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Abstract: A three-layer composite shell with shear connectors is made of three shell layers with
one another connected by stubs at the contact surfaces. These layers can have similar or different
geometrical and physical properties with the assumption that they always contact and have relative
movement in the working process. Due to these characteristics, they are used widely in many
engineering applications, such as ship manufacturing and production, aerospace technologies,
transportation, and so on. However, there are not many studies on these types of structures.
This paper is based on the first-order shear deformation Mindlin plate theory and finite element
method (FEM) to establish the oscillator equations of the shell structure under dynamic load.
The authors construct the calculation program in the MATLAB environment and verify the accuracy
of the established program. Based on this approach, we study the effects of some of the geometrical
and physical parameters on the dynamic responses of the shell.

Keywords: three-layer composite shell; Mindlin plate theory; finite element method; force vibration

1. Introduction

Nowadays, along with a strong development of science and technology, there are many new
advanced materials appeared, for instance, composite materials, functionally graded materials (FGM),
piezoelectric materials, and so on. The studying on dynamic responses of these new materials has been
reached great achievements and attracted numerous scientists all over the world. Moreover, the idea
of merging these different materials is considered by engineers to make new structures in order to
have specific purposes. For example, the combining of a concrete structure and a steel structure has
a lighter weight than a normal concrete structure. Hence, these new types of structures are applied
extensively in civil techniques, aerospace, and army vehicles. In this structure, the connecting stub is
attached to contact different layers in order to create the compatibility of the horizontal displacement
among layers, and it plays an important role in working process of the structure.

For multilayered beams, recently, the Newark’s model [1] is considered by many experts such
as He et al. [2], Xu and Wang [3,4]. They took into account the shear strain when calculating by
using Timoshenko beam theory. Nguyen [5] studied the linear dynamic problems. Silva et al. [6],
Schnabl et al. [7] and Nguyen and co-workers [8,9] employed the finite element method (FEM) and
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analytical method in order to examine linear static analysis of multilayered beams. Huang [10],
and Shen [11] studied the linear dynamic response, too. For the nonlinear free vibration can be seen
in [12] of Arvin and Bakhtiari-Nejad.

In addition to the Timoshenko beam theory (TBT), the higher-order beam theory (HBT) is also
considered, in which The dynamic problem is carried out by Chakrabarti in [13] with FEM. Chakrabarti
and colleagues [14,15] analyzed a static problem for two-layer composite beams. The higher-order
beam theory (HBT) overcomes a part of the effect due to the shear locking coefficient caused. Otherwise,
Subramanian [16] constructed an element based on a displacement field to study the free vibration of
the multilayered beam. Li et al. [17] conducted a free vibration analysis by employing the hyperbolic
shear deformation theory. Vo and Thai [18] studied static multilayered beams with the improved
higher-order beam theory of Shimpi.

In general, most higher-order beam theories (HBT), including higher-order beam theory of Reddy
tend to neglect the horizontal deformation of multilayered beams. According to the Kant’s opinion,
the horizontal stress of sub-layer is caused by the pressure can reduce the dimension from multilayered
beam model to the plane stress model. To obtain this thing, Kant [19,20] employed both the higher-order
beam theory (HBT) and the horizontal displacement theory by considering approximate displacements
in two ways. Thus, he established the mixed two-layer beam with sub-layers, which abides by the
higher-order beam theory of Kant proposed by the weak form for the buckling analysis.

A three-dimensional fracture plasticity based on finite element model (FEM) are developed by
Yan and coworkers [21] to carry out the ultimate strength respones of SCS sandwich structure under
concentrated loads. The static behaviors of beams with different types of cross-section, such as square,
C-shaped, and bridge-like sections, were investigated in Carrena’s study [22] by assuming that the
displacement field is expanded in terms of generic functions, which is the Unified Formulation by
Carrera (CUF) [23]. Similarly to mentioned methods, Cinefra et al. [24] used MITC9 shell elements to
explore the mechanical behavior of laminated composite plates and shells. Muresan and coworkers [25]
examined the study on the stability of thin walled prismatic bars based on the Generalized Beam Theory
(GBT), which is an efficient approach developed by Schardt [26]. Yu et al. [27] employed the Variational
Asymptotic Beam Section Analysis (VABS) for mechanical behavior of various cross-sections such as
elliptic and triangular sections. In [28], we used first-order shear deformation theory to analysis of
triple-layer composite plates with layers connected by shear connectors subjected to moving load.
Ansari Sadrabadi et al. [29] used analytical methods to investigate a thick-walled cylindrical tube made
of a functionally graded material (FGM) and undergoing thermomechanical loads.

For multilayered plate and shell composite structures, there have been many published papers,
including static problems, dynamic problems, linear, and nonlinear problems, and so on. However,
for the multilayered structure with shear connectors, there are not many papers yet. Based on above
mentioned papers, the authors are about to construct the relations of mechanical behavior and the
oscillator equation of the multilayered shell. We also study several geometrical and physical parameters,
the loading, etc., which effect on the vibration of the shell.

The body of this paper is divided into five main sections. Section 1 is the general introduction.
We present finite formulations of free vibration and forced vibration analysis of three-layer composite
shell with shear connectors in Section 2. The numerical results of vibration and forced vibrations are
discussed in Sections 3 and 4. Section 5 gives some major conclusions.

2. Finite Element Formulations

2.1. Equation of Motion of the Shell Element

Consider a three-layer composite shell with shear connectors as shown in Figure 1.
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Figure 1. The model of three-layer composite shell with shear connectors, (a) shell model with shear 

connectors, and (b) finite element model. 

The composite shell consists of three layers, including the top layer (t), the bottom layer (b) and 

the middle layer (c); these layers are connected with one another by shear connectors, and they can 

be made of the same materials or different materials. These three layers can slide relatively with one 

another at the contact surfaces, and there is no delamination phenomenon at all. All three layers of 

the shell are set in the local coordinates Oxyt, Oxyc, and Oxyb, respectively. The total thickness of the 

shell is divided into six small part h1, h2, h3, h4, h5, h6 as shown in Figure 1; ut0, uc0, and ub0 represent 

displacements in x direction; vb0 represents the displacement in y direction at the neutral surface of 

each layer. 

