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Abstract: Here, we propose optimal fourth-order iterative methods for approximating multiple zeros
of univariate functions. The proposed family is composed of two stages and requires 3 functional
values at each iteration. We also suggest an extensive convergence analysis that demonstrated
the establishment of fourth-order convergence of the developed methods. It is interesting to note
that some existing schemes are found to be the special cases of our proposed scheme. Numerical
experiments have been performed on a good number of problems arising from different disciplines
such as the fractional conversion problem of a chemical reactor, continuous stirred tank reactor
problem, and Planck’s radiation law problem. Computational results demonstrates that suggested
methods are better and efficient than their existing counterparts.
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1. Introduction

Importance of solving nonlinear problems is justified by numerous physical and technical
applications over the past decades. These problems arise in many areas of science and engineering.
The analytical solutions for such problems are not easily available. Therefore, several numerical
techniques are used to obtain approximate solutions. When we discuss about iterative solvers for
obtaining multiple roots with known multiplicity m ≥ 1 of scalar equations of the type g(x) = 0,
where g : D ⊆ R→ R, modified Newton’s technique [1,2] (also known as Rall’s method) is the most
popular and classical iterative scheme, which is defined by

xs+1 = xs −m
g(xs)

g′(xs)
, s = 0, 1, 2, . . . . (1)

Given the multiplicity m ≥ 1 in advance, it converges quadratically for multiple roots. However,
modified Newton’s method would fail miserably if the initial estimate x0 is either far away from
the required root or the value of the first-order derivative is very small in the neighborhood of the
needed root. In order to overcome this problem, Kanwar et al. [3] considered the following one-point
iterative technique

xs+1 = xs −m
g(xs)

g′(xs)− λg(xs)
. (2)
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One can find the classical Newton’s formula for λ = 0 and m = 1 in (2). The method (2) satisfies the
following error equation:

es+1 =

(
c1 − λ

m

)
e2

s + O(e3
s ), (3)

where es = xs − α , cj =
m!

(m + j)!
g(m+j)(α)

g(m)(α)
, j = 1, 2, 3, . . .. Here, α is a multiple root of g(x) = 0

having multiplicity m.
One-point methods are not of practical interest because of their theoretical limitations regarding

convergence order and efficiency index. Therefore, multipoint iterative functions are better applicants
to certify as efficient solvers. The good thing with multipoint iterative methods without memory for
scalar equations is that they have a conjecture related to order of convergence (for more information
please have a look at the conjecture [2]). A large community of researchers from the world wide
turn towards the most prime class of multipoint iterative methods and proposed various optimal
fourth-order methods (they are requiring 3 functional values at each iteration) [4–10] and non-optimal
methods [11,12] for approximating multiple zeros of nonlinear functions.

In 2013, Zhou et al. [13], presented a family of 4-order optimal iterative methods, defined
as follows: 

ws =xs −m
g(xs)

g′(xs)
,

xs+1 =ws −m
g(xs)

g′(xs)
Q(us),

(4)

where us =
(

g(ws)
g(xs)

) 1
m and Q : C→ C is a weight function. The above family (4) requires two functions

and one derivative evaluation per full iteration.
Lee et al. in [14], suggested an optimal 4-order scheme, which is given by

ws = xs −m
g(xs)

g′(xs) + λg(xs)
,

xs+1 = xs −mHg(us)
g(xs)

g′(xs) + 2λg(xs)
,

(5)

where us =
(

g(ws)
g(xs)

) 1
m , Hg(us) =

us(1 + (c + 2)us + ru2
s )

1 + cus
, λ, c, and r are free disposable parameters.

Very recently, Zafar et al. [15] proposed another class of optimal methods for multiple zeros
defined by 

ws = xs −m
g(xs)

g′(xs) + a1g(xs)
,

xs+1 = ws −mus H(us)
g(xs)

g′(xs) + 2a1g(xs)
,

(6)

where us =
(

g(ws)
g(xs)

) 1
m and a1 ∈ R. It can be seen that the family (5) is a particular case of (6).

