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Abstract: This paper is concerned with the efficient stochastic simulation of multiple scenarios of an
infectious disease as it propagates through a population. In particular, we propose a simple “green”
method to speed up the simulation of disease transmission as we vary the probability of infection of
the disease from scenario to scenario. After running a baseline scenario, we incrementally increase
the probability of infection, and use the common random numbers variance reduction technique to
avoid re-simulating certain events in the new scenario that would not otherwise have changed from
the previous scenario. A set of Monte Carlo experiments illustrates the effectiveness of the procedure.
We also propose various extensions of the method, including its use to estimate the sensitivity of
propagation characteristics in response to small changes in the infection probability.
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1. Introduction

Successive global influenza pandemics have attracted a great deal of attention from society and
public heath officials. For instance, in the early 2000s, the dangerous avian influenza H5N1 strain
jumped from poultry in Southeast Asia to humans and caused a serious pandemic outbreak (Abbott
and Pearson [1], Ferguson et al. [2]). In 2009, the H1N1 influenza virus (“swine flu”) emerged as a
worldwide outbreak (see, for instance, Andradóttir et al. [3]).

Disease outbreaks continue to be a major concern. For this reason, detailed study of influenza
and other diseases is needed to help public policymakers with respect to the identification and control
of such pandemics, and to evaluate pandemic preparedness plans. Various techniques have been
developed over the years to do so. These techniques are often based on models involving differential
equations or computer simulation.

In typical disease propagation models, as time progresses, individuals in a population make transitions
from one health state to another according to a given rate or probability distribution. The most-basic
disease spread model is what is known as the SIR model (Kermack and McKendrick [4]). At any time t,
each individual must be either susceptible (S), infected (I), or removed (R), where “removed” means
that the individual has either recovered or is dead, and will not be infected again; and it is only possible
to move from S to I to R. If we let the quantities S(t), I(t), and R(t) denote the numbers of individuals
in states S, I, and R, respectively, at time t, then the instantaneous transition rates from one state to
another are given by a set of simple differential equations:

dS(t)
dt

= −βS(t)I(t),
dI(t)

dt
= βS(t)I(t)− δI(t),

dR(t)
dt

= δI(t),
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where β and δ denote the infection and recovery rates. Thus, for instance, S′(t) is the overall rate at
which the population transitions from state S to state I. These classical equations can be used to model
the number of individuals in each state at any time, as well as the probability that any individual will
make a particular transition.

There is a rich literature of models based on differential equations, and these are widely accepted
in the field. Some minor issues with these models concern the facts that they tend to perform poorly in
small-population settings (where, notably, the numbers of individuals in each state much be integers);
they usually do not take randomness into account; and they do not easily accommodate or study
individual-level behavior.

A complementary simulation-based pandemic modeling literature has arisen to address some of
the issues outlined above. Simulation is especially attractive due to the complex modeling issues that
arise in the study of pandemics. For instance, what are the effects of the demographic composition
of the population? How can intervention strategies such as vaccination or social distancing best
be applied? Under what circumstances should we close a school as an intervention strategy? See,
e.g., the papers Andradóttir et al. [3], Elveback et al. [5], Halloran et al. [6], Kelso et al. [7], Lee et al. [8],
and Longini et al. [9,10] for additional background, motivation, and insights. Each of these papers uses
a discrete-event / agent-based simulation approach, where individuals come into contact with each
other on a daily basis at home, school, work, or outside of work (“compartments”). Potential criticisms
of this approach are that (i) the models simulating daily life are often quite complicated (and are a bit
of an art to develop); (ii) they produce “random” output; and (iii) the simulations may sometimes
involve a tremendous amount of computation to complete.

