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1. Introduction

In this paper, we will investigate the existence of periodic solutions for vectorial distributed delay
differential equations with impulses in regulated Banach spaces. More precisely, the prototype of this
delay differential equations with impulses, is of the form

dx(t)
dt

= −λx(t) + f (t, xt), a.e. t ∈ [0, ω + τ], λ > 0, ω > 0, (1)

x(tj) = x(t−j ), and x(t+j )− x(tj) = hj(x(tj)), ∀j = 1, . . . , l, (2)

x0(θ) = ϕ(θ), θ ∈ [−τ, 0], (3)

with xt(θ) = x(t + θ), θ ∈ [−τ, 0], τ > 0 and where x and ϕ are Rn-valued functions on [−τ, ω],
and [−τ, 0], respectively. The Equation (1) is a nonlinear delay differential equation. More details
about this type of equations can be found in [1]. Moreover, we assume that

(i) hj ∈ C(Rn,Rn), j = 1, . . . , l,
(ii) {t1, t2, · · · , tl} is an increasing family of strictly positive real numbers,
(iii) there exist δ > 0 and T < ∞, such that for any j = 1, . . . , l − 1, we have

0 < δ ≤ tj+1 − tj ≤ T < ∞.

We call (2) the impulses equation where, x(t−j ) (resp. x(t+j )) denotes the limit from the left (resp.
from the right) of x(t), as t tends to tj. This type of differential equations without delay was initiated
in 1960’s by Milman and Myshkis [2,3]. This problem started to be popular mostly in Eastern Europe
in the years 1960–1970, with special attention during the seventies of the last century. Later on, several
investigations and important monographs appeared with more details, which show the importance
of studying such systems, see for example [4–11]. In recent years, many investigations have arisen
with applications to life sciences, such that the periodic treatment of some biomedical applications,
where the impulses correspond to administration of a drug treatment at certain given times [12–15].
However, comparatively speaking, not much has been done in the study of impulsive functional
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differential equations in regulated vectorial space, taking into account the general theory of functional
analysis and having an acceptable hypothesis that can be used in real life applications, see [12] for
more details.

Let us first introduce for each τ > 0, the regulated Banach spaceR = R([−τ, 0],Rn), given by:

R =
{

ϕ : [−τ, 0]→ Rn : ϕ has left and right limits at every points of [−τ, 0]
}

,

endowed with the following norm

‖ϕ‖R = sup
θ∈[−τ,0]

‖ϕ(θ)‖.

We will make the following assumptions

(I) The map f : [0, ω + τ]×Rn → Rn, ω > 0, satisfies

• ‖ f (t, ϕ)− f (t, ψ)‖R ≤ K‖ϕ− ψ‖R, ∀t ∈ [0, ω + τ], ϕ, ψ ∈ R,
• ∃M > 0, ‖ f (t, 0)‖R ≤ M, ∀t ∈ [0, ω + τ].

(II) For each regulated map x : [a, b] → Rn, with b− a > τ, we assume that the map t → f (t, xt) is
measurable over [a + τ, b].

(III) For each j = 1, . . . , l, hj : Rn → Rn is a continuous map.

We set the initial value problem as follows

Problem 1. Let ϕ be an element of R. We want to find a function x defined on [−τ, ω + τ] such that x
satisfies (1)–(3).

We consider the nonlinear impulsive delay differential equation inR as
dx(t)

dt
= −λx(t) + f (t, xt), a.e. t ∈ [0, ω + τ], λ > 0, ω > 0,

x(tj) = x(t−j ), and x(t+j )− x(tj) = hj(x(tj)), ∀j = 1, . . . , l,
x0(θ) = ϕ(θ), θ ∈ [−τ, 0] and x(0+) = ξ ∈ Rn.

The aim of this paper is to extend the main results related to the existence of the ω-periodic
solutions for ordinary differential equations with impulses presented by Li et al. [16] and Nieto [17].
These papers contain references which provide additional reading on this topic, i.e., differential
equations with impulses by using the fixed point theory.