According to Mindlin plate theory, displacements u, v, w at a point (xk, yk, zk) of layer k are 
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Figure 1. The model of three-layer composite shell with shear connectors, (a) shell model with shear
connectors, and (b) finite element model.

The composite shell consists of three layers, including the top layer (t), the bottom layer (b) and
the middle layer (c); these layers are connected with one another by shear connectors, and they can
be made of the same materials or different materials. These three layers can slide relatively with one
another at the contact surfaces, and there is no delamination phenomenon at all. All three layers of
the shell are set in the local coordinates Oxyt, Oxyc, and Oxyb, respectively. The total thickness of the
shell is divided into six small part h1, h2, h3, h4, h5, h6 as shown in Figure 1; ut0, uc0, and ub0 represent
displacements in x direction; vb0 represents the displacement in y direction at the neutral surface of
each layer.

According to Mindlin plate theory, displacements u, v, w at a point (xk, yk, zk) of layer k are
expressed as follows: 

uk = uk0(xk, yk) + zkϕk(xk, yk)

vk = vk0(xk, yk) + zkψk(xk, yk)

wk = w(xk, yk)

(k = t, c, b) (1)

where ϕk and ψk are the transverse normal rotations of the xk and yk directions.
The relative movements among the contact surfaces are defined by the following equations
For the layer t and layer c we have{

utc = ut(xt, yt, h2) − uc(xc, yc,−h3)

vtc = vt(xt, yt, h2) − vc(xc, yc,−h3)
(2)

And for layer c and layer b we have:{
ucb = uc(xc, yc, h4) − ub(xb, yb,−h5)

vcb = vc(xc, yc, h4) − vb(xb, yb,−h5)
(3)



Symmetry 2019, 11, 527 4 of 20

Note that at the contact surfaces, we have:{
zt = h2; zc = −h3

zc = h4; zb = −h5
(4)

with h4 = h3 = hc
2 .

From Equations (1)–(4), we get:{
utc = ut0 − uc0 + h2ϕt + h3ϕc

vtc = vt0 − vc0 + h2ψt + h3ψc
(5)

{
ucb = uc0 − ub0 + h4ϕc + h5ϕb
vcb = vc0 − vb0 + h4ψc + h5ψb

(6)

The relation between strain and displacement of each layer is expressed as follows
For the layer k, we have:

εkx =
∂uk
∂x =

∂uk0
∂x + w0

Rx
+ zk

∂ϕk
∂x ;

εky =
∂vk
∂y =

∂vk0
∂y + w0

Ry
+ zk

∂ψk
∂y ;

γkxy =
∂vk
∂x +

∂uk
∂y =

∂uk0
∂y +

∂vk0
∂x + 2w0

Rxy
+ zk

(
∂ϕk
∂y +

∂ψk
∂x + 1

2 (
1

Ry
−

1
Rx
)
(
∂vk0
∂x −

∂uk0
∂y

))
;

γkxz =
∂w0
∂x +

∂uk
∂zk

= ∂w0
∂x + ϕk −

uk0
Rx
−

vk0
Rxy

;

γkyz =
∂w0
∂y +

∂vk
∂zk

= ∂w0
∂y +ψk −

uk0
Rxy
−

vk0
Ry

;

(7)

We can rewrite in a matrix form as follow

εk =


εkx
εky
γkxy

 = ε0
k + zkκk; γk =

{
γkyz
γkzx

}
(8)

in which

ε0
k =


ε0

kx
ε0

ky
γ0

kxy

 =


∂uk0
∂x + w0

Rx
∂vk0
∂y + w0

Ry(
∂uk0
∂y + ∂vk0

∂x

)
+ 2w0

Rxy

;κk =


κkx
κky
κkxy

 =


∂ϕk
∂x
∂ψk
∂y

∂ϕk
∂y +

∂ψk
∂x + 1

2 (
1

Ry
−

1
Rx
)
(
∂vk0
∂x −

∂uk0
∂y

)


γk =

 γkxz
γkyz

 =

 −
uk0
Rx
−

vk0
Rxy

+ ∂w0
∂x + ϕk

−
uk0
Rxy
−

vk0
Ry

+ ∂w0
∂y +ψk


(9)

The relation between stress and strain of layer k is expressed as followIs necessary bild?

σk = Dkεk; τk =
5
6

Gkγk (10)

in which Dk, Gk are the bending rigidity and shear rigidity of layer k, respectively, and νk is the Poisson
ratio of layer k.

Dk =
Ek

1− v2


1 νk 0
νk 1 0
0 0 (1− νk)/2

; Gk =
Ek

2(1 + νk)

[
1 0
0 1

]
(11)

In this work, the thickness of the shell is thin or medium (h = a
100 ÷

a
10 , a is short edge), we employ

the 8-node isoparametric element, each node has 13 degrees of freedom, three layers have the same
displacement in the z-direction (Figure 2), the degree of freedom of node i is qi

e and the total degree of
freedom of the shell element qe is defined as follow.
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qi
e =

{
ut0i vt0i ϕti ψti uc0i vc0i ϕci ψci ub0i vb0i ϕbi ψbi w

}T
; i = 1÷ 8. (12)

qe =
{

q1
e q2

e q3
e q4

e q5
e q6

e q7
e q8

e

}T
(13)

uk0 =
8∑

i=1
Ni(ξ, η)uk0i; vk0 =

8∑
i=1

Ni(ξ, η)vk0i

ϕk =
8∑

i=1
Ni(ξ, η)ϕki; ψk =

8∑
i=1

Ni(ξ, η)ψki; w =
8∑

i=1
Ni(ζ, η)wi

(k = t, c, b) (14)

in which Ni (i = 1 ÷ 8) can be defined as in [28].
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Figure 2. Degrees of freedom of the node in the eight-node shell element. Figure 2. Degrees of freedom of the node in the eight-node shell element.