We are interested in presenting a new optimal class of parametric-based iterative methods having
fourth-order convergence which exploit weight function technique for computing multiple zeros.
Our proposed scheme requires only three function evaluations

(
g(xs), g′(xs), and g(ws)

)
at each

iteration which is in accordance with the classical Kung-Traub conjecture. It is also interesting to note
that the optimal fourth-order families (5) and (6) can be considered as special cases of our scheme for
some particular values of free parameters. Therefore, the new scheme can be treated as more general
family for approximating multiple zeros of nonlinear functions. Furthermore, we manifest that the
proposed scheme shows a good agreement with the numerical results and offers smaller residual
errors in the estimation of multiple zeros.
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Our presentation is unfolded in what follows. The new fourth-order scheme and its convergence
analysis is presented in Section 2. In Section 3, several particular cases are included based on the
different choices of weight functions employed at second step of the designed family. In addition,
Section 3, is also dedicated to the numerical experiments which illustrate the efficiency and accuracy
of the scheme in multi-precision arithmetic on some complicated real-life problems. Section 4, presents
the conclusions.

2. Construction of the Family

Here, we suggest a new fourth-order optimal scheme for finding multiple roots having known
multiplicity m ≥ 1. So, we present the two-stage scheme as follows:

ws = xs −m
g(xs)

g′(xs) + λ1g(xs)
,

zn = ws −mus
g(xs)

g′(xs) + λ2g(xs)
Q(ts),

(7)

where Q : C→ C is the weight function and holomorphic function in the neighborhood of origin with

us =
(

g(ws)
g(xs)

) 1
m and ts =

us
a1+a2us

and being λ1, λ2, a1 and a2 are free parameters.
In the following Theorem 1, we illustrate that how to construct weight function Q so that it arrives

at fourth-order without consuming any extra functional values.

Theorem 1. Let us assume that g : C→ C is holomorphic function in the region containing the multiple zero
x = α with multiplicity m ≥ 1. Then, for a given initial guess x0, the iterative expression (7) reaches 4-order
convergence when it satisfies

Q(0) = 1, Q′(0) = 2a1, λ2 = 2λ1, and |Q′′(0)| < ∞. (8)

Proof. Let us assume that x = α is a multiple zero having known multiplicity m ≥ 1 of g(x). Adopting
Taylor’s series expansion of g(xs) and g′(xs) about α, we obtain

g(xs) =
g(m)(α)

m!
em

s

(
1 + c1es + c2e2

s + c3e3
s + c4e4

s + O(e5
s )

)
(9)

and

g′(xs) =
gm(α)

m!
em−1

s

(
m + c1(m + 1)es + c2(m + 2)e2

s + c3(m + 3)e3
s + c4(m + 4)e4

s + O(e5
s )

)
, (10)

respectively. Here, es = xs − α and cj =
m!

(m + j)!
g(m+j)(α)

g(m)(α)
, j = 1, 2, 3, . . ..

From the Equations (9) and (10), we obtain

g(xs)

g′(xs) + λ1g(xs)
=

es

m
+

(−λ1 − c1)

m2 e2
s +

(
c2

1 + mc2
1 − 2mc2 + 2c1λ1 + λ2

1
)

e3
s

m3 +
L1

m4 e4
s + O(e5

s ), (11)

where L1 =
(
−c3

1− 2mc3
1−m2c3

1 + 4mc1c2 + 3m2c1c2− 3m2c3− 3c2
1λ1− 2mc2

1λ1 + 4mc2λ1− 3c1λ2
1− λ3

1
)
.

Now, substituting (11) in the first substep of scheme (7), we get

ws − α =
(λ1 + c1)

m2 e2
s −

(
c2

1 + mc2
1 − 2mc2 + 2c1λ1 + λ2

1
)

e3
s

m2 +
L1

m3 e4
s + O(e5

s ). (12)

Using again Taylor’s series, we yield
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g(ws) =g(m)(α)e2m
s

[( λ1+c1
m

)
m

m!
−

(
c1+λ1

m

)
m ((1 + m)c2

1 − 2mc2 + 2c1λ1 + λ2
1
)

es

m! (c1 + λ1)
+

1
m!