In terms of potential drawback (i), it has come to pass that the use of simulation to model
pandemic disease spread is now widely accepted, even if some of the modeling elements are sometimes
regarded as ad hoc. To address this latter issue, there has been a great deal of work in the literature
that incorporates sophisticated population modeling techniques—including population mixing and
movement of individuals from location to location—along with a variety of mitigation strategies;
see Andradóttir et al. [11] for additional motivation and references. With respect to (ii), one simply
simulates any particular scenario over many independent replications and then conducts what can be
regarded as standard, run-of-the-mill data analysis on the independent outputs. Our concern in this
article is with simulation efficiency, item (iii).

With issue (iii) in mind, we discuss the simulation of a somewhat simplified version of the SIR
model. Suppose that each susceptible individual may encounter each infected individual at most once
a day. At such an encounter, the probability that the susceptible will become infected is p, and we
assume that all encounters are independent so that each encounter is a Bernoulli trial. In some models,
infected subjects first undergo a latent (noninfectious) period before actually become infectious; but for
ease of exposition, the current paper will subsequently ignore that additional state. On any given day,
individuals may move between contact groups (e.g., home, school, work, etc.), thereby encountering
multiple cliques of people as the day goes on. A realization of the simulation usually proceeds until
either no more susceptible individuals remain (only states I and R) or no more infected individuals
remain (only states S and R), indicating that the disease has run its course. Moreover, the simulation
is run over multiple independent replications, so as to obtain statistically sound estimates of system
performance measures such as the expected number of individuals who are ultimately infected,
the peak number of people infected over the course of the outbreak, and the expected length of
the pandemic.

A critical driver of computational effort is the number of Bern(p) trials that need to be carried out;
this effort grows quickly as the population size increases and is an underlying concern of the current
paper. Section 2 discusses how these trials are implemented, as well as some tricks that can be used
to ameliorate the work effort. In particular, we propose the use of “green” simulation, in which we
reuse many of the Bern(p) trials between certain runs, thus avoiding recalculation effort (see, e.g., Feng
and Staum [12] and Meterelliyioz et al. [13], the former of which coined the term). This is the main
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contribution of our article. Section 3 presents several simple examples illustrating the method’s efficacy.
We also show how to use the methodology for purposes of sensitivity analysis—e.g., what is the
derivative of the expected number of infected individuals as a function of p? The latter application
combines a simulation variance reduction technique (see Law [14]) with our green technology. Section 4
provides conclusions in addition to various potential augmentations of future interest.

2. Efficient Bernoulli Generation

A naive simulation of disease propagation would require us to generate a Bernoulli trial each time
a susceptible individual (heretofore referred to as a “susceptible”) were to come in contact with an
infected individual (an “infective”), for every replication of every experimental design point. Of course,
a single Bern(p) trial merely requires that the simulation generates a Unif(0,1) pseudo-random number
(PRN) U; and if p < U, then the interpretation is that the susceptible becomes infected. However,
the problem is that the entire exercise may require a tremendous number of Bern(p) trials, a task which
eventually becomes costly with respect to computer time.

What might one do to reduce the computational effort involving Bernoulli trials? There are a
number of useful tricks, depending on the situation:

1. Within a particular simulation run, one could use a binomial random variable instead of a series of
Bern(p) random variables to determine the number of new infections. For instance, if an infective
walks into a room with n susceptibles, and np is “small,” then it may more efficient to (i) generate
one Bin(n, p) random variate X representing in one fell swoop the number of susceptibles who
will become infected than to instead (ii) sample n individual Bern(p) trials corresponding to the
n susceptibles. If one were to take the Bin(n, p) route, one could sample a single Unif(0,1) PRN
and use the discrete distribution version of the inverse-transform method to do a table look-up or
instead use a normal distribution approximation to the binomial to generate the corresponding
value for X (see, e.g., Law [14]). If X = x ≥ 1, we would then have to randomly reassign x
susceptibles to the infected state, which would take a little bit more work—though the expected
number of assignments is only E[X] = np.