By substituting in the expression for verifying displacement of element we have: εk =
(
B0

k + zkB1
k

)
qe

γk = Skqe
(k = t, c, b) (15)

in which B0
k ; B1

k ; Sk are defined as follows

B0
k =

[
B0

k1 B0
k2 B0

k3 B0
k4 B0

k5 B0
k6 B0

k7 B0
k8

]
;

B1
k =

[
B1

k1 B1
k2 B1

k3 B1
k4 B1

k5 B1
k6 B1

k7 B1
k8

]
;

Sk =
[

Sk1 Sk2 Sk3 Sk4 Sk5 Sk6 Sk7 Sk8

]
;

(16)

where B0
ki, B1

ki and Ski can be found in Appendix A
The elastic force of connector stub per unit length is defined by the following equations.
For layer t and c we have:

Ftc
e =

{
Feu

Fev

}
ct
= ktc

[
1 0
0 1

]{
utc

vtc

}
= Ktc

e qtc
e (17)

With

qtc
e =

{
utc

vtc

}
=

[
ut0 + h2ϕt − uc0 + h3ϕc

vt0 + h2ψt − vc0 + h3ψc

]
= Ntcqe =

8∑
i=1

(Ntc)iq
i
e (18)
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in which

(Ntc)i =

[
Ni 0 h2Ni 0 −Ni 0 h3Ni 0 0 0 0 0 0
0 Ni 0 h2Ni 0 −Ni 0 h3Ni 0 0 0 0 0

]
(19)

For layer c and b we have

Fcb
e =

{
Feu

Fev

}
cb
= kcb

[
1 0
0 1

]{
ucb
vcb

}
= Kcb

e qcb
e (20)

with

qcb
e =

{
ucb
vcb

}
=

[
uc0 + h4ϕc − ub0 + h5ϕb
vc0 + h4ψc − vb0 + h5ψb

]
= Ncbqe =

8∑
i=1

(Ncb)iq
i
e (21)

in which

(Ncb)i =

[
0 0 0 0 Ni 0 h4Ni 0 −Ni 0 h5Ni 0 0
0 0 0 0 0 Ni 0 h4Ni 0 −Ni 0 h5Ni 0

]
(22)

Here, ktc and kcb are the shear resistance coefficients of the connector stub per unit length.
To obtain the dynamic equation we employ the weak form for each element, we get:

∑
k=t,c,b

∫
Vk

δ
.
qT

k ρk
.
qkdVk +

∑
k=t,c,b

∫
Vk

δεT
kσkdVk +

5
6

∑
k=t,c,b

∫
Vk

δγT
k τkdVk +

∑
k=tc,cb

∫
Ak

δ
(
qk

e

)T
Fk

edAk

−δqT
e

∫
At

Nwp(t)dAt = 0
(23)

By substituting Equations (1), (15), (17), and (20) into Equation (23), we obtain the dynamic
equation of the shell element as follows:

Me
..
qe + Keqe = Fe(t) (24)

with
Ke(104x104) =

∑
k=c,s,a

∫
Ak

(
B0

k

)T
Dk0B0

kdAk +
∑

k=c,s,a

∫
Ak

(
B0

k

)T
Dk1B1

kdAk+

+
∑

k=t,c,b

∫
Ak

(
B1

k

)T
Dk1B0

kdAk +
∑

k=t,c,b

∫
Ak

(
B1

k

)T
Dk2B1

kdAk +
5
6

∑
k=t,c,b

∫
Ak

ST
k GkSkdAk

+
∫

Atc

NT
tcK

e
tcNtcdAtc +

∫
Acb

NT
cbKe

cbNcbdAcb

(25)

in which

(Dk0; Dk1; Dk2) =

hk/2∫
−hk/2

(
1; zk; z2

k

)
Dk dzk; Hk =

hk/2∫
−hk/2

Gk dzk (k = t, c, b) (26)

Me(104x104) =
∑

k=t,c,b

∫
Ak

hk/2∫
−hk/2

LT
k ρkLkdzkdAk (27)

where Lk can be seen in Appendix B

Fe(t)(104x1) =

∫
At

p(t)NT
wdAt (28)

in which
Nw =

[
Nw1 Nw2 Nw3 Nw4 Nw5 Nw6 Nw7 Nw8

]
(29)

with
Nw j =

[
0 0 0 0 0 0 0 00000 N j

]
(30)
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In the case of taking into account the structural damping, we have the force vibration equation of
the shell element as follows:

Me
..
qe + Ce

.
qe + Keqe = Fe(t) (31)

in which Ce = αMe + βKe and α, β are Rayleigh drag coefficients defined in [30,31].

2.2. The Differential Equation of Vibration

From the differential equation of vibration of the shell element (Equation (31)), we obtain the
differential equation of forced vibration of three-layer composite shell as follows:

M
..
q + Cq + Kq = F(t) (32)

in which M, C, K, F(t) are the global mass matrix, the global structural damping matrix, the global
stiffness matrix and the global load matrix, respectively. These matrices and vectors are assembled from
the element matrices and vectors, correspondingly. They are linear differential equations, which have
the right-hand side depending on time. In order to solve these equations, we use the Newmark-beta
method [31]. The program is coded in the MATLAB (MathWorks, Natick, MA, USA) environment
with the following algorithm flowchart of Newmark as shown Figure 3.

  

, t, , ,...Δ α δK,M,C
calt, n
t

=
Δ

*
o o oq ,q ,q ,K 

t t t= + Δ

*
t t+ΔF

1 *
t t t t.−
+Δ +Δ= *q K F

t t t t,+Δ +Δq q 

t t t t t t, ,+Δ +Δ +Δσ ε F

q, q, q, σ, ε 

Y
es

: j
=n

 

 
Figure 3. Algorithm flowchart of Newmark solving the dynamic response problem of the shell. 