(
c1(c1 + λ1)

(
λ1+c1

m

)m

m(
λ1 + c1

m

)m B1
2m (c1 + λ1) 2 +

B2
m (c1 + λ1)

)
e2

s + O(e3
s )

]
,

(13)

where

B1 = (−1 + m)
(
(1 + m)c2

1 − 2mc2 + 2c1λ1 + λ2
1

)
2,

B2 = (1 + m)2c3
1 + 3m2c3 + (3 + 2m)c2

1λ1 − 4mc2λ1 + λ3
1 + c1

(
−m(4 + 3m)c2 + 3λ2

1

)
.

(14)

Moreover,

us =
(c1 + λ1) es

m
−
(
(2 + m)c2

1 − 2mc2 + 3c1λ1 + λ2
1
)

e2
s

m2 +
γ1e3

s
2m3 + O(e4

s ), (15)

where

γ1 =
((

7 + 7m + 2m2
)

c3
1 + 5(3 + m)c2

1λ1 − 2c1

(
m(7 + 3m)c2 − 5λ2

1

)
+ 2

(
3m2c3 − 5mc2λ1 + λ3

1

))
.

Now, using the above expression (15), we get

ts =
(c1 + λ1)

ma1
es +

2

∑
i=1

Θje
j+1
s + O(e4

s ). (16)

where Θj = Θj(a1, a2, m, c1, c2, c3, c4).

Due to the fact that ts =
us

a1 + a2us
= O(es), therefore, it suffices to expand weight function Q(ts)

around the origin by Taylor’s series expansion up to 3-order term as follows:

Q(ts) ≈ Q(0) + Q′(0)ts +
1
2!

Q′′(0)t2
s +

1
3!

Q(3)(0)t3
s , (17)

where Q(k) represents the k-th derivative.
Adopting the expressions (9)–(17) in (7), we have

es+1 =
Ω1

m
e2

s +
Ω2

ma2
1

e3
s +

Ω3

2m3a2
1

e4
s + O(e5

s ). (18)

where
Ω1 = (−1 + Q(0))(c1 + λ1),

Ω2 = (−a1(1 + m) + a1(3 + m)Q(0)−Q′(0))c2
1 − 2a1m(−1 + Q(0))c2

+ c1
(
(−2a1 + 4a1Q(0)− 2Q′(0))λ1 + a1Q(0)λ2

)
+ λ1 ((a1(−1 + Q(0))

−Q′(0))λ1 + a1Q(0)λ2
)

.

(19)

It is clear from error Equation (18) that in order to have at least 4-order convergence. The coefficients
of e2

s and e3
s must vanish simultaneously. Therefore, inserting Q(0) = 1 in (19), we have

Ω2 = (2a1 −Q′(0))c1 −Q′(0)λ1 + a1λ2. (20)

Similarly, Ω2 = 0 implies that Q′(0) = 2a1 and λ2 = 2λ1.
Finally, using Equations (19) and (20) in the proposed scheme (7), we have
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es+1 =
(c1 + λ1)

((
4a1a2 + a2

1(9 + m)−Q′′(0)
)

c2
1 − 2a2

1mc2 + 2
(
7a2

1 + 4a1a2 −Q′′(0)
)

c1λ1 + (4a1(a1 + a2)−Q′′(0))λ2
1
)

e4
s

2a2
1m3

+ O(e5
s ).

(21)

The consequence of the above error analysis is that the family (7) acquires 4-order convergence by
consuming only 3 functional values (viz. g(xs), g′(xs), and g(ws)) per full iteration. Hence, the proof
is completed.

Some Particular Cases of the Suggested Class

We suggest some interesting particulars cases of (7) by choosing different forms of weight
function Q(ts) that satisfy the constrains of Theorem 1.

Let us assume the following optimal class of fourth-order methods by choosing weight function
directly from the Theorem 1:

ws = xs −m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws −mus
g(xs)

g′(xs) + 2λ1g(xs)

[
1 + 2a1ts +

1
2

t2
s Q′′(0) +

1
3!

t3
s Q(3)(0)

]
,

(22)

where ts =
us

a1+a2us
, λ1, a1, a2, Q′′(0) and Q(3)(0) are free disposable variables.

Sub cases of the given scheme (22):

1. We assume that Q(ts) = 1 + 2a1ts +
µ
2 t2

s , in expression (22), we obtain

ws = xs −m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws −mus

[
1 + 2a1ts +

µ

2
t2
s

] g(xs)

g′(xs) + 2λ1g(xs)
,

(23)

where µ ∈ R.