2. Within a particular simulation run, we could work with a single “super-infective” individual
rather than multiple infectives. Consider the scenario above, except that k infectives walk into
the room containing n susceptibles. Assuming that all of the infectives interact with all of the
susceptibles in the form of Bern(p) trials, an easy calculation shows that the probability that a
particular susceptible will become infected that day is 1− qk, where q = 1− p. Then, instead
of performing nk Bern(p) trials with the individual infectives, we might equivalently perform
only n Bern(1− qk) trials using a“super-infective” entity—or even a single Bin(n, 1− qk) trial; see
Section 4 or references such as Tsai et al. [15].

3. Consider driving the simulation from different points of view. For example, is it more efficient to
(i) generate each infected individual and see which susceptibles he infects as he proceeds through
his day, or (ii) generate each susceptible individual and see if he gets infected as he proceeds
through his day? See Shen et al. [16] and Tsai et al. [15] for insights and recommendations.

4. When re-running a simulation but with different input parameters, we might reuse from one
simulation to the next as many of the random numbers as possible. This is the goal of the current
paper. To illustrate, again consider the situation in which one infectious individual walks into a
room with n susceptibles. Suppose that we perform n Bern(p1) trials to determine who, if anyone,
becomes infected. Now suppose we run another simulation, but this time with a new probability
of infection p2 > p1. We will show how to reuse many of the PRNs from the initial simulation to
do the p2 version of the job with less effort.
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In what follows, we illustrate the workings of the “green” reuse of PRNs. We begin with a baseline
example in which, on any given day, each infective has probability p = 0.2 of infecting any remaining
susceptible. The simulation begins with I(0) = 1 infected person and S(0) = 15 susceptibles at the
end of Day 0 / beginning of Day 1. The number of infectives at the beginning of Day t is I(t− 1),
and the probability that any particular susceptible will be infected by at least one of those infectives is
p̃(t) = 1− qI(t−1), as explained in Item 2 above. The numbers of individuals in states S, I, and R at the
end of day t are S(t), I(t), and R(t), respectively. Bern(p̃(t)) trials are conducted until no infectives
remain. Infectives stay infectious for exactly one day, whereupon they transit to the removed state.

Table 1 keeps track of one realization of the simulation. Day 1 starts with S(0) = 15 Bern(0.2) trials,
since there is I(0) = 1 infective entering the room full of susceptibles. Any susceptible corresponding
to a PRN < 0.2 becomes infected. For instance, the PRN for individual 6 is 0.082, so he transits to
state I; and subsequent Bernoulli trials will no longer be necessary for him. At the end of Day 1, we
have S(1) = 12 remaining susceptibles, I(1) = 3 newly infectious people, and R(1) = 0 removed
people (the original infected “person 0” is no longer infected, but we will not count him in the R(1)
tally). On Day 2, we only need to take 12 Bern(0.488) trials, where p̃(2) = 1− qI(1) = 1− 0.83 = 0.488.
On Day 2, e.g., individual 3 becomes infected since his PRN = 0.027 < 0.488. The exercise continues
until Day 5, whereupon no infectives remain. In total, the pandemic lasted five days, 14 people were
infected, and we used 37 PRNs.

Table 1. Baseline example with S(0) = 15 initial susceptibles, p = 0.2, I(0) = 1 initial infective,
and length of infection of one day.

Day t 1 2 3 4 5
p̃(t) = 1 − qI(t−1) 0.2 0.488 0.67232 0.67232 0.2

Individual PRN / State PRN / State PRN / State PRN / State PRN / State

1 0.637 S 0.886 S 0.855 S 0.975 S 0.828 S
2 0.992 S 0.986 S 0.688 S 0.335 I R
3 0.262 S 0.027 I R R R
4 0.244 S 0.877 S 0.145 I R R
5 0.700 S 0.101 I R R R
6 0.082 I R R R R
7 0.136 I R R R R
8 0.857 S 0.372 I R R R
9 0.513 S 0.045 I R R R

10 0.333 S 0.496 S 0.039 I R R
11 0.978 S 0.546 S 0.148 I R R
12 0.980 S 0.567 S 0.147 I R R
13 0.253 S 0.011 I R R R
14 0.253 S 0.965 S 0.658 I R R
15 0.200 I R R R R

