infinite
horizon tasks, the decision-making sequence does not end in the goal state. The application conditions
of the first model are strict and so its scope of application is limited, for example tutoring students
for exams or handling customer service requests. The other two types of tasks are the focus of our
attention. In Puckworld scenario, the decision-making process will end in the goal state and the length
of the decision-making sequence is not fixed, so Puckworld is the type of indefinite horizon tasks.
In Pendulum scenario, the decision-making process can’t end to keep the agent in the goal state, so
the Pendulum belongs to the kind of infinite horizon tasks. The Puckworld and Pendulum scenarios
represent two types of sequential decision-making tasks modelled by MDPs. So we choose these two
scenarios as our agent environment.

5.1. Experimental Setup

In both Pendulum and Puckworld scenarios, the performance of SRLVF method is verified. The (a)
of Figure 3 is the Pendulum scenarios, which is an experimental scenario of RL algorithm provided by
gym. In this scenario, the pendulum is ensured to be inverted by continuously applying force Fc in
different directions and sizes. In order to adapt to the application characteristics of the RL algorithm
based on value function, the continuous force Fc ∈ [−2, 2] in the original scenario is discretized into
Fd ∈ [0,±0.4,±0.8,±1.2,±1.6,±2.0].

The Puckworld scenarios is the (b) of Figure 3 with reference to the code written by Qiang Ye [27].
In Puckworld scenarios, it mainly includes a predator and a prey. Predator can move freely in four
directions. Prey’s position changes randomly in a fixed time interval. Predator captures Prey as
an agent.

Symmetry 2019, 11, 590 7 of 11

Symmetry 2019, 21, x FOR PEER REVIEW 7 of 11

F

(a)

Prey

Predator

P1

P2

P3

(b)

Figure 3. Pendulum (a) and Puckworld (b).

5.1.1. Algorithm and Hyperparameter

SRLVF combines RL with demonstrations through SL. In the experiment, we use DQN and
DDQN as benchmark algorithms to verify the effectiveness of SRLVF method. The RL part of SRLVF
method adopts DQN algorithm and DDQN algorithm, which we call SRLVF-based DQN (SDQN)
and SRLVF-based DDQN (SDDQN) respectively. The SL part of SRLVF method uses demonstrations
to train the neural network.

The principles of DQN and DDQN have been analyzed in Section 3.2. Both DQN and DDQN
have two neural networks: the main network and the target network. Both the two networks are set
up as two layers fully connected networks with 25 units per layer. In the RL network, the discount
factor γ is 0.9 and the learning rate l is 0.005. The SL network is a 2 fully connected network with
128 units per layer. In the SL network, the learning rate l is 0.01, the loss function was computed by
cross-entropy.

5.2. Result and Analysis

In order to evaluate the performance of SRLVF, we tested the performance of SDQN and
SDDQN in Pendulum and Puckworld scenarios, as well as the influence of different computing
modes of ()v s . The code is implemented based on python 3.5 with Tensorflow 1.12.0 and Gym 0.10.9.
As illustrated in Figure 4, Figure 5 and Figure 6, each averaged reward curve is computed 7 times
with a continuous error bar.

5.2.1. Testing the performance of the SRLVF method

Figure 4 and Figure 5 show that SDQN and SDDQN are better than DQN and DDQN
respectively in both Pendulum and Puckworld scenarios, but both of them have worse performance
before convergence.

Our algorithm outperforms the benchmark algorithm after convergence. We know that the
purpose of RL is to approximate the overall strategy, while the decision-making under specific states
is unstable. However, SL can optimize the decision making performance by training with
demonstrations. SRLVF can improve the overall performance of the algorithm by combing RL with
SL.

In SRLVF method, we use demonstrations to optimize the decision-making of RL algorithms
through SL network in order to improve the performance. Differ from the convergence process of RL
algorithms only involves the training of RL network, the convergence process of SRLVF method
includes the training of RL network and SL network. Because the demonstrations for training SL
network come from the interaction between agent and environment driven by the RL algorithm, and
the institutional characteristics of demonstrations are also changing in the process of training RL
network, the convergence of the SL network lags behind that of the RL network. In the convergence
process of the SRLVF method, the SL network can’t optimize the performance of the RL algorithm
because it has not yet converged, and even has adverse effects. So in the convergence stage, the
performance of SRLVF method is worse than benchmark algorithm.