2. Considering the weight function Q(ts) = 1+ α1ts + α2t2
s +

α3t2
s

1+α4ts+α5t2
s

in expression (22), one gets

ws = xs −m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws −mus

[
1 + α1ts + α2t2

s +
α3t2

s
1 + α4ts + α5t2

s

]
g(xs)

g′(xs) + 2λ1g(xs)
,

(24)

where α1 = 2a1, α2, α3, α4 and α5 are free parameters.

Case 2A: Substituting α2 = α3 = 1, α4 = 15 and α5 = 10 in (24), we obtain

ws = xs −m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws −mus

[
1 + 2a1ts + t2

s +
t2
s

1 + 15ts + 10t2
s

]
g(xs)

g′(xs) + 2λ1g(xs)
.

(25)

Case 2B: Substituting α2 = α3 = 1, α4 = 2 and α5 = 1, in (24), we have
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ws = xs −m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws −mus

[
1 + 2a1ts + α2t2

s +
t2
s

1 + α4ts + t2
s

]
g(xs)

g′(xs) + 2λ1g(xs)
.

(26)

Remark 1. It is worth mentioning here that the family (6) can be captured as a special case for a1 = 1 and
a2 = 0 in the proposed scheme (22).

Remark 2. Furthermore, it is worthy to record that Q(ts) weight function plays a great character in the
development of fourth-order schemes. Therefore, it is customary to display different choices of weight functions,
provided they must assure all the constrains of Theorem 1. Hence, we have mentioned above some special cases
of new fourth-order schemes (23), (24), (25) and (26) having simple body structures so that they can be easily
implemented in the numerical experiments.

3. Numerical Experiments

Here, we verify the computational aspects of the following methods: expression (23) for
(a1 = 1, a2 = 1, λ1 = 0, µ = 13), and expression (25) for (a1 = 1, a2 = −1, λ1 = 0)
denoted by (MM1) and (MM2), respectively, with some already existing techniques of the same
convergence order.

In this regard, we consider several test functions coming from real life problems and linear
algebra that are depicted in Examples 1–5. We make a contrast of them with existing optimal 4-order
methods, namely method (6) given by Zafar et al. [15] for H(us) = (1 + 2us +

k
2 u2

s ) with k = 11
and a1 = 0 denoted by (ZM). Also, family (5) proposed by Lee et al. [14] is compared by taking

Hg(us) = us(1 + us)2 for (c = 0, λ = m
2 , r = 1), and Hg(us) =

us(1−u2
s )

1−2us
for (c = −2, λ = m

2 , r = −1).
We denote these methods by (LM1) and (LM2), respectively.

We compare our iterative methods with the exiting optimal 4-order methods on the basis of xn

(approximated roots), |g(xs)| (residual error of the considered function), |xs+1 − xs| (absolute error
between two consecutive iterations), and the estimations of asymptotic error constants according

to the formula
∣∣∣∣ xs+1 − xs

(xs − xs−1)4

∣∣∣∣ are depicted in Tables 1–5. In order to minimize the round off errors,

we have considered 4096 significant digits. The whole numerical work have been carried out with
Mathematica 7 programming package. In Tables 1–5, the k1(±k2) stands for k1 × 10(±k2).

Example 1. We assume a 5× 5 matrix, which is given by

A =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3

 .

We have the following characteristic equation of the above matrix:

g1(x) = (x− 2)4(x + 1).

It is straightforward to say that the function g1(x) has a multiple zero at x = 2 having four multiplicity.
The computational comparisons depicted in Table 1 illustrates that the new methods (MM1), (MM2) and

(ZM) have better results in terms of precision in the calculation of the multiple zero of g1(x). On the other
hands, the methods (LM1) and (LM2) fail to converge.
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Example 2. (Chemical reactor problem):
We assume the following function (for more details please, see [16])

g2(x) = −5 log
[

0.4(1− x)
0.4− 0.5x

]
+

x
1− x

+ 4.45977. (27)

The variable x serve as the fractional transformation of the specific species B in the chemical reactor. There will be
no physical benefits of the above expression (27) for either x < 0 or x > 1. Therefore, we are looking for a bounded
solution in the interval 0 ≤ x ≤ 1 and approximated zero is α ≈ 0.757396246253753879459641297929.