S(t) 12 7 2 1 1
I(t) 3 5 5 1 0
R(t) 0 3 8 13 14

# PRNs 15 12 7 2 1

Table 2 illustrates the corresponding “green” realization of the simulation, using the same PRNs
as those in Table 1, but with the new probability p = 0.3 that an infectious individual will infect any
particular susceptible. Day 1 now starts with S(0) = 15 Bern(0.3) trials, since there is again I(0) = 1
infective entering the room full of susceptibles. Thus, in this case, any susceptible corresponding to
a PRN < 0.3 becomes infected. In this riskier environment, seven Bern(0.3) trials—using the same
PRNs as before—result in an infection, so subsequent Bernoulli trials will no longer be necessary for
those individuals. At the end of Day 1, we have S(1) = 8 remaining susceptibles, I(1) = 7 newly
infectious people, and R(1) = 0 removed people. On Day 2, we only need to take seven Bern(0.91765)
trials, where p̃(2) = 1− qI(1) = 1− 0.77 = 0.91765. Since the pandemic progresses more rapidly, we



Symmetry 2019, 11, 580 5 of 19

now stop at Day 4, when no new state changes can occur. In total, the pandemic lasted four days, all
15 people were infected, and we used 24 PRNs (which themselves had already been generated for the
previous Table 1 version of the example).

Table 2. “Green” example reusing PRNs from Table 1 with S(0) = 15 initial susceptibles, a new base
probability of p = 0.3, I(0) = 1 initial infective, and a length of infection of one day.

Day t 1 2 3 4
p̃(t) = 1 − qI(t−1) 0.3 0.91765 0.91765 0.3

Individual PRN / State PRN / State PRN / State PRN / State

1 0.637 S 0.886 I R R
2 0.992 S 0.986 S 0.688 I R
3 0.262 I R R R
4 0.244 I R R R
5 0.700 S 0.101 I R R
6 0.082 I R R R
7 0.136 I R R R
8 0.857 S 0.372 I R R
9 0.513 S 0.045 I R R

10 0.333 S 0.496 I R R
11 0.978 S 0.546 I R R
12 0.980 S 0.567 I R R
13 0.253 I R R R
14 0.253 I R R R
15 0.200 I R R R

S(t) 8 1 0 0
I(t) 7 7 1 0
R(t) 0 7 14 15

# PRNs 15 8 1 0

Remark 1. A number of comments are in order here:

1. Generally speaking, the pandemic progresses quickly if p is very small (in which case the pandemic dies out
rapidly) or very large (in which case the pandemic rapidly infects many people). Thus, for p very small or
very large, we would expect to use only a small number of PRNs. Intermediate values of p might require
more PRNs. See Section 3, Example 1.

2. How many PRNs will we need to generate in order to simulate multiple scenarios involving the same
n susceptible individuals, with each scenario having a different parameter value, for instance, p =

0.01, 0.02, . . . , 0.30? With Remark 1.1 in mind, it might be prudent to generate an initial set of nT PRNs
for possible use in any of the scenarios, where T is the maximum time horizon of interest. It is almost
certain that many of the nT PRNs will never be used if, e.g., T is conservatively chosen to be so high as
to guarantee that the pandemic will have run its course. However, if we are running a large number of
scenarios, then the expected savings garnered by the use of green simulation would likely mitigate the
conservativeness of T and the corresponding one-time charge of generating nT PRNs. For example, for the
scenarios presented in Tables 1 and 2, the maximum possible number of days for the scenarios to run is 15,
in which case T = 15 would be a conservative choice. See Section 4 for more insight on this matter.