2. Existence and Uniqueness of Solution

Let us start first by introducing some related definitions and lemmas.

Definition 1. A function x : [−τ, ω + τ]→ Rn is called a solution of (1)–(3) if:

1. x is absolutely continuous with respect to the Lebesgue measure;
2. x is differentiable on the complement of a countable subset of [0, ω + τ], and satisfies Equation (1) whenever

dx(t)
dt

and the right hand side of (1) are defined on [0, ω + τ];
3. x satisfies (2) at each point tj, tj ≥ 0, ∀j = 1, . . . , l, and the initial value function satisfies (3).

Lemma 1. Let f : [0, ω + τ]×R → Rn be a map satisfying (I) and (II) and t1 ∈ [0, ω + τ]. Then, for each
(ϕ, ξ) ∈ R×Rn, the problem

dx(t)
dt

= −λx(t) + f (t, xt), a.e. t ∈ [0, t1] (4)

(x0, x(0+)) = (ϕ, ξ) ∈ R×Rn, (5)
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has a unique solution.

Proof. We set S = {y ∈ C([0, t1],Rn), y(0) = x(0+) = ξ}. Let us define the operator T by

T(x)(t) = ξ +
∫ t

0

(
f (s, xs)− λx(s)

)
ds, 0 ≤ t ≤ t1. (6)

For each y ∈ S, we consider the Nemytski operator F, defined by

F(y)(t) = f (t, zt), (7)

where

zt(θ) =

{
y(t + θ), if t + θ ≥ 0,
ϕ(t + θ), if t + θ ≤ 0.

(8)

Then, we get

T(y)(t) = ξ +
∫ t

0

(
F(y)(s)− λy(s)

)
ds. (9)

Define, the norm of any function y in S by

‖y‖S = sup
0≤t≤t1

{
‖y(t)‖e−ρt

}
, (10)

where ρ is a fixed positive constant greater than K + λ. We have for each y1(t) and y2(t) in S,

‖ T(y1)(t)− T(y2)(t) ‖ ≤ (K + λ)
∫ t

0
‖ y1(s)− y2(s) ‖ ds,

≤ (K + λ)
∫ t

0
eρs−ρs ‖ y1(s)− y2(s) ‖ ds,

≤ (K + λ) ‖ y1 − y2 ‖S

∫ t

0
eρsds,

≤ (K + λ)

ρ
‖ y1 − y2 ‖S eρt,

and hence

‖ T(y1)− T(y2) ‖S ≤ (K + λ)

ρ
‖ y1 − y2 ‖S .

Since K+λ
ρ < 1, then, T is a contraction on S, and the result follows immediately.

Lemma 2. [18] Let f : [0, ω + τ]×R → Rn be a map satisfying (I) and (II) and hj, for j = 1, · · · , l, satisfy
the condition (III). Then the problem (1)–(3) has a unique solution.

Proof. The proof follows by using the last lemma.

Lemma 3. [18] Under the assumptions (I) and (II), if x(ϕ)(t) is the unique solution of (4) and (5), then one has:

‖ x(ϕ)(t) ‖ ≤ eKt
(
‖ ϕ ‖ +

∫ ω

0
‖ f (s, 0) ‖ ds

)
. (11)

The next Lemma, gives a similar, key representation formula for the solutions of the delay
differential equations with impulses (1)–(3) in regulated Banach spaceR, see [4] for more details.
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Lemma 4. The problem (1)–(3) can be written as

xt = ϕ0
t + H0

t ⊗ ((ξe−λ max(0,•))t − ϕ(0))

+
( ∫ max(0,•)

0
f (s, xs)e−λ(•−s)ds + ∑

0≤tj<•
e−λ(•−tj)uj

)
t
,

where

ϕ0(θ) =

{
ϕ(θ), if θ ≤ 0,
ϕ(0), if θ > 0,

(12)