3. Numerical Results of Free Vibration Analysis of Three-Layer Composite Shells with Shear 
Connectors 

3.1. Accuracy Studies 
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For the free vibration analysis, the natural frequencies can be obtained by solving the equation:

M
..
q + Kq = 0 (33)

or in another form: (
K−ω2M

)
q = 0 (34)

where ω is the natural frequency.
Flowchart of Newmark-beta method [31]
Step 1: Determine the first conditions:

q(0) = q0;
.
q(0) =

.
q0 (35)

From the first conditions, we obtain:

..
q0 = M−1

0

(
F0 −K0q0 −C0

.
q0

)
(36)

Step 2: By approximating
..
qt+∆t,

.
qt+∆t by qt+∆t, we have

..
qt+∆t = a0

(
qt+∆t − qt

)
− a2

.
qt − a3

..
qt

.
qt+∆t =

.
qt + a6

..
qt + a7

..
qt+∆t

(37)

where:
a0 =

2
γ∆t2 ; a1 =

2α
γ∆t

; a2 =
2
γ∆t

; a3 =
1
γ
− 1; a4 =

2α
γ
− 1;

a5 =

(
α
γ
− 1

)
∆t; a6 = (1− α)∆t; a7 = α∆t.

(38)

in which α, γ are defined by the assumption that the acceleration varies in each calculating step,
the author selects the linear law for the varying of acceleration:

..
q(τ) =

..
qt +

τ
∆t

( ..
qt+∆t −

..
qt

)
with t ≤ τ ≤ t + ∆t then α =

1
2

;γ =
1
3

. (39)

The condition to stabilize the roots:

∆t ≤
1

√
2$max

1
√
α− γ

or
∆t

Tmin
≤

1

2π
√

2

1
√
α− γ

(40)

Step 3: Calculating the stiffness matrix and the nodal force vector:

K∗ = K + a0M + a1C (41)

F∗ = Ft+∆t + M
(
a0qt + a2

.
qt + a3

..
qt

)
+ C

(
a1qt + a4

.
qt + a5

..
qt

)
(42)

Step 4: Determining nodal displacement vector qt+∆t:

K∗t+∆tqt+∆t = F∗t+∆t (43)

⇒ qt+∆t = (K∗t+∆t)
−1F∗t+∆t (44)

repeating the loop until the time runs out.
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3. Numerical Results of Free Vibration Analysis of Three-Layer Composite Shells with Shear
Connectors

3.1. Accuracy Studies

Consider a double-curved composite shell (00/900/00) with geometrical parameters a = b, radii
Rx = Ry = R, thickness h; physical parameters E1 = 25E2, G23 = 0.2E2, G13 = G12 = 0.5E2, the Poisson’s
ratio ν12 = 0.25, and the specific weight ρ. In this case, the shear coefficient of the stub has a very
large value, and this time the three-layer composite shell becomes a normal composite shell without
any relative movements. We examine the convergence of the algorithm with different meshes and

the comparative results of the first non-dimensional free vibration ω = ω1
a2

h

√
ρ

E2
with Reddy [32] are

shown in Table 1.

Table 1. The first non-dimensional fundamental frequencies with different meshes.

a/h = 100 This Work
Reddy [32]

Meshes 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

R/a

1 126.430 126.135 126.145 126.145 126.145 125.99
2 68.489 68.095 68.065 68.065 68.065 68.075
3 47.432 47.316 47.369 47.369 47.369 47.265
4 36.989 36.975 37.083 37.083 37.083 36.971
5 31.188 30.908 31.030 31.030 31.030 30.993

10 20.313 20.350 20.332 20.332 20.332 20.347
1030 15.174 5.151 15.1457 15.1457 15.1457 15.183

a/h = 10 This Work
Reddy [32]

Meshes 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

R/a

1 16.3576 16.3272 16.3226 16.3226 16.3226 16.115
2 12.9939 12.9811 12.978 12.978 12.978 13.382
3 12.1582 12.1500 12.1488 12.1488 12.1488 12.731
4 11.8418 11.8354 11.8343 11.8343 11.8343 12.487
5 11.6905 11.6851 11.6843 11.6843 11.6843 12.372

10 11.4843 11.4799 11.4791 11.4791 11.4791 12.215
1030 11.4141 11.4102 11.4095 11.4095 11.4095 12.165

From Table 1 we can see clearly that, in comparison between this work and the analytical
method [32], we have good agreement, demonstrating that our proposed theory and program are
verified for the free vibration problem and convergence is guaranteed with 8 × 8 meshes.

3.2. Effects of Some Parameters on Free Vibration of the Shell

We now consider a three-layer composite shell with geometrical parameters: length a is constant,
width b, radii Rx = Ry = R, the total thickness h, the thickness of the middle layer hc, the thicknesses of
the other layers ht = hb (h1 = h2 = ht/2, h3 = h4 = hc/2, h5 = h6 = hb/2); physical parameters: the elastic
modulus Ec = 70 GPa, Et = Eb = 200 GPa, the Poisson’s ratio νt = νc = νb = 0.3, the specific weight
ρc = 2300 kg/m3,ρt = ρb = 7800 kg/m3, the shear coefficient of the shear connector ktc = kc = ks, and the
shell structure is fully supported. We conduct an investigation into the first non-dimensional free
vibration of the shell with non-dimensional frequencies as defined by:

ω = ω1
a2

h0

√
ρt

Et
with h0 =

a
50

(45)

3.2.1. Effect of Thickness h

Firstly, to examine the effect of length-to-high ratio a/h, a is fixed, we consider three cases with
a/h = 75, 60, 50, 25, 10 (respectively). In each case, the radius-to-length ratio R/a changes from 1 to 10 as
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we can see in Table 2, b = a, hc/ht = 2, and the shear coefficient of stub ks = 50 MPa. The results are
presented in Table 2.