3. It is possible (in rare cases) to obtain sample paths in which an individual becomes infectious on a certain
day when simulating the Bernoulli trials for a particular probability parameter p1, but remains susceptible
on that day when the simulation is re-run under a scenario with a larger probability parameter p2 > p1.
For such an anomalous example, see the sample paths of Individual 3 in Tables 3 and 4 for the cases p = 0.20
and 0.25, respectively; and see Section 4 for additional discussion.
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Table 3. Remark 1.3 anomalous example with S(0) = 6 initial susceptibles, p = 0.2, I(0) = 1 initial
infective, and length of infection of one day. For this sample path, Individual 3 is infectious at the end
of Day 3.

Day t 1 2 3
p̃(t) = 1 − qI(t−1) 0.2 0.2 0.36

Individual PRN / State PRN / State PRN / State

1 0.24 S 0.44 S 0.72 S
2 0.23 S 0.19 I R
3 0.65 S 0.95 S 0.29 I
4 0.18 I R R
5 0.21 S 0.18 I R
6 0.42 S 0.55 S 0.38 S

Table 4. Remark 1.3 anomalous example with S(0) = 6 initial susceptibles, p = 0.25, I(0) = 1 initial
infective, and length of infection of one day. For this sample path, Individual 3 is susceptible at the end
of Day 3.

Day t 1 2 3
p̃(t) = 1 − qI(t−1) 0.25 0.6836 0.25

Individual PRN / State PRN / State PRN / State

1 0.24 I R R
2 0.23 I R R
3 0.65 S 0.95 S 0.29 S
4 0.18 I R R
5 0.21 I R R
6 0.42 S 0.55 I R

3. Examples

With the mechanics of the methodology established, we put forth in this section a series of
examples to assess the performance of the proposed green method, including its efficiency as compared
to traditional (naive) simulation. Examples 1 and 2 in Section 3.1 give exact small-sample results
that allow us to succinctly see how various system performance characteristics (e.g., the expected
number of individuals infected and the expected length of the pandemic) are affected as the Bernoulli p
parameter varies. Although these sorts of results are interesting in and of themselves, they also provide
partial validation for the subsequent simulations that we will run. Such exact results might even
allow us to avoid simulation altogether—but only for extremely small population sizes. Example 3
in Section 3.2 is concerned with a cohort size (n = 100 susceptibles) that is large enough so that
we are forced to use simulation to assess system performance as we vary p. This example is useful
for indicating what typical histograms might look like for the system performance characteristics of
interest. Finally, Section 3.3 presents a number of results that directly address the contibutions of our
green simulation technology. Namely, Example 4 uses simulation to establish run-time savings on
a larger, more-complicated scenario involving a cohort of size n = 1000; and Example 5 illustrates
how we can use simulation variance reduction methods to conduct certain sensitivity analyses on the
various performance characteristics.

3.1. Some Small-Sample Exact Results

First of all, it is natural to ask if it is possible to obtain exact analytical results for the problem
at hand using only elementary combinatoric arguments. Indeed, one can sometimes carry out the
necessary calculations, though these soon become too tedious even for very small problem instances.
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Example 1. Suppose that n = 3 susceptibles are in a room, and they are exposed to one infective on Day 1.
Moreover, suppose that each infective stays infectious for exactly one day (so that he only has one chance to
infect his friends). Let D denote the length of the pandemic (i.e., how long the pandemic lasts until no infectives
remain). In addition, let I denote the number of people who ultimately get infected (not counting person 0).
Then, some slightly tedious calculations (algebra not shown) reveal that

E[D] = 1 + 3p + 3p2 − 18p3 + 18p4 − 6p5

and
E[I] = 3p + 6p2 − 21p4 + 21p5 − 6p6.

See Figures 1 and 2, which respectively illustrate the expected length of the outbreak and the expected number of
individuals ultimately infected.

Figure 1. Exact expected length of pandemic (in days) for the case n = 3 with a one-day infectiousness
period (Example 1).

Figure 2. Exact expected number of infected individuals for the case n = 3 with a one-day infectiousness
period (Example 1).