H0 is the Heaviside function

H0(θ) =

{
0, if θ ≤ 0,
1, if θ > 0,

(13)

and the sequence
uk = x(t+k )− x(tk), k ≥ 1

is determined by the following non-autonomous recurrence equation

uk = hk

(
ξe−λtk +

∫ tk

0
f (s, xs)e−λ(tk−s)ds + ∑

0≤tj<tk

e−λ(tk−tj)uj

)
, k ≥ 1,

starting from

u1 = h1

(
ξe−λt1 +

∫ t1

0
f (s, xs)e−λ(t1−s)ds

)
.

Proof. Let us consider z(t) = eλtx(t), ∀t ∈ [0, ω + τ], then the problem (1)–(3) becomes

dz(t)
dt

= f (t, e−λ(t+θ)zt)eλt, a.e. t ∈ [0, ω + τ], λ > 0, ω > 0, (14)

z(tj) = z(t−j ), and z(t+j )− z(tj) = eλtj hj(e
−λtj z(tj)), ∀j = 1, . . . , l, (15)

z0(θ) = eλθ ϕ(θ) = ϕ̃(θ), θ ∈ [−τ, 0], and z(0+) = ξ ∈ Rn. (16)

Let us consider t ∈ [tj, tj+1), j = 1, . . . , l − 1, with t0 = 0, then we get

z(t) = z(t+j ) +
∫ t

tj

f (s, e−λ(s+θ)zs)eλsds.

By passing to the limit as t goes to t−j , and by solving the delay differential Equation (14) on the
interval [tj−1, tj), we have

z(tj) = z(t+j−1) +
∫ tj

tj−1

f (s, e−λ(s+θ)zs)eλsds.

Then, by taking into account the impulses condition (15), we have

z(t) = z(t+j−1) +
∫ t

tj−1

f (s, e−λ(s+θ)zs)eλsds + eλtj hj(e
−λtj z(tj)),
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for all t ∈ [tj, tj+1), for j = 1, · · · , l − 1. Consequently, we can rewrite the last equations in more
general form for all t > 0

z(t) = ξ +
∫ t

0
f (s, e−λ(s+θ)zs)eλsds + ∑

0≤tj<t
eλtj uj, t /∈ {tk}k≥1, (17)

where z(0+) = x(0+) = ξ, and

uk = z(t+k )− z(tk) = hk(e−λtk z(tk)), k ≥ 1. (18)

Now, we will try to involve the u′ks. To this end, we will take the limit from the left of the
Formula (17) as t tends to tk > 0, we obtain

z(tk) = ξ +
∫ tk

0
f (s, e−λ(s+θ)zs)eλsds + ∑

0≤tj<tk

eλtj uj.

Substituting the last expression into (18), we have

uk = hk

(
e−λtk ξ +

∫ tk

0
f (s, e−λ(s+θ)zs)eλ(s−tk)ds + ∑

0≤tj<tk

eλ(tj−tk)uj

)
.

In particular, we have {j : 0 ≤ tj < t1} = ∅, and therefore

u1 = h1

(
e−λt1 ξ +

∫ t1

0
f (s, e−λ(s+θ)zs)eλsds

)
.

By using, the Equation (16), we can rewrite the Equation (17) as

zt(θ) = ξ +
∫ t+θ

0
f (s, e−λ(s+θ)zs)eλsds

+ ∑
0≤tj<t+θ

eλtj uj, t + θ /∈ {tk}k≥0, and t + θ ≥ 0, (19)

and by using x(t) = e−λtz(t), we have for t + θ /∈ {tk}k≥1, and t + θ ≥ 0

xt(ϕ(θ)) = ξe−λ(t+θ) +
∫ t+θ

0
f (s, xs)e−λ(t+θ−s)ds + ∑

0≤tj<t+θ

e−λ(t+θ−tj)uj.