Table 2. Effect of thickness h on non-dimensional fundamental frequencies.

R/a a/h = 75 a/h = 60 a/h = 50 a/h = 25 a/h = 10

1 48.9232 48.9329 48.9447 49.0591 49.8350
2 25.2821 25.3022 25.3267 25.5643 27.1440
3 16.9857 17.0161 17.0531 17.4099 19.6929
4 12.7982 12.8388 12.8881 13.3594 16.2390
5 10.2817 10.3324 10.3938 10.9744 14.3496
6 8.6065 8.6671 8.7403 9.4243 13.2070
7 7.4135 7.4838 7.5686 8.3498 12.4663
8 6.5225 6.6024 6.6983 7.5705 11.9605
9 5.8331 5.9222 6.0291 6.9856 11.6008

10 5.2847 5.3830 5.5004 6.5351 11.3363

Table 2 demonstrates that when the length-to-high ratio a/h decreases, that means the stiffness
of the structure is enhanced, correspondingly with each case of the radius-to-length ratios R/a,
the non-dimensional fundamental frequency increases.

3.2.2. Effect of the hc/ht Ratio (ht = hb)

Next, in order to study the effect of the hc/ht ratio, we consider five cases with hc/ht, respectively
given values from 2, 4, 8, 20, 30, b = a (a is fixed), the total thickness h = a/50, and the shear coefficient
of the stub ks = 50 MPa. The numerical results are shown in Table 3.

Table 3. Effect of hc/ht ratio on non-dimensional fundamental frequencies.

R/a hc/ht = 2 hc/ht = 4 hc/ht = 8 hc/ht = 20 hc/ht = 30

1 48.9447 49.6002 50.3956 51.3623 51.6856
2 25.3267 25.7143 26.2246 26.8744 27.0959
3 17.0531 17.3679 17.8202 18.4208 18.6285
4 12.8881 13.1816 13.6348 14.2529 14.4682
5 10.3938 10.6864 11.1625 11.8208 12.0502
6 8.7403 9.0417 9.5499 10.2558 10.5011
7 7.5686 7.8839 8.4277 9.1822 9.4432
8 6.6983 7.0301 7.6105 8.4117 8.6871
9 2.6219 6.3787 6.9948 7.8393 8.1278

10 2.5746 5.8683 6.5186 7.4026 7.7027

Table 3 gives us a discussion that when increasing hc/ht ratio, and for h is constant, that means the
thickness of the middle layer increases, correspondingly each case of R/a ratios, the non-dimensional
fundamental frequency increases. This shows that when the thickness of the shell is constant, hc/ht

increases, thus, the non-dimensional fundamental frequency increases.

3.2.3. Effect of the Length-to-Width Ratio a/b

In this small section, we continually evaluate the effect of the length-to-width ratio a/b (a is fixed),
and we meditate three cases by letting a/b = 0.5, 0.75, 1, 1.75, and 2, respectively. The total thickness of
the shell h = a/50, hc/ht = 2, the radius-to-length R/a also varies from 1 to 10, as we can see in Table 4,
and the shear coefficient of stub ks = 50 MPa. The numerical results are tabulated in Table 4.

In Table 4 we can see obviously that, with each value of radius-to-length R/a, if the length-to-width
a/b increases, the non-dimensional fundamental frequency also increases, correspondingly. This
interesting point demonstrates that the stiffness of the structure is enhanced.
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Table 4. Effect of length-to-width ratio a/b on non-dimensional fundamental frequencies.

R/a a/b = 0.5 a/b = 0.75 a/b = 1 a/b = 1.5 a/b = 2

1 47.6987 48.3535 48.9447 49.8156 50.4172
2 25.1170 25.2201 25.3267 25.5626 25.9090
3 16.9310 16.9833 17.0531 17.2818 17.7252
4 12.7690 12.8155 12.8881 13.1627 13.7259
5 10.2602 10.3104 10.3938 10.7236 11.4034
6 8.5872 8.6438 8.7403 9.1263 9.9146
7 7.3943 7.4584 7.5686 8.0095 8.8965
8 6.5025 6.5743 6.6983 7.1919 8.1678
9 5.8117 5.8914 6.0291 6.5726 7.6279

10 5.2618 5.3494 5.5004 6.0909 7.2169

3.2.4. Effect of the Shear Coefficient of Stub ks

Finally, in this section, to examine how the shear coefficient of the stub affects the non-dimensional
fundamental frequencies of this structure, we consider three cases of shear coefficient as in Table 5,
and a = b, h = a/50, hc/ht = 2, Ec = 70 GPa is fixed. The numerical results are shown in this table.

Table 5. Effect of shear coefficient of the stub ks on non-dimensional fundamental frequencies.

R/a ks
Ec
=1.45×10−5 ks

Ec
=1.45×10−2 ks

Ec
=1.45×100 ks

Ec
=1.45×102 ks

Ec
=1.45×105

1 48.9437 48.9457 49.0792 49.3528 49.3628
2 25.3247 25.3288 25.6047 26.1739 26.1918
3 17.0500 17.0562 17.4689 18.3090 18.3350
4 12.8840 12.8922 13.4361 14.5187 14.5518
5 10.3887 10.3989 11.0674 12.3634 12.4024
6 8.7342 8.7463 9.5324 11.0130 11.0568
7 7.5615 7.5756 8.4716 10.1104 10.1582
8 6.6904 6.7062 7.7046 9.4781 9.5291
9 6.0202 6.0379 7.1307 9.0186 9.0722
10 5.4907 5.5100 6.6899 8.6749 8.7306

In Table 5 we can see clearly that, with one value of radius-to-length R/a, when the shear coefficient
of stub increases, the non-dimensional fundamental frequency of the structure get larger. This explains
that the increasing of the shear coefficient removes the slip among layers, leading to an increase of the
total stiffness of the shell structure.