Figure 3. Pendulum (a) and Puckworld (b).

Algorithm and Hyperparameter

SRLVF combines RL with demonstrations through SL. In the experiment, we use DQN and
DDQN as benchmark algorithms to verify the effectiveness of SRLVF method. The RL part of SRLVF
method adopts DQN algorithm and DDQN algorithm, which we call SRLVF-based DQN (SDQN) and
SRLVF-based DDQN (SDDQN) respectively. The SL part of SRLVF method uses demonstrations to
train the neural network.

The principles of DQN and DDQN have been analyzed in Section 3.2. Both DQN and DDQN
have two neural networks: the main network and the target network. Both the two networks are set up
as two layers fully connected networks with 25 units per layer. In the RL network, the discount factor γ
is 0.9 and the learning rate l is 0.005. The SL network is a 2 fully connected network with 128 units per
layer. In the SL network, the learning rate l is 0.01, the loss function was computed by cross-entropy.

5.2. Result and Analysis

In order to evaluate the performance of SRLVF, we tested the performance of SDQN and SDDQN
in Pendulum and Puckworld scenarios, as well as the influence of different computing modes of v(s).
The code is implemented based on python 3.5 with Tensorflow 1.12.0 and Gym 0.10.9. As illustrated in
Figures 4–6, each averaged reward curve is computed 7 times with a continuous error bar.

5.2.1. Testing the Performance of the SRLVF Method

Figures 4 and 5 show that SDQN and SDDQN are better than DQN and DDQN respectively in both
Pendulum and Puckworld scenarios, but both of them have worse performance before convergence.

Our algorithm outperforms the benchmark algorithm after convergence. We know that the
purpose of RL is to approximate the overall strategy, while the decision-making under specific states is
unstable. However, SL can optimize the decision making performance by training with demonstrations.
SRLVF can improve the overall performance of the algorithm by combing RL with SL.

In SRLVF method, we use demonstrations to optimize the decision-making of RL algorithms
through SL network in order to improve the performance. Differ from the convergence process of
RL algorithms only involves the training of RL network, the convergence process of SRLVF method
includes the training of RL network and SL network. Because the demonstrations for training SL
network come from the interaction between agent and environment driven by the RL algorithm, and the
institutional characteristics of demonstrations are also changing in the process of training RL network,
the convergence of the SL network lags behind that of the RL network. In the convergence process of
the SRLVF method, the SL network can’t optimize the performance of the RL algorithm because it
has not yet converged, and even has adverse effects. So in the convergence stage, the performance of
SRLVF method is worse than benchmark algorithm.

Symmetry 2019, 11, 590 8 of 11

Symmetry 2019, 21, x FOR PEER REVIEW 8 of 11

DDQN

SDDQN

episode

m
ea

n
 e

p
is

o
d

e
re

w
ar

d

DQN

SDQN

episode

m
ea

n
 e

p
is

o
d

e
re

w
a
rd

(a) (b)

Figure 4. (a) Average rewards on DQN and SDQN in Puckworld. (b) Average rewards on DDQN

and SDDQN in Puckworld too.

m
ea

n
 e

p
is

o
d

e
re

w
a
rd

DDQN

SDDQN

episode 410

DQN

SDQN

episode
410

m
ea

n
 e

p
is

o
d

e
re

w
a
rd

m
ea

n
 e

p
is

o
d
e

re
w

a
rd

(a) (b)

Figure 5. (a) Average rewards on DQN and SDQN in Pendulum. (b) Average rewards on DDQN and

SDDQN in Pendulum too.

5.2.2. Evaluating the impact of different ()v s calculation methods on the performance of SRLVF

In Pendulum and Puckworld scenarios, we test the performance of SDQN and SDDQN

algorithms Which use three computational methods: maxv , adaptionv and sumv respectively.

As shown in the Figure 6, the performance of SDQN and SDDQN algorithms with different ()v s

computing methods does not differ greatly in both Pendulum and Puckworld scenarios, especially

in Puckworld scenario, the performance of the algorithms is much the same. In Pendulum scenario,

the performance of SDDQN with adaptionv is slightly worse, but it is the best in Puckworld scenarios.