Using (12) and (13), we get

xt(ϕ) = ϕ0
t + H0

t ⊗ ((ξe−λ max(0,•))t − ϕ(0))

+
( ∫ max(0,•)

0
f (s, xs)e−λ(•−s)ds + ∑

0≤tj<•
e−λ(•−tj)uj

)
t
,

where

uk = hk

(
ξe−λtk +

∫ tk

0
f (s, xs)e−λ(tk−s)ds + ∑

0≤tj<tk

e−λ(tk−tj)uj

)
, k ≥ 1.

starting from

u1 = h1

(
ξe−λt1 +

∫ t1

0
f (s, xs)e−λ(t1−s)ds

)
.
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Remark 1. Taking into account the conditions (II)–(III), we have ut ∈ R, ∀t ∈ [0, ω + τ], and t → xt is a
regulated function, because the functions t→ ϕ0

t , and t→ H0
t are regulated.

In the next section, we will investigate the existence of the periodic solution(s) for the delay
differential equation with impulses (1)–(3) using Schäffer’s fixed point theorem [19].

3. Existence of Periodic Solutions

Let us consider the Poincaré operator, given by:

J : R → R
ϕ → xω(ϕ),

where xω(ϕ) is the solution of the delay differential equation with impulses (1)–(3). It is clear that
if the Poincaré operator J admit a fixed point, then (1)–(3) has a ω-periodic solution. The following
lemma is useful to prove the main theorem.

Lemma 5. The problem (1)–(3) has a ω-periodic solution inR if and only if the integral equation

xt(ϕ)(θ) =


e−λθ

∫ t+ω+θ

t+θ
G(t, s) f (s, xs)ds + e−λθ ∑

t+θ≤tj<t+ω+θ

G(t, tj)uj, if 0 ≤ t + θ ≤ ω,

ϕ(t + θ), if −τ ≤ t + θ ≤ 0,

has a solution ∀t ∈ [0, ω + τ] and ω ≥ τ, where

G(t, s) =
e−λ(t−s)

eλω − 1
, (20)

and the sequence
uk = x(t+k )− x(tk), k ≥ 1

is determined by the following non-autonomous recurrence equation

uk = hk

( ∫ tk+ω

tk

G(t, s) f (s, xs)ds + ∑
tk≤tj<tk+ω

G(t, tj)uj

)
, k ≥ 1,

starting from

u1 = h1

(
ξe−λt1 +

∫ t1

0
f (s, xs)e−λ(t1−s)ds

)
.

Proof. Using the expression (19) for t + ω + θ, where t ≥ 0, and ω ≥ τ, we have for all t + θ ≥ 0

zt+ω(θ) = ξ +
∫ t+ω+θ

0
f (s, e−λ(s+θ)zs)eλsds + ∑

0≤tj<t+ω+θ

eλtj uj,

= ξ +
∫ t+θ

0
f (s, e−λ(s+θ)zs)eλsds + ∑

0≤tj<t+θ

eλtj uj

+
∫ t+ω+θ

t+θ
f (s, e−λ(s+θ)zs)eλsds + ∑

t+θ≤tj<t+ω+θ

eλtj uj,

= zt(θ) +
∫ t+ω+θ

t+θ
f (s, e−λ(s+θ)zs)eλsds + ∑

t+θ≤tj<t+ω+θ

eλtj uj,
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and, by using the ω-periodic condition zt+ω(θ) = eλωzt(θ), we get

zt(θ) =
1

eλω − 1

∫ t+ω+θ

t+θ
f (s, e−λ(s+θ)zs)eλsds +

1
eλω − 1 ∑

t+θ≤tj<t+ω+θ

eλtj uj.