4. Numerical Results of Forced Vibration Analysis of Three-Layer Composite Shells with Shear
Connectors

4.1. Accuracy Studies

Considerign that a fully-clamped square plate with parameters can be found in [33], a = b = 1m,
h/a = 10. Material properties are the elastic modulus E = 30 GPa, the Poisson’s ratio ν = 0.3,
ρ = 2800 kg/m3. The structure is subjected to distribution sudden load p0 = 104 Pa. The non-dimensional
displacement is calculated by the formula w∗ = 100Eh3

12p0a4(1−ν2)
w0. By taking the shear coefficient and radii

of the shell as very large, the comparative deflection of the centroid point of the plate between our
work and [33] is shown in Figure 4, where the integral time is 5 ms, and the acting time of load is 2 ms.

We can see from Figure 4 that the deflection of the centroid point of the plate is compared to [33]
is similar both shape and value. This proves that our program is verified.
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4.2. Effect of Some Parameters on the Forced Vibration of the Shell

Now, to study effects of some parameters on forced vibration of shell, we consider a three-layer
composite shell with geometrical parameters: length a =1 m, width b, thickness h, radii of the shell
Rx = Ry = R, the thickness of middle layer hc, the thickness of other layers ht = hb. Material properties
are the elastic modulus Ec = 8 GPa, Et = Eb = 12 GPa, the Poisson’s ratio νt = νc = νb = 0.2, the specific
weight ρc = 700 kg/m3, ρt = ρb = 2300 kg/m3, and the shear coefficient of stub ktc = kcb = ks. The shell is
fully clamped with the uniform load p(t) varying overtime acting perpendicularly on the shell surface.

p(t) = ∆PΦ.F(t); F(t) =
{

1− t
τhd

(0 ≤ t ≤ τhd)

0 otherwise
with

{
∆PΦ = 0.20679.106 N/m2

τhd = 0.028 s
(46)

The non-dimensional deflection and velocity of the centroid point over time are given as follows:

w∗ = 100h0
3Et

∆PΦa4 w
(

a
2 , b

2

)
; v∗ = Th0

3Et
∆PΦa4 v

(
a
2 , b

2

)
u∗c =

10h0
3Ec

Mga2(1−ν2
c )

uc
(

a
2 , b

2 ,− hc
2

)
; v∗c =

10h0
3Ec

Mga2(1−ν2
c )

vc
(

a
2 , b

2 ,− hc
2

)
with h0 = a

50 ; T = 0.15(s)
(47)

where w
(

a
2 , b

2

)
and v

(
a
2 , b

2

)
are the deflection and velocity of the centroid point of the shell.

4.2.1. Effect of the Length-to-High Ratio a/h

In this first small section, we study the effect of the length-to-high ratio a/h. We consider a shell
with geometrical parameters a = b (a is fixed), hc/ht = 2, R/a = 6, and a/h gets value 75, 60, 50, 40 and 25,
respectively, the shear coefficient of stub ks = 50 MPa. The non-dimensional deflection and velocity of
the centroid point of the shell are presented in Figure 5 and the maximum value is shown in Table 6.

From Figure 4 and Table 6 we can see that when reducing the value of a/h ratio, this means the
thickness of the shell gets thicker, the non-dimensional deflection and velocity of the centroid point
overtime decrease. This is a good agreement, the reason is when the thickness of the shell increases,
the stiffness of the shell obviously becomes higher.
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Table 6. Effect of length-to-high ratio a/h the non-dimensional deflection and velocity of the centroid point.

Maximum Values a/h = 75 a/h = 60 a/h = 50 a/h = 40 a/h = 25

w∗max 5.1866 4.5001 3.9020 3.1534 1.7250
v∗max 2.2997 1.7296 1.3653 1.1890 0.7686

4.2.2. Effect of the hc/ht Ratio (ht = hb)

Next, to investigate the effect of hc/ht ratio, we dissect the shell with geometrical parameters a = b
(a is fixed); h = a/50, the value of hc/ht ratio is given as 2, 6, 8, 10, 20, and 30, R/a = 6, and the shear
coefficient of stub ks = 50 (MPa). The non-dimensional deflection and velocity of the centroid point of
the shell are shown in Figure 6, the maximum value is listed in Table 7.

We can see in Figure 6 and Table 7 that when the hc/ht ratio increases (h is constant), the thickness
of the middle layer increases in comparison to the other layers, and the non-dimensional deflection and
velocity of the centroid point overtime decreases quickly in a range from 2–20. In a range from 20–30
the non-dimensional deflection and velocity of the centroid point overtime are almost not changed.
The reason is explained that when the value of the hc/ht ratio increases, the structure can reduce the
ability to oscillate, and the middle layer becomes “softer”, so that it imbues the vibration better than a
homogeneous shell with same geometrical and physical parameters. For this particular problem, we
should select the value of hc/ht ratio in a range from 20–30.

Table 7. Effect of hc/ht ratio on the non-dimensional deflection and velocity of the centroid point.

Maximum Values hc/ht = 2 hc/ht = 6 hc/ht = 8 hc/ht = 10 hc/ht = 20 hc/ht = 30

w∗max 2.4284 2.3267 2.2499 2.1578 2.0313 1.9787
u∗max

c × 10−5 1.1921 1.8455 1.9861 1.990 2.1182 2.1605
v∗max

c × 10−6 5.1472 4.8345 5.0843 5.4432 6.9771 8.6697
v∗max 1.1221 1.4232 1.4658 1.4525 1.4479 1.4879
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versus time; (d) Nondimensional deflection
*vc

versus time. 

We can see in Figure 6 and Table 7 that when the hc/ht ratio increases (h is constant), the 

thickness of the middle layer increases in comparison to the other layers, and the non-dimensional 

deflection and velocity of the centroid point overtime decreases quickly in a range from 2–20 . In a 

range from 20–30 the non-dimensional deflection and velocity of the centroid point overtime are 

Figure 6. Effect of hc/ht ratio on the non-dimensional deflection and velocity of the centroid
point. (a) Nondimensional velocity w* versus time; (b) Nondimensional velocity v* versus time;
(c) Nondimensional deflection u∗c versus time; (d) Nondimensional deflection v∗c versus time.