The performance of SDQN with adaptionv is not the best in Puckworld scenarios. These results show

that the impact of different ()v s on SRLVF performance is related to RL algorithm and scenarios, so

the ()v s computing method needs to be selected according to the specific situation.

Figure 4. (a) Average rewards on DQN and SDQN in Puckworld. (b) Average rewards on DDQN and
SDDQN in Puckworld too.

Symmetry 2019, 21, x FOR PEER REVIEW 8 of 11

DDQN

SDDQN

episode

m
ea

n
 e

p
is

o
d

e
re

w
ar

d

DQN

SDQN

episode

m
ea

n
 e

p
is

o
d

e
re

w
a
rd

(a) (b)

Figure 4. (a) Average rewards on DQN and SDQN in Puckworld. (b) Average rewards on DDQN

and SDDQN in Puckworld too.

m
ea

n
 e

p
is

o
d

e
re

w
a
rd

DDQN

SDDQN

episode 410

DQN

SDQN

episode
410

m
ea

n
 e

p
is

o
d

e
re

w
a
rd

m
ea

n
 e

p
is

o
d
e

re
w

a
rd

(a) (b)

Figure 5. (a) Average rewards on DQN and SDQN in Pendulum. (b) Average rewards on DDQN and

SDDQN in Pendulum too.

5.2.2. Evaluating the impact of different ()v s calculation methods on the performance of SRLVF

In Pendulum and Puckworld scenarios, we test the performance of SDQN and SDDQN

algorithms Which use three computational methods: maxv , adaptionv and sumv respectively.

As shown in the Figure 6, the performance of SDQN and SDDQN algorithms with different ()v s

computing methods does not differ greatly in both Pendulum and Puckworld scenarios, especially

in Puckworld scenario, the performance of the algorithms is much the same. In Pendulum scenario,

the performance of SDDQN with adaptionv is slightly worse, but it is the best in Puckworld scenarios.

The performance of SDQN with adaptionv is not the best in Puckworld scenarios. These results show

that the impact of different ()v s on SRLVF performance is related to RL algorithm and scenarios, so

the ()v s computing method needs to be selected according to the specific situation.

Figure 5. (a) Average rewards on DQN and SDQN in Pendulum. (b) Average rewards on DDQN and
SDDQN in Pendulum too.

5.2.2. Evaluating the Impact of Different v(s) Calculation Methods on the Performance of SRLVF

In Pendulum and Puckworld scenarios, we test the performance of SDQN and SDDQN algorithms
Which use three computational methods: vmax, vadaption and vsum respectively.

As shown in the Figure 6, the performance of SDQN and SDDQN algorithms with different v(s)
computing methods does not differ greatly in both Pendulum and Puckworld scenarios, especially
in Puckworld scenario, the performance of the algorithms is much the same. In Pendulum scenario,
the performance of SDDQN with vadaption is slightly worse, but it is the best in Puckworld scenarios.
The performance of SDQN with vadaption is not the best in Puckworld scenarios. These results show
that the impact of different v(s) on SRLVF performance is related to RL algorithm and scenarios, so the
v(s) computing method needs to be selected according to the specific situation.

Value function is an estimated value rather than a deterministic value. In our method, the value
function is approximated by the neural network, which is affected by many factors, such as network
parameters, reward functions, reward delay length, the task characteristics, et al. We can indeed select
the high quality demonstrations to improve the performance through using the state value function
obtained by three calculation methods as the selection criterion of demonstrations. However, there are
many factors affecting the estimation of the value function, it is difficult to get the selection rules of the
three calculation models.

Symmetry 2019, 11, 590 9 of 11

Symmetry 2019, 21, x FOR PEER REVIEW 9 of 11

m
ea

n
ep

is
od

e
re

w
ar

d

m
ea

n
ep

is
od

e
re

w
ar

d

maxv

adaptionv
sumv

maxv

adaptionv
sumv

In Puckworld with SDQN methodIn Puckworld with SDDQN method

maxv

adaptionv
sumvm

ea
n

ep
is

od
e

re
w

ar
d

410× episode episodeepisode

In Pendulum with SDDQN method

(a) (b) (c)

Figure 6. (a) Average rewards on SDDQN using different ()v s in Pendulum. (b) Average rewards
on SDDQN using different ()v s in Puckworld. (c) Average rewards on SDQN using different ()v s

in Puckworld too.