Therefore, using zt(θ) = eλ(t+θ)xt(θ), we have

xt(θ) = e−λθ
∫ t+ω+θ

t+θ
G(t, s) f (s, xs)ds + e−λθ ∑

t+θ≤tj<t+ω+θ

G(t, tj)uj,

where

G(t, s) =
e−λ(t−s)

eλω − 1
. (21)

Then

uk = hk

( ∫ tk+ω

tk

G(t, s) f (s, xs)ds + ∑
tk≤tj<tk+ω

G(t, tj)uj

)
, k ≥ 1,

starting from

u1 = h1

(
ξe−λt1 +

∫ t1

0
f (s, xs)e−λ(t1−s)ds

)
.

Example 1. Let us consider the scalar delay differential equation with impulses:

dx(t)
dt

= −λx(t) + f (t, x(t− τ)), a.e. t ∈ [0, 2τ], (22)

x(τ) = x(τ−), and x(τ+)− x(τ) = cx(τ), (23)

x(θ) = ϕ(θ), θ ∈ [−τ, 0], (24)

where f : [0, 2τ] × R → Rn is a map satisfying (II). Let us investigate the existence of the τ-periodic
solution of (22)–(24) such that xt+τ(−τ) = xt(−τ), τ ≤ t ≤ 2τ. The solution of the delay differential
Equations (22)–(24), can be written as

x(t) =


ϕ(θ), if −τ ≤ t ≤ 0,

ϕ(0)e−λt +
∫ t

0
e−λ(t−s) f (s, x(s− τ))ds, if 0 ≤ t ≤ τ,

x(τ+)e−λ(t−τ) +
∫ t

τ
e−λ(t−s) f (s, x(s− τ))ds, if τ < t ≤ 2τ.

(25)

Using (23), we get

x(τ+) = x(τ) + cx(τ),

= (c + 1)x(0)e−λτ + (c + 1)
∫ τ

0
e−λ(τ−s) f (s, x(s− τ))ds.

Therefore, if τ ≤ t < 2τ, we have
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x(t) =
(
(c + 1)ϕ(0)e−λτ + (c + 1)

∫ τ

0
e−λ(τ−s) f (s, x(s− τ))ds

)
e−λ(t−τ)

+
∫ t

τ
e−λ(t−s) f (s, x(s− τ))ds,

= (c + 1)ϕ(0)e−λτe−λ(t−τ) + (c + 1)e−λτ
∫ t−τ

0
e−λ(t−τ−s) f (s, x(s− τ))ds

+(c + 1)e−λτ
∫ τ

t−τ
e−λ(t−τ−s) f (s, x(s− τ))ds +

∫ t

τ
e−λ(t−s) f (s, x(s− τ))ds,

= (c + 1)e−λτ
(

x(t− τ) +
∫ τ

t−τ
e−λ(t−τ−s) f (s, x(s− τ))ds

)
+
∫ t

τ
e−λ(t−s) f (s, x(s− τ))ds,

which implies

xt+τ(−τ) = (c + 1)e−λτ
(

xt(−τ) +
∫ τ

t−τ
e−λ(t−τ−s) f (s, x(s− τ))ds

)
+
∫ t

τ
e−λ(t−s) f (s, x(s− τ))ds.

Then, we have three cases.

(1) If 1− (c + 1)e−λτ 6= 0, then, we have the existence and uniqueness of a τ-periodic solution.
(2) If 1− (c + 1)e−λτ = 0, and

∫ τ

t−τ
e−λ(t−τ−s) f (s, x(s− τ))ds +

∫ t

τ
e−λ(t−s) f (s, x(s− τ))ds = 0,

then, we have the existence of infinitely many τ-periodic solutions.
(3) If 1− (c + 1)e−λτ = 0, and

∫ τ

t−τ
e−λ(t−τ−s) f (s, x(s− τ))ds +

∫ t

τ
e−λ(t−s) f (s, x(s− τ))ds 6= 0,

then, there exists no τ-periodic solution.