4.2.3. Effect of the Length-to-Width Ratio a/b

We examine the effect of length-to-width ratio a/b on the non-dimensional deflection and velocity
of the centroid point of the shell with a is fixed, a/b gets from 0.5, 1, 1.5, 2. The geometrical parameters
are h = a/50, hc/ht = 2, R/a = 6, and the shear coefficient of stub ks = 50 MPa. The numerical results
of non-dimensional deflection and velocity of the centroid point of the shell are shown in Figure 7,
and the maximum value is listed in the following Table 8.

Table 8. Effect of the length-to-width ratio a/b on the non-dimensional deflection and velocity of the
centroid point.

Maximum Values a/b = 0.5 a/b = 0.75 a/b = 1 a/b = 1.5 a/b = 2

w∗max 3.1051 3.5580 3.9020 3.6051 3.0260
v∗max 1.0248 1.2536 1.3653 1.3871 1.1701

Now we can see in Figure 7 and Table 8, when increasing the a/b ratio, the non-dimensional
deflection and velocity of the centroid point overtime decrease. This demonstrates that the stiffness of
the shell gets larger, especially when the a/b ratio equals 2. This can be understood obviously that as the
shape of structure gets smaller, with the same boundary condition and other parameters, the structure
will become stronger.
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Finally, we conduct a study on the effect of the shear coefficient of the stub on the 

non-dimensional deflection and velocity of the centroid point of the shell. We consider four cases 

with ks = 103, 105, 1010, 1012, and 1015 Pa. Geometrical parameters are a = b; h = a/50, hc/ht = 2, R/a = 6. The 

numerical results of non-dimensional deflection and velocity of the centroid point of the shell are 

plotted in Figure 8, the maximum value is shown in Table 9. 

Table 9. Effect of shear coefficient of stub on the non-dimensional deflection and velocity of the 

centroid point. 

Figure 7. Effect of length-to-width ratio a/b on the non-dimensional deflection and velocity of the
centroid point. (a) Nondimensional deflection w* versus time; and (b) nondimensional velocity v*
versus time.

4.2.4. Effect of the Shear Coefficient of the Stub

Finally, we conduct a study on the effect of the shear coefficient of the stub on the non-dimensional
deflection and velocity of the centroid point of the shell. We consider four cases with ks = 103, 105, 1010,
1012, and 1015 Pa. Geometrical parameters are a = b; h = a/50, hc/ht = 2, R/a = 6. The numerical results
of non-dimensional deflection and velocity of the centroid point of the shell are plotted in Figure 8,
the maximum value is shown in Table 9.
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Figure 8. Effect of shear coefficient of stub on the non-dimensional deflection and velocity of the
centroid point. (a) Nondimensional deflection w* versus time; and (b) nondimensional velocity v*
versus time.

Table 9. Effect of shear coefficient of stub on the non-dimensional deflection and velocity of the
centroid point.

Maximum Values ks=103Pa ks=105Pa ks=1010Pa ks=1012Pa ks=1015Pa

w∗max 3.9352 3.9352 3.0341 2.9070 2.9059
v∗max 1.3658 1.3658 1.4354 1.3657 1.3662
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In this last case, we can see in Figure 8 and Table 9 that when the shear coefficient of the stub
increases, the non-dimensional deflection and velocity of the centroid point of the shell is reduced. It is
easily understood that the enhancing of the stiffness of the stud makes the total structure get stronger,
meaning the stiffness of the shell is increased, correspondingly.

4.2.5. Influence of the Mass Density of the Core Layer

Let us consider a four-edge simply supported (SSSS) shell (b = a) with hc = h/2, ht = hb = h/4.
The shear modulus of the shear connector is ks = 50 MPa. The mass densities of the three layers are
ρt = ρb = 2300 kg/m3 and ρc = 700, 1000, 1500, 2000, 2300 kg/m3. Nondimensional deflection and
velocity of the shell center point are shown in Figure 9, maximum deflections and velocities of the shell
center point are illustrated in Table 10. The mass ratio of the shell corresponding to the different values
of ρc compared to case ρt = ρc = ρb = 2300 kg/m3 is shown in Table 11.
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Figure 9. Dynamic deflections of center point of the plate versus time for different ρc. (a) 

Nondimensional deflection w* versus time, and (b) nondimensional velocity v* versus time. 
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Figure 9. Dynamic deflections of center point of the plate versus time for different ρc. (a) Nondimensional
deflection w* versus time, and (b) nondimensional velocity v* versus time.

Table 10. Maximum deflections, velocities and stress of the shell center point versus time for different ρc.

Maximum Values ρc= 700
(kg/m3)

ρc= 1000
(kg/m3)

ρc= 1500
(kg/m3)

ρc= 2000
(kg/m3)

ρc= 2300
(kg/m3)

w∗max 3.9020 3.8837 3.8403 3.8318 3.7942
v∗max 1.3653 1.2962 1.1985 1.1339 1.0871

Table 11. The mass ratio of the shell corresponding to the different values of ρc.

Mass Density of the Core Layer ρc= 700
(kg/m3)

ρc= 1000
(kg/m3)

ρc= 1500
(kg/m3)

ρc= 2000
(kg/m3)

ρc= 2300
(kg/m3)

The mass ratio
(100 ρc+ρt

2ρt
%) 65.21 71.73 82.60 93.44 100

Reduced mass (%) 34.79 28.27 17.40 6.56 0

Comment: From the Figure 9 and Tables 10 and 11, we obtain that when the mass density of
the core-layer is increased from 700 to 2300 kg, deflection and velocity of the shell center point are
almost not changed. Therefore, in order to reduce the mass of the shell, we can use the triple-layer shell
with shear connectors, which the core layer has a smaller mass density than other layers. Specifically,
corresponding to a difference of mass density of the core layer ρc = 700, 1000, 1500, 2000 kg/m3,
the mass of the shell decreases by 34.79, 28.27, 17.40, and 6.56%.
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4.2.6. Influence of Modulus of Elasticity

Let us consider a fully simply-supported (SSSS) shell (b = a) with hc = h/2, ht = hb = h/4. The shear
modulus of the shear connector is ks = 50 MPa. The modulus of elasticity of the three layers are Et = Eb
= 12 GPa and Ec = 8, 9, 10, 12 GPa. Nondimensional deflection and velocity of the shell center point are
shown in Figure 10, and the maximum deflections and velocities of the shell center point are illustrated
in Table 12.