Let B denote the number of Bernoulli trial comparisons that would have to be made in a simulation of this
scenario, where we use the “super-infective” trick described in Item 2 of Section 2. That is, B is the total number
of days all of the susceptibles will be exposed to potential infection during the course of the pandemic. (The
quantity B informally represents the simulation effort we would have to undertake.) Then, it turns out that

E[B] = 3 + 6p + 3p2 − 15p3 + 18p4 − 6p5. �
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Example 2. Suppose that n = 3 susceptibles are in a room, and they are exposed to one infective on Day 1.
However, now, each infective stays infectious for exactly two days (so that he gets two chances to infect his
friends). Then, after a corvée of tedious calculations, we obtain

E[D] = 1 + 3q− 3q2 + q3 + 12q4 − 15q5 + 15q6 − 12q7 + 6q8 − 18q9 + 6q10 + 6q11

and
E[I] = 3− 6q6 − 6q8 + 15q10 − 6q12. �

See Figures 3 and 4.

Figure 3. Exact expected length of pandemic (in days) for the case n = 3 with a two-day infectiousness
period (Example 2).

Figure 4. Exact expected number of infected individuals for the case n = 3 with a two-day
infectiousness period (Example 2).

3.2. Simulation

It ought to be clear from Examples 1 and 2 in Section 3.1 that even small-sample exact calculations
present combinatorial challenges. Luckily, it is easy to carry out simulations for more-substantive
examples involving larger values of the cohort size n. In this section, we consider a simple example
involving a non-trivial cohort size so as to illustrate what typical disease characteristic histograms
might look like for moderate values of n, in particular, as we vary the infectiousness parameter p.
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Example 3. Suppose that n = 100 susceptibles are in a facility, and all are exposed to one infective on Day 1;
the probability that a susceptible becomes infected upon exposure to an infective is p = 0.01; and each infective
stays infectious for exactly one day. Figures 5–7 respectively depict histograms of the length of the pandemic (in
days), the total number of individuals who eventually become infected (out of 100), and the number of PRNs
used in the simulation. These histograms are based on 1,000,000 independent replications of the simulated
pandemic. Figures 8–10 depict the same outcome measures as the previous three, except that this latter set of
figures is for the case p = 0.05. By design, replication i of the p = 0.05 runs used many of the same green PRNs
as replication i of the p = 0.01 runs, i = 1, 2, . . . , 106.

Figure 5 shows that, for small p = 0.01, the sample probability mass function (p.m.f.) of the length of the
pandemic dies off quickly. It is actually possible for the pandemic to end after only one day—with probability
(1− 0.01)100 = 0.366 ≈ 1/e—but the sample mean of the length of the pandemic is D̄ = 3.88 with a sample
standard deviation of SD = 3.72. Figure 6 reveals a similar p.m.f. for the number of individuals who become
infected; here Ī = 6.67 and SI = 10.93, with the large standard deviation owing to a long right-hand tail.
Figure 7 illustrates an interesting p.m.f. for the number B of PRNs (Bernoulli trials) used in the course of the
simulations. That p.m.f. is characterized by distinct chunks of PRNs corresponding to the first few days of the
pandemic; and we find that B̄ = 355.7 and SB = 310.7.

Figure 5. Histogram of length of pandemic (in days) for the case n = 100, p = 0.01, one initial infective,
and a one-day infectiousness period (based on 1,000,000 replications).
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Figure 6. Histogram of number of individuals ultimately infected for the case n = 100, p = 0.01, one
initial infective, and a one-day infectiousness period (based on 1,000,000 replications).
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Figure 7. Histogram of the total number of PRNs used for the case n = 100, p = 0.01, one initial
infective, and a one-day infectiousness period (based on 1,000,000 replications).