Now, we can consider for each t ≥ −τ and ω ≥ τ, the Poincaré operator J : R → R defined by

Jϕ =
(

e−λ(•−t)
∫ •+ω

•
G(t, s) f (s, ϕ)ds + e−λ(•−t) ∑

•≤tj<•+ω

G(t, tj)uj

)
t
,

where

uk = hk

( ∫ tk+ω

tk

G(t, s) f (s, xs)ds + ∑
tk≤tj<tk+ω

G(t, tj)uj

)
, k ≥ 2,

and, starting from

u1 = h1

(
ξe−λt1 +

∫ t1

0
f (s, xs)e−λ(t1−s)ds

)
.

It is clear, that, the ω-periodic solutions inR of (1)–(3) are exactly the fixed points of the Poincaré
operator J, i.e., Jϕ = ϕ.

The following theorem, is known as the Schäffer’s fixed point theorem [19], which can be found
for example in Deimling’s book [20].
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Theorem 1. [19–22] Let X be a normed space, F a continuous mapping of X into X, such that the closure of
F (B) is compact for any bounded subset B of X. Then either:

(i) the equation x = λFx has a solution for λ = 1, or
(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

Before, we state the main theorem of our work, we will need the following lemma.

Lemma 6. Let f : [0, ω + τ]×R → Rn be a map satisfying (I) and (II), where ω ≥ τ, and hj, j = 1, . . . , l
are bounded and satisfy the condition (III). Then, the Poincaré operator J : R → R is completely continuous.

Proof. Let B ⊂ R be a bounded set and ϕ ∈ B. Then by using the condition (I), we have

‖ f (t, ϕ)‖R ≤ ‖ f (t, 0)‖R + ‖ f (t, ϕ)− f (t, 0)‖R ≤ M + K‖ϕ‖R < ∞.

Therefore, there exist two constants M̃ and M such that

‖ Jϕ(θ) ‖ = ‖ e−λθ
∫ t+θ+ω

t+θ
f (s, ϕ)G(t, s)ds + e−λθ ∑

t+θ≤tj<t+θ+ω

G(t, tj)uj ‖,

≤ ‖ e−λθ
∫ t+θ+ω

t+θ
f (s, ϕ)G(t, s)ds ‖ +eλr ‖ ∑

t+θ≤tj<t+θ+ω

G(t, tj)uj ‖,

≤ eλτωM̃ + eλr ∑
t+θ≤tj<t+θ+ω

M, (26)

where

‖uk‖ =
∥∥∥hk

( ∫ tk+ω

tk

G(t, s) f (s, xs)ds + ∑
tk≤tj<tk+ω

G(t, tj)uj

)∥∥∥ < ∞, k ≥ 2,

and starting from

‖u1‖ =
∥∥∥h1

(
ξe−λt1 +

∫ t1

0
f (s, xs)e−λ(t1−s)ds

)∥∥∥ < ∞,

and, we have

‖ Jϕ ‖R ≤ eλτωM̃ + eλr M ∑
t+θ≤tj<t+θ+ω

1,

which imply that J(B) is uniformly bounded. For each t ≥ 0, there exists n ∈ N∗ such that t ∈ [tn, tn+1),
and for any θ, θ̃ ∈ [−r, 0], one can obtain for any ϕ ∈ B

‖ Jϕ(θ)− Jϕ(θ̃) ‖ ≤ ‖ e−λθ
∫ t+θ+ω

t+θ
f (s, ϕ)G(t, s)ds− e−λθ

∫ t+θ̃+ω

t+θ̃
f (s, ϕ)G(t, s)ds ‖

+ ‖ e−λθ ∑
t+θ≤tj<t+θ+ω

G(t, tj)uj − e−λθ ∑
t+θ̃≤tj<t+θ̃+ω

G(t, tj)uj ‖,

≤
eλ(r+ω)

(
M + K‖ϕ‖

)
1− e−λω

‖
∫ t+θ+ω

t+θ
e−λ(t−s)ds−

∫ t+θ̃+ω

t+θ̃
e−λ(t−s)ds ‖

+
eλ(r+ω)