  

  
(a) (b) 

Figure 10. Dynamic deflections of center point of the shell over time with different Ec. (a): 

Nondimensional deflection w* versus time, and (b) nondimensional velocity v* versus time. 

Comment: From the Figure 10 and Table 12, we can find that when modulus of elasticity of the 

core-layer is increased in a range from 8 to 12 GPa, deflection and velocity of the shell center point 

are slightly decreased. 
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and mathematical physics, including the calculation of shell structures. Establishing the balance 

equation describing the vibration of shell structure is quite simple and it is very convenient for 

coding on a personal computer (PC). The proposed program is able to analyze the static bending, 

dynamic response, nonlinear problems, etc., with complicated structures, which are not easy to solve 

by analytical methods. 

Based on the finite element method, we established the equilibrium equation of a triple-layer 

composite shell with shear connectors subjected to dynamic loads. In this paper, employing of the 

eight-node isometric element is suitable. To exactly describe the strain field, the displacements of the 

three-layer shell with shear connectors, and the 13-degrees of freedom element is used, in which the 

three layers have the same a degree of freedom in the z-direction, and the other 12 degrees of 

freedom are described as the linear displacement and rotation angle of each layer. Hence, the 

displacement field and the strain field of each layer can be investigated deeply. We have created the 

program in the MATLAB environment to investigate effects of various geometrical parameters on 

free and forced vibrations of shells. To sum up, some main interesting points of this paper are listed 

in the following statements. 

In general, the geometrical parameters effect strongly on free and forced vibrations of the shell; 

when the shape of the shell is small, the structure gets stiffer.  

Based on the numerical results, we realized that for this type of structure, the shear coefficient 

of the stub plays a very important role. Especially, when the stiffness of the shear coefficient is large 

enough, this structure seems to be a sandwich shell.  

From the above computed results, we suggest that in order to reduce the vibration of such a 

structure, we should use the middle layer, having the elastic modulus less than other layers, and the 

thickness of the middle layer 20–30 times larger than the other ones. 

We suggest that, in order to reduce the volume of the shell structure subjected to the blast load, 

we should consider the triple-layer shell with the core layer having a smaller density than the two 

layers others. Another interesting thing is that the core layer has less stiffener than the other two 

layers for the displacement response, the velocity is almost unchanged, so we can be flexible in 

making shells with available materials and different stiffeners. 

Figure 10. Dynamic deflections of center point of the shell over time with different Ec. (a): Nondimensional
deflection w* versus time, and (b) nondimensional velocity v* versus time.

Table 12. Maximum deflection and velocity of the shell center point over time for different Ec.

Maximum Values Ec = 8 GPa Ec = 9 GPa Ec = 10 GPa Ec = 12 GPa Ec = 12 GPa

w∗max 3.9020 3.7494 3.5895 3.4252 3.3031
v∗max 1.3653 1.3375 1.2998 1.2841 1.2792

Comment: From the Figure 10 and Table 12, we can find that when modulus of elasticity of the
core-layer is increased in a range from 8 to 12 GPa, deflection and velocity of the shell center point are
slightly decreased.

5. Conclusions

The finite element method (FEM) is the numerical method for solving problems of engineering
and mathematical physics, including the calculation of shell structures. Establishing the balance
equation describing the vibration of shell structure is quite simple and it is very convenient for
coding on a personal computer (PC). The proposed program is able to analyze the static bending,
dynamic response, nonlinear problems, etc., with complicated structures, which are not easy to solve
by analytical methods.

Based on the finite element method, we established the equilibrium equation of a triple-layer
composite shell with shear connectors subjected to dynamic loads. In this paper, employing of the
eight-node isometric element is suitable. To exactly describe the strain field, the displacements of the
three-layer shell with shear connectors, and the 13-degrees of freedom element is used, in which the
three layers have the same a degree of freedom in the z-direction, and the other 12 degrees of freedom
are described as the linear displacement and rotation angle of each layer. Hence, the displacement
field and the strain field of each layer can be investigated deeply. We have created the program
in the MATLAB environment to investigate effects of various geometrical parameters on free and
forced vibrations of shells. To sum up, some main interesting points of this paper are listed in the
following statements.
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In general, the geometrical parameters effect strongly on free and forced vibrations of the shell;
when the shape of the shell is small, the structure gets stiffer.

Based on the numerical results, we realized that for this type of structure, the shear coefficient
of the stub plays a very important role. Especially, when the stiffness of the shear coefficient is large
enough, this structure seems to be a sandwich shell.

From the above computed results, we suggest that in order to reduce the vibration of such a
structure, we should use the middle layer, having the elastic modulus less than other layers, and the
thickness of the middle layer 20–30 times larger than the other ones.

We suggest that, in order to reduce the volume of the shell structure subjected to the blast load,
we should consider the triple-layer shell with the core layer having a smaller density than the two
layers others. Another interesting thing is that the core layer has less stiffener than the other two layers
for the displacement response, the velocity is almost unchanged, so we can be flexible in making shells
with available materials and different stiffeners.

Based on the achieved numerical results, this paper also leads to further works; for instance,
the analysis of FGM structures with shear connectors, buckling problems, the composite plate with
shear connectors subjected to both temperature and mechanical loads, and so on.
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