Figure 8 shows that, for the much higher p = 0.05, the p.m.f. of D is less variable, owing to the fact that the
disease propagates throughout the population quite quickly, so that D̄ = 3.25 and SD = 0.88. Figure 9 reveals
that almost everyone eventually becomes infected, with Ī = 98.78 and SI = 7.78. Figure 10 illustrates a much
tighter p.m.f. for the number of PRNs used in the p = 0.05 case (compared to the p = 0.01 case in Figure 7);
here, we have B̄ = 302.0 and SB = 38.2. �
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Figure 8. Histogram of length of pandemic (in days) for the case n = 100, p = 0.05, one initial infective,
and a one-day infectiousness period (based on 1,000,000 replications).
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Figure 9. Histogram of number of individuals ultimately infected for the case n = 100, p = 0.05, one
initial infective, and a one-day infectiousness period (based on 1,000,000 replications).
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Figure 10. Histogram of the total number of PRNs used for the case n = 100, p = 0.05, one initial
infective, and a one-day infectiousness period (based on 1,000,000 replications).

3.3. Run Time and Efficiency Considerations

The pandemic simulation effort requires more than simply generating Bernoulli trials. One also
has to make decisions, update statistcs, and access saved observations from temporary storage. How
do these miscellaneous tasks affect the overall computation time with respect to green simulation? In
this section, we present a number of results on the efficacy of our green simulation technology. Namely,
Example 4 discusses simulation run-time savings on a more-realistic mixing example that what we
have seen so far, and Example 5 illustrates how we can use variance reduction methods to carry out
sensitivity analysis.
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Example 4. Clock-Time Savings. Consider a school with 900 students and 100 staff members. The students
are divided into 30 classrooms, each with 30 students; and each student remains in his/her assigned classroom
all day. Each of the 100 staff members are randomly assigned 10 classrooms to visit during the day (and will
visit those same assigned classrooms every day). Thus, each student interacts with the other 29 kids in his/her
classroom as well as with the staff members who visit the classroom each day; and each staff member interacts
with the other 99 staff members as well as with the 300 students whom the staff member visits in his/her
assigned 10 classrooms. On Day 1, all 1000 people in the cohort are susceptibles. Unfortunately, the school
principal (person 0) is infectious and visits all 1000 susceptibles on Day 1, any of whom subsequently become
infected with probability p. The principal is so sick that he does not return after Day 1. However, anyone
who gets infected becomes infectious the next day and remains infectious for a total of three days. We ran 200
replications of both the traditional (naive) and green versions of the simulation for each of the five choices of
p = 0.020, 0.021, . . . , 0.024.

To get an idea of what we are facing, Figures 11–13, respectively, depict histograms for the length of the
pandemic, number of infections that occur, and the number of PRNs required for the baseline p = 0.02 scenario
for this example. In any case, the 5× 200 = 1000 traditional replications required about 118 min of real
clock time on a standard Windows-based PC; and the corresponding 1000 green replications required about
103 min—i.e., a savings of about 15% over running the five sets of experiments individually. �

Figure 11. Histogram of length of pandemic (in days) for the case n = 1000, p = 0.02, one initial
infective, and a three-day infectiousness period, as described in Example 4 (based on 200 replications).
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Figure 12. Histogram of number of individuals ultimately infected for the case n = 1000, p = 0.02,
one initial infective, and a three-day infectiousness period, as described in Example 4 (based on
200 replications).

Figure 13. Histogram of the total number of PRNs used for the case n = 1000, p = 0.02, one initial
infective, and a three-day infectiousness period, as described in Example 4 (based on 200 replications).

Example 5. Sensitivity and Variance Reduction. The fact that we incorporate many of the same PRNs between
runs of the simulation that use different values for parameter p suggests that the outputs from the runs may
be positively correlated. For instance, suppose that Īp denotes the sample mean of the number of individuals
infected during the course of the simulation when the baseline Bernoulli parameter is p. If p1 ≈ p2 so that Īp1

and Īp2 are presumably positively correlated, then Īp1 − Īp2 is an unbiased estimator for the true mean difference
E
[
Īp1 − Īp2

]
and, notably,

Var
(

Īp1 − Īp2

)
= Var

(
Īp1

)
+ Var

(
Īp2

)
− 2Cov

(
Īp1 , Īp2

)
≤ Var

(
Īp1

)
+ Var

(
Īp2

)
,
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so that the estimator for the mean difference has a smaller variance than would be observed if the runs had been
undertaken independently—a standard simulation variance reduction technique known as common random
numbers (see Law [14]). As a bonus, we immediately obtain an estimator for the derivative dIp/dp in the
vicinity of p1 ≈ p2,

d̂Ip

dp
=

Īp1 − Īp2

p1 − p2
.