Table 1. Convergence study of distinct iterative functions on g1(x).

Methods n xs |g(xs)| |xs+1− xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 0.5 ∗ ∗
1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

LM2

0 0.5 ∗ ∗
1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

ZM

0 0.5 7.6(+0) 4.3(+0)
1 4.772004872217151226361127 3.4(+2) 2.8(+0) 4.613629651(−2)
2 2.012505802018268992557295 7.4(−8) 1.3(−2) 2.156703982(−4)
3 2.000000000014282551529598 1.2(−43) 1.4(−11) 5.839284100(−4)

MM1

0 0.5 7.6(+0) 3.8(+0)
1 4.260708441594529218722064 1.4(+2) 2.3(+0) 8.619134726(−2)
2 2.009364265674733970271046 2.3(−8) 9.4(−3) 3.645072355(−4)
3 2.000000000008902251900730 1.9(−44) 8.9(−12) 1.157723834(−3)

MM2

0 0.5 7.6(+0) 4.4(+0)
1 4.907580957752597082443289 4.2(+2) 2.9(+0) 4.04329177(−2)
2 2.017817158679257202528994 3.0(−7) 1.8(−2) 2.554989145(−4)
3 2.000000000144841263588776 4.3(−39) 1.4(−10) 1.437270553(−3)

∗: denotes the case of failure.

We can see that the new methods possess minimal residual errors and minimal errors difference between the
consecutive approximations in comparison to the existing ones. Moreover, the numerical results of convergence
order that coincide with the theoretical one in each case.

Example 3. (Continuous stirred tank reactor (CSTR)):
In our third example, we assume a problem of continuous stirred tank reactor (CSTR). We observed the following
reaction scheme that develop in the chemical reactor (see [17] for more information):

K1 + P→ K2

K2 + P→ K3

K3 + P→ K4

K4 + P→ K5,

(28)

where the components T and K1 are fed at the amount of q-Q and Q, respectively, to the chemical reactor.
The above model was studied in detail by Douglas [18] in order to find a good and simple system that can control
feedback problem. Finally, he transferred the above model to the following mathematical expression:

KH
2.98(t + 2.25)

(t + 1.45)(t + 4.35)(t + 2.85)2 = −1, (29)
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where KH denotes for the gaining proportional controller. The suggested control system is balanced with the
values of KH . If we assume KH = 0, we obtain the poles of the open-loop transferred function as the solutions of
following uni-variate equation:

g3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875 = 0 (30)

given as: x = −2.85,−1.45, −4.35, −2.85. It is straightforward to say that we have one multiple root
x = −2.85, having known multiplicity 2. The computational results for Example 3 are displayed in Table 3.

Table 2. Convergence study of distinct iterative functions on g2(x).

Methods n xs |g(xs)| |xs+1− xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 0.76 2.2(−1) 2.6(−3)
1 0.7573968038178290616303393 4.4(−5) 5.6(−7) 5.769200720(+18)
2 0.7573962462537538794608754 9.8(−20) 1.2(−21) 1.27693413(+4)
3 0.7573962462537538794596413 2.4(−78) −3.0(−80) 1.277007736(+4)

LM2

0 0.76 2.2(−1) 2.6(−3)
1 0.7573964149978655308754320 1.3(−5) 1.7(−7) 2.018201446(+20)
2 0.7573962462537538794596446 2.6(−22) 3.3(−24) 4.015765605(+3)
3 0.7573962462537538794596413 3.6(−89) 4.5(−91) 4.15789304(+3)

ZM

0 0.76 2.2(−1) 2.6(−3)
1 0.757396052854315818682498 1.5(−5) 1.9(−7) 1.382402073(+20)
2 0.7573962462537538794596326 6.9(−22) 8.7(−24) 6.198672349(+3)
3 0.7573962462537538794596413 2.8(−87) 3.5(−89) 6.198509111(+3)

MM1

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962756803076928764181 2.3(−6) 2.9(−8) 3.924476992(+22)
2 0.7573962462537538794596413 1.3(−25) 1.7(−27) 2.210559498(+3)
3 0.7573962462537538794596413 1.3(−102) 1.7(−104) 2.210597968(+3)

MM2

0 0.76 2.2(−1) 2.6(−3)
1 0.7573963165291620208634917 5.6(−6) 7.0(−8) 2.881309229(+21)
2 0.7573962462537538794596413 4.2(−25) 5.3(−113) 2.165675770(+2)
3 0.7573962462537538794596413 1.3(−101) 1.7(−103) 2.166423965(+2)

Table 3. Convergence study of distinct iterative functions on g3(x).