Value function is an estimated value rather than a deterministic value. In our method, the value
function is approximated by the neural network, which is affected by many factors, such as network
parameters, reward functions, reward delay length, the task characteristics, et al. We can indeed
select the high quality demonstrations to improve the performance through using the state value
function obtained by three calculation methods as the selection criterion of demonstrations.
However, there are many factors affecting the estimation of the value function, it is difficult to get the
selection rules of the three calculation models.

6. Conclusions and future Work

Based on experimental results we claim that even if expert samples are not available, the SRLVF
method presented in this work still improves the performance of the RL via value function algorithm.
The method presented in this work greatly reduces the requirement for the availability of expert
samples. Combining RL algorithms with expert samples brings a number of issues which are worth
addressing. SRLVF method is designed for the objective condition that the availability of expert
samples is difficult to guarantee in different scenarios. In our view, there are two interesting research
directions: (1) improving the performance of SRLVF in the stage of training through a few expert
samples by expanding the combination style of expert samples and RL. (2) Estimating the state
function more accurately and provide more accurate criteria for choosing demonstrations.

Author Contributions: Each author's contribution to this article is as follows: methodology, software, and
validation, Y.P.; data curation, formal analysis J.Z.; writing—review and editing, C.H.Y.; supervision, H.T.Y.

Funding: This research received no external funding.

Conflicts of Interest: All authors declare no conflict of interest.

Appendix A

Figure 6. (a) Average rewards on SDDQN using different v(s) in Pendulum. (b) Average rewards
on SDDQN using different v(s) in Puckworld. (c) Average rewards on SDQN using different v(s) in
Puckworld too.

6. Conclusions and Future Work

Based on experimental results we claim that even if expert samples are not available, the SRLVF
method presented in this work still improves the performance of the RL via value function algorithm.
The method presented in this work greatly reduces the requirement for the availability of expert
samples. Combining RL algorithms with expert samples brings a number of issues which are worth
addressing. SRLVF method is designed for the objective condition that the availability of expert
samples is difficult to guarantee in different scenarios. In our view, there are two interesting research
directions: (1) improving the performance of SRLVF in the stage of training through a few expert
samples by expanding the combination style of expert samples and RL. (2) Estimating the state function
more accurately and provide more accurate criteria for choosing demonstrations.

Author Contributions: Each author’s contribution to this article is as follows: methodology, software, and
validation, Y.P.; data curation, formal analysis J.Z.; writing—review and editing, C.Y.; supervision, H.Y.

Funding: This research received no external funding.

Conflicts of Interest: All authors declare no conflict of interest.

Appendix A

Algorithm 1 Supervised Reinforcement Learning via Value Function

Initialize environment, agent

or episode = 1 to max_episode do
for step = 1 to max_step do

rs′ ← agent execute a at state s
store (s, a, r, s′) in replay buffer D
sample minibatch from D
update the RL network by RL algorithm
compute the νπ(s) and νπ(s′)
if νπ(s′) > νπ(s) then
store (s, a) in train data buffer T

end if
sample minibatch from T
update the SL network

end for
end for

Symmetry 2019, 11, 590 10 of 11

References

1. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing
atari with deep reinforcement learning. Available online: https://arxiv.org/pdf/1312.5602 (accessed on 15
March 2019).

2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518,
529. [CrossRef] [PubMed]

3. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A. Mastering the game of go without human knowledge. Nature 2017, 550, 354. [CrossRef] [PubMed]

4. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M. Mastering the game of Go with deep neural networks and tree search.
Nature 2016, 529, 484. [CrossRef] [PubMed]

5. Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. End-to-end training of deep visuomotor policies. J. Mach. Learn. Res.
2016, 17, 1334–1373.

6. Oh, J.; Guo, X.; Lee, H.; Lewis, R.L.; Singh, S. Action-conditional video prediction using deep networks in
atari games. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, ON,
Canada, 7–12 December 2015; pp. 2863–2871.

7. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven visual navigation in
indoor scenes using deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference
on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017.

8. Tesauro, G.; Das, R.; Chan, H.; Kephart, J.; Levine, D.; Rawson, F.; Lefurgy, C. Managing power consumption
and performance of computing systems using reinforcement learning. In Proceedings of the Advances in
Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008.

9. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. Available online: https://arxiv.org/

pdf/1611.01578 (accessed on 15 March 2019).
10. Duan, Y.; Schulman, J.; Chen, X.; Bartlett, P.L.; Sutskever, I.; Abbeel, P. RL2: Fast Reinforcement Learning

via Slow Reinforcement Learning. Available online: https://arxiv.org/pdf/1611.02779 (accessed on 15 March
2019).

11. Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. Available online: https://arxiv.org/pdf/1709.10089 (accessed on 15 March
2019).

12. Lakshminarayanan, A.S.; Ozair, S.; Bengio, Y. Reinforcement learning with few expert demonstrations.
In Proceedings of the NIPS Workshop on Deep Learning for Action and Interaction, Barcelona, Spain,
10 December 2016.

13. Zhang, X.; Ma, H. Pretraining deep actor-critic reinforcement learning algorithms with expert demonstrations.
Available online: https://arxiv.org/pdf/1801.10459 (accessed on 15 March 2019).

14. Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.;
Osband, I. Deep q-learning from demonstrations. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

15. Cruz, G.V., Jr.; Du, Y.; Taylor, M.E. Pre-training neural networks with human demonstrations for deep
reinforcement learning. Available online: https://arxiv.org/pdf/1709.04083 (accessed on 15 March 2019).

16. Rajeswaran, A.; Kumar, V.; Gupta, A.; Vezzani, G.; Schulman, J.; Todorov, E.; Levine, S. Learning complex
dexterous manipulation with deep reinforcement learning and demonstrations. Available online: https:
//arxiv.org/pdf/1709.10087 (accessed on 15 March 2019).

17. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
18. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; Springer Science & Business Media: Berlin,

Germany, 1992.
19. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of

the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
20. Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanctot, M.; De Freitas, N. Dueling network architectures for

deep reinforcement learning. Available online: https://arxiv.org/pdf/1511.06581 (accessed on 15 March 2019).

https://arxiv.org/pdf/1312.5602
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
https://arxiv.org/pdf/1611.01578
https://arxiv.org/pdf/1611.01578
https://arxiv.org/pdf/1611.02779
https://arxiv.org/pdf/1709.10089
https://arxiv.org/pdf/1801.10459
https://arxiv.org/pdf/1709.04083
https://arxiv.org/pdf/1709.10087
https://arxiv.org/pdf/1709.10087
http://dx.doi.org/10.1007/BF00992698
https://arxiv.org/pdf/1511.06581

Symmetry 2019, 11, 590 11 of 11

21. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous
methods for deep reinforcement learning. In Proceedings of the International Conference on Machine
Learning, New York, NY, USA, 19–24 June 2016.

22. Lipton, Z.C.; Gao, J.; Li, L.; Li, X.; Ahmed, F.; Deng, L. Efficient Exploration for Dialog Policy Learning with
Deep BBQ Networks & Replay Buffer Spiking. Available online: https://arxiv.org/pdf/1608.05081 (accessed
on 15 March 2019).

23. Li, Y. Deep reinforcement learning: An overview. Available online: https://arxiv.org/pdf/1701.07274 (accessed
on 15 March 2019).

24. Van Otterlo, M.; Wiering, M. Reinforcement Learning and Markov Decision Processes. Reinforc. Learn. 2012,
12, 3–42.

25. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. Nature 2015, 518, 529–533.
26. Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques.

Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24.
27. Ye, Q. Reinforce. Available online: https://github.com/qqiang00/reinforce (accessed on 15 March 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/pdf/1608.05081
https://arxiv.org/pdf/1701.07274
https://github.com/qqiang00/reinforce
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	RL Based on Value Function
	Combining Expert Samples and RL Based on Value Function

	Background
	Reinforcement Learning via Value Function
	Supervised Learning

	Our Method
	Supervised Reinforcement Learning via Value Function
	Demonstration Sets for the SL Network
	Generalization of SRLVF

	Experiments
	Experimental Setup
	Result and Analysis
	Testing the Performance of the SRLVF Method
	Evaluating the Impact of Different v(s) Calculation Methods on the Performance of SRLVF

	Conclusions and Future Work
	
	References