Such derivatives are useful for sensitivity analysis, and are especially so if they are of reduced variance.
To illustrate this approach, suppose we simulate each of two scenarios p1 = 0.070 and p2 = 0.071, both

involving n = 30 individuals, one initial infective, and a one-day infectiousness period. We simulated both of the
scenarios with three sets of 100,000 replications to examine the variability of the outcomes under two sampling
schemes: The two scenarios are carried out independently (Case A), and the scenarios are carried out in green
fashion (Case B). Table 5 shows that the differences produced by the green simulations have less variability than
those produced by Case A. �

Table 5. Sensitivity example with n = 30 initial susceptibles, p1 = 0.070, p2 = 0.071, I(0) = 1 initial
infective, and infectiousness period of one day. Three sets of 100,000 independent replications were
carried out for Case A (independent scenarios) and Case B (green scenarios).

Case A (Indep Scenarios) Case B (Green Scenarios)
Set

Īp1 Īp2 Īp1 − Īp2
d̂Ip
dp Īp1 Īp2 Īp1 − Īp2

d̂Ip
dp

1 20.5945 21.0066 −0.4121 412 20.5593 20.9086 −0.3493 349
2 20.5325 20.8906 −0.3581 358 20.5773 20.9409 −0.3636 364
3 20.5611 20.8921 −0.3309 331 20.5604 20.9071 −0.3467 347

4. Conclusions and Future Work

We have shown how to conduct “green” simulations of the propagation of an infectious disease
by reusing certain random variates under different input parameter settings. This reuse avoids some
of the computation time that would be dedicated to generating a new set of random variates each
time the parameters change. Implementation is straightforward, and computation time savings can be
significant. Moreover, the green simulation can be regarded as a variance reduction technique when
used for purposes of sensitivity analysis.

In terms of future research, there is still a great deal that we can do:

1. Item 1 of Section 2 discusses the use of a single Bin(n, p) random variable instead of n Bern(p)
trials to determine the number of infections that occur on a given day. We can immediately
implement efficient methods for generating the Bin(n, p) random variables (Kachitvichyanukul
and Schmeiser [17,18]), but we might also apply our green technology for Bin(n, p) generation
across scenarios involving different values of p.

2. Remark 1.2 in Section 2 suggests that one could pre-generate nT PRNs to be used on all scenarios
of the simulation, but that nT may be a needlessly high number. In fact, one might instead
generate each PRN only on a strict as-needed basis.

3. Remark 1.3 notes that it is possible (because of how we handle “super-infectives”) for an individual
who is infected on a certain day under the p1 scenario to at least temporarily escape infection for
the p2 (> p1) scenario. We are currently investigating ways to identify and take advantage of
these (rare) events.

4. We are in the process of performing expanded analyses (i) on much larger population sizes,
(ii) with a greater variety of parameter choices (including different probabilities of infection
for different sets of infectives and susceptibles), and (iii) under more-general compartmental
environments (e.g., individuals can move between home, school, and work on any given day).
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5. The common random variates variance reduction technique is one of several that are popular in
the literature. A worthy endeavor is that of incorporating other such methods in the context of
disease propagation simulation.

6. Ultimately, we will use our efficient simulations to evaluate the effects of various mitigation
strategies on outbreaks.
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The following abbreviations are used in this manuscript:

Bern Bernoulli random variable
Bin Binomial random variable
p.m.f. probability mass function
PRN Pseudo-Random Number
SIR Susceptible-Infected-Recovered
Unif Uniform random variable
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