Methods n xs |g(xs)| |xs+1− xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 −3.0 4.7(−2) 1.8(−1)
1 −2.817626610201641938500885 2.2(−3) 3.2(−2) 2.947357688(+4)
2 −2.849999804254456528880326 8.0(−14) 2.0(−7) 1.782172267(−1)
3 −2.850000000000000000000000 1.9(−55) 3.0(−28) 2.052962276(−1)

LM2

0 −3.0 4.7(−2) 1.8(−1)
1 −2.817286067962330455509242 2.2(−3) 3.3(−2) 2.856287648(+4)
2 −2.850000013787746242734760 4.0(−16) 1.4(−8) 1.203820035(−2)
3 −2.849999999999999818950521 6.9(−32) 1.8(−16) 5.009843150(+15)

ZM

0 −3.0 4.7(−2) 1.5(−1)
1 −2.847808068144375821316837 1.0(−5) 2.2(−3) 9.49657081(+7)
2 −2.850000238882998104304060 1.2(−13) 2.4(−7) 1.034398150(+4)
3 −2.850000000000000000000000 7.2(−58) 1.8(−29) 5.668907061(−3)

MM1

0 −3.0 4.7(−2) 1.5(−1)
1 −2.847808129810423347656086 1.0(−5) 2.2(−3) 9.497358601(+7)
2 −2.850000238869272754660930 1.2(−13) 2.4(−7) 1.034455136(+4)
3 −2.850000000000000000000000 7.2(−58) 1.9(−29) 5.682404331(−3)

MM2

0 −3.0 4.7(−2) 1.5(−1)
1 −2.847808157132816544128276 1.0(−5) 2.2(−3) 9.497713760(+7)
2 −2.850000238863191571180946 1.2(−13) 2.4(−7) 1.034480386(+4)
3 −2.850000000000000000000000 7.2(−58) 1.9(−29) 5.689152966(−3)
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Example 4. We consider another uni-variate function from [14], defined as follows:

g4(x) =
(

sin−1 ( 1
x
− 1
)
+ ex2 − 3

)2
.

The function g4 has a multiple zero at x = 1.05655361033535, having known multiplicity m = 2.
Table 4 demonstrates the computational results for problem g4. It can be concluded from the numerical

tests that results are very good for all the methods, but lower residuals error belongs to newly proposed methods.

Table 4. Convergence study of distinct iterative functions on g4(x).

Methods n xs |g(xs)| |xs+1− xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 1.3 4.8(+0) 2.2(−1)
1 1.084514032248007059677119 2.7(−2) 2.8(−2) 4.571366396(+4)
2 1.056574385341714914084426 1.3(−8) 2.1(−5) 3.409239504(+1)
3 1.056553610335354902748667 2.0(−33) 8.1(−18) 4.373385687(+1)

LM2

0 1.3 4.8(+0) 2.3(−1)
1 1.065392954832001332413064 2.5(−3) 8.8(−3) 1.447890326(+6)
2 1.056553694873544532804184 2.2(−13) 8.5(−8) 1.384807214(+1)
3 1.056553610335354894601954 1.9(−53) 7.8(−28) 1.519374809(+1)

ZM

0 1.3 4.8(+0) 2.3(−1)
1 1.067135979311830779677125 3.6(−3) 1.1(−2) 8.438277939(+5)
2 1.056553548780121516047790 1.2(−13) 6.2(−8) 4.908212761(+0)
3 1.056553610335369488358073 6.6(−27) 1.5(−14) 1.016498504(+15)

MM1

0 1.3 4.8(+0) 2.3(−1)
1 1.073753193668000438771431 9.8(−3) 1.7(−2) 1.965340386(+5)
2 1.056553944712634749549453 3.5(−12) 3.3(−7) 3.821191729(+00)
3 1.056553610335354894601954 2.7(−54) 3.0(−28) 2.376288351(−2)