1− e−λω
‖ ∑

t+θ≤tj<t+θ+ω

uj − ∑
t+θ̃≤tj<t+θ̃+ω

uj ‖ .
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Therefore, for each t ∈ [tn, tn+1), we will have as | θ − θ̃ | goes to 0, ‖ Jϕ(θ)− Jϕ(θ̃) ‖ goes to
0, which imply that the Poincaré operator J(B) is equicontinuous. Using Arzelà-Ascoli’s theorem,
we conclude that the Poincaré operator J is completely continuous.

Now, we are ready to state the main result of our work, related to the existence of ω-periodic
solution(s) of (1)–(3).

Theorem 2. Let f : [0, ω + τ]×R → Rn be a map satisfying (I) and (II), where ω ≥ τ, and hj, j = 1, . . . , l
are bounded and satisfy the condition (III). Then, the nonlinear impulsive problem (1)–(3), has at least one
ω-periodic solution inR.

Proof. Let us define H(ϕ, µ) : R× [0, 1] −→ R by

H(ϕ, µ) = µJϕ. (27)

Then, by using (26), we have

‖H(ϕ, µ)‖R ≤ µ
(

eλτωM̃ + eλr ∑
t+θ≤tj<t+θ+ω

M
)

.

Then, for each µ ∈ (0, 1) the set S = {ϕ : ϕ = H(ϕ, µ)} is bounded. Since J is
completely continuous, then by using Schäffer’s fixed point theorem, the Poincaré operator J admits
a fixed point.

Next, we give the conditions of the existence and uniqueness of a ω-periodic solution of (1)–(3).

Theorem 3. Let f : [0, ω + τ]×R → Rn be a map satisfying (I) and (II), where ω ≥ τ, and hj, j = 1, . . . , l
are bounded and satisfy the condition (III), and there exist constants H j, j = 1, . . . , l, such that

‖ hj(ϕ(0))− hj(ψ(0)) ‖ ≤ H j ‖ ϕ− ψ ‖R .

If, there exists a constant C < 1, such that

Kωeλr

1− e−λω
+

eλr

1− e−λω ∑
t−r+ω≤tj<t+ω

H j ≤ C,

then, the nonlinear impulsive problem (1)–(3), has a unique ω-periodic solution inR.

Proof. Let ϕ, ψ ∈ R be two solutions of (1)–(3), i.e., Jϕ = ϕ and Jψ = ψ. Assume φ 6= ψ. We have

‖ ϕ(θ)− ψ(θ) ‖ = ‖ Jϕ(θ)− Jψ(θ) ‖,

≤ eλr
∫ t+θ+ω

t+θ
| G(t, s) |‖ f (s, ϕ)− f (s, ψ) ‖R ds +

eλr ∑
t−r+ω≤tj<t+ω

| G(t, tj) |‖ hj(ϕ(0)− hj(ψ(0)) ‖,

≤
( Kωeλr

1− e−λω
+

eλr

1− e−λω ∑
t−r+ω≤tj<t+ω

H j

)
‖ ϕ− ψ ‖R,

≤ C ‖ ϕ− ψ ‖R .

Hence
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‖ ϕ− ψ ‖R ≤ C ‖ ϕ− ψ ‖R, (28)

< ‖ ϕ− ψ ‖R .

This contradiction implies, the uniqueness of the ω-periodic solution of (1)–(3).

4. Conclusions

The method described in this work presents new challenges for more investigation on more
realistic models; such as the extension of the ascorbic acid model [12] and HIV model [13,14].
Taking into account the delay effect on respective compartments [23–25]. This kind of work, will need
more investigation on modeling validation effort, keeping a close eye on the real life data in order to
have a more realistic model. The explicit solutions presented in the technical Lemma 4 and methods of
proving the existence of periodic solutions are very useful for further future investigations.
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