MM2

0 1.3 4.8(+0) 2.3(−1)
1 1.069121742029550523175482 5.1(−3) 1.3(−2) 5.037130656(+5)
2 1.056553743909213498922959 5.5(−13) 1.3(−7) 5.353737131(+00)
3 1.056553610335354894601954 3.9(−53) 1.1(−27) 3.547176655(+00)

Example 5. (Planck’s radiation law problem):

Here, we chosen the well-known Planck’s radiation law problem [19], that addresses the density of energy
in an isothermal blackbody, which is defined as follows:

Ω(δ) =
8πchδ−5

e
ch

δBT − 1
, (31)

where the parameters δ, T, h and c denote as the wavelength of the radiation, absolute temperature of the
blackbody, Planck’s parameter and c is the light speed, respectively. In order to find the wavelength δ, then we
have to calculate the maximum energy density of Ω(δ).

In addition, the maximum value of a function exists on the critical points (Ω′(δ) = 0), then we have

ch
δBT e

ch
δBT

e
ch

δBT − 1
= 5, (32)

where B is the Boltzmann constant. If x = ch
δBT , then (32) is satisfied when

g5(x) =
x
5
− 1 + e−x = 0. (33)



Symmetry 2019, 11, 526 10 of 11

Therefore, the roots of g5(x) = 0, provide the maximum wavelength of radiation δ by adopting the
following technique:

δ ≈ ch
αBT

, (34)

where α is a solution of (33). Our desired root is x = 4.9651142317442 with multiplicity m = 1.
The computational results for g5(x) = 0, displayed in Table 5. We concluded that methods (MM1) and

(MM2) have small values of residual errors in comparison to the other methods.

Table 5. Convergence study of distinct iterative functions on g5(x).

Methods n xs |g(xs)| |xs+1− xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 5.5 1.0(−1) 5.3(−1)
1 4.970872146931603546368908 1.1(−3) 5.8(−3) 5.238466809(+6)
2 4.965114231914843999162688 3.3(−11) 1.7(−10) 1.55180113(−1)
3 4.965114231744276303698759 2.6(−41) 1.3(−40) 1.567247236(−1)

LM2

0 5.5 1.0(−1) 5.4(−1)
1 4.956468415831016632868463 1.7(−3) 8.6(−3) 1.547326676(+6)
2 4.965114231063736461886677 1.3(−10) 6.8(−10) 1.217950829(−1)
3 4.965114231744276303698759 5.0(−39) 2.6(−38) 1.213771079(−1)

ZM

0 5.5 1.0(−1) 5.3(−1)
1 4.965118934170088855124237 9.1(−7) 4.7(−6) 9.616878784(−15)
2 4.965114231744276303698759 1.0(−26) 5.2(−26) 1.059300624(−4)
3 4.965114231744276303698759 1.5(−106) 7.6(−106) 1.059306409(−4)

MM1

0 5.5 1.0(−1) 5.3(−1)
1 4.965119103136732738326681 9.4(−7) 4.9(−6) 8.650488681(+15)
2 4.965114231744276303698759 1.2(−26) 6.3(−26) 1.118336091(−4)
3 4.965114231744276303698759 3.4(−106) 1.8(−105) 1.118342654(−4)

MM2

0 5.5 1.0(−1) 5.3(−1)
1 4.965119178775304742593802 9.5(−7) 4.9(−6) 8.259734679(+15)
2 4.965114231744276303698759 1.3(−26) 6.9(−26) 1.147853783(−4)
3 4.965114231744276303698759 4.9(−106) 2.6(−105) 1.147860777(−4)

4. Conclusions

In this study, we proposed a wide general optimal class of iterative methods for approximating
multiple zeros of nonlinear functions numerically. Weight functions based on function-to-function
ratios and free parameters are employed at second step of the family which enable us to achieve
desired convergence order four. In the numerical section, we have incorporated variety of real life
problems to confirm the efficiency of the proposed technique in comparison to the existing robust
methods. The computational results demonstrates that the new methods show better performance
in terms of precision and accuracy for the considered test functions. Finally, we point out that high
convergence order of the proposed class, makes it not only interesting from theoretical point of view
but also in practice.
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