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Abstract

:

The purpose of this paper is to study the nonlinear distributed delay differential equations with impulses effects in the vectorial regulated Banach spaces R([−r,0],Rn). The existence of the periodic solution of impulsive delay differential equations is obtained by using the Schäffer fixed point theorem in regulated space R([−r,0],Rn).
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1. Introduction


In this paper, we will investigate the existence of periodic solutions for vectorial distributed delay differential equations with impulses in regulated Banach spaces. More precisely, the prototype of this delay differential equations with impulses, is of the form


dx(t)dt=−λx(t)+f(t,xt),a.e.t∈[0,ω+τ],λ>0,ω>0,



(1)






x(tj)=x(tj−),andx(tj+)−x(tj)=hj(x(tj)),∀j=1,…,l,



(2)






x0(θ)=φ(θ),θ∈[−τ,0],



(3)




with xt(θ)=x(t+θ), θ∈[−τ,0], τ>0 and where x and φ are Rn-valued functions on [−τ,ω], and [−τ,0], respectively. The Equation (1) is a nonlinear delay differential equation. More details about this type of equations can be found in [1]. Moreover, we assume that

	(i)

	
hj∈C(Rn,Rn), j=1,…,l,




	(ii)

	
{t1,t2,⋯,tl} is an increasing family of strictly positive real numbers,




	(iii)

	
there exist δ>0 and T<∞, such that for any j=1,…,l−1, we have


0<δ≤tj+1−tj≤T<∞.

















We call (2) the impulses equation where, x(tj−) (resp. x(tj+)) denotes the limit from the left (resp. from the right) of x(t), as t tends to tj. This type of differential equations without delay was initiated in 1960’s by Milman and Myshkis [2,3]. This problem started to be popular mostly in Eastern Europe in the years 1960–1970, with special attention during the seventies of the last century. Later on, several investigations and important monographs appeared with more details, which show the importance of studying such systems, see for example [4,5,6,7,8,9,10,11]. In recent years, many investigations have arisen with applications to life sciences, such that the periodic treatment of some biomedical applications, where the impulses correspond to administration of a drug treatment at certain given times [12,13,14,15]. However, comparatively speaking, not much has been done in the study of impulsive functional differential equations in regulated vectorial space, taking into account the general theory of functional analysis and having an acceptable hypothesis that can be used in real life applications, see [12] for more details.



Let us first introduce for each τ>0, the regulated Banach space R=R([−τ,0],Rn), given by:


R=φ:[−τ,0]→Rn:φhasleftandrightlimitsateverypointsof[−τ,0],








endowed with the following norm


∥φ∥R=supθ∈[−τ,0]∥φ(θ)∥.











We will make the following assumptions

	(I)

	
The map f:[0,ω+τ]×Rn→Rn,ω>0, satisfies



	
∥f(t,φ)−f(t,ψ)∥R≤K∥φ−ψ∥R, ∀t∈[0,ω+τ],φ,ψ∈R,



	
∃M>0, ∥f(t,0)∥R≤M, ∀t∈[0,ω+τ].







	(II)

	
For each regulated map x:[a,b]→Rn, with b−a>τ, we assume that the map t→f(t,xt) is measurable over [a+τ,b].




	(III)

	
For each j=1,…,l, hj:Rn→Rn is a continuous map.









We set the initial value problem as follows



Problem 1.

Let φ be an element of R. We want to find a function x defined on [−τ,ω+τ] such that x satisfies (1)–(3).





We consider the nonlinear impulsive delay differential equation in R as


dx(t)dt=−λx(t)+f(t,xt),a.e.t∈[0,ω+τ],λ>0,ω>0,x(tj)=x(tj−),andx(tj+)−x(tj)=hj(x(tj)),∀j=1,…,l,x0(θ)=φ(θ),θ∈[−τ,0]andx(0+)=ξ∈Rn.











The aim of this paper is to extend the main results related to the existence of the ω-periodic solutions for ordinary differential equations with impulses presented by Li et al. [16] and Nieto [17]. These papers contain references which provide additional reading on this topic, i.e., differential equations with impulses by using the fixed point theory.




2. Existence and Uniqueness of Solution


Let us start first by introducing some related definitions and lemmas.



Definition 1.

A function x:[−τ,ω+τ]→Rn is called a solution of (1)–(3) if:




	1.

	
x is absolutely continuous with respect to the Lebesgue measure;




	2.

	
x is differentiable on the complement of a countable subset of [0,ω+τ], and satisfies Equation (1) whenever dx(t)dt and the right hand side of (1) are defined on [0,ω+τ];




	3.

	
x satisfies (2) at each point tj,tj≥0,∀j=1,…,l, and the initial value function satisfies (3).











Lemma 1.

Let f:[0,ω+τ]×R→Rn be a map satisfying (I) and (II) and t1∈[0,ω+τ]. Then, for each (φ,ξ)∈R×Rn, the problem


dx(t)dt=−λx(t)+f(t,xt),a.e.t∈[0,t1]



(4)






(x0,x(0+))=(φ,ξ)∈R×Rn,



(5)




has a unique solution.





Proof. 

We set S={y∈C([0,t1],Rn),y(0)=x(0+)=ξ}. Let us define the operator T by


T(x)(t)=ξ+∫0tf(s,xs)−λx(s)ds,0≤t≤t1.



(6)







For each y∈S, we consider the Nemytski operator F, defined by


F(y)(t)=f(t,zt),



(7)




where


zt(θ)=y(t+θ),if t+θ≥0,φ(t+θ),if t+θ≤0.



(8)







Then, we get


T(y)(t)=ξ+∫0tF(y)(s)−λy(s)ds.



(9)







Define, the norm of any function y in S by


∥y∥S=sup0≤t≤t1∥y(t)∥e−ρt,



(10)




where ρ is a fixed positive constant greater than K+λ. We have for each y1(t) and y2(t) in S,


∥T(y1)(t)−T(y2)(t)∥≤(K+λ)∫0t∥y1(s)−y2(s)∥ds,≤(K+λ)∫0teρs−ρs∥y1(s)−y2(s)∥ds,≤(K+λ)∥y1−y2∥S∫0teρsds,≤(K+λ)ρ∥y1−y2∥Seρt,








and hence


∥T(y1)−T(y2)∥S≤(K+λ)ρ∥y1−y2∥S.











Since K+λρ<1, then, T is a contraction on S, and the result follows immediately. □





Lemma 2.

[18] Let f:[0,ω+τ]×R→Rn be a map satisfying (I) and (II) and hj, for j=1,⋯,l, satisfy the condition (III). Then the problem (1)–(3) has a unique solution.





Proof. 

The proof follows by using the last lemma. □





Lemma 3.

[18] Under the assumptions (I) and (II), if x(φ)(t) is the unique solution of (4) and (5), then one has:


∥x(φ)(t)∥≤eKt∥φ∥+∫0ω∥f(s,0)∥ds.



(11)









The next Lemma, gives a similar, key representation formula for the solutions of the delay differential equations with impulses (1)–(3) in regulated Banach space R, see [4] for more details.



Lemma 4.

The problem (1)–(3) can be written as


xt=φt0+Ht0⊗((ξe−λmax(0,•))t−φ(0))+∫0max(0,•)f(s,xs)e−λ(•−s)ds+∑0≤tj<•e−λ(•−tj)ujt,








where


φ0(θ)=φ(θ),if θ≤0,φ(0),if θ>0,



(12)




H0 is the Heaviside function


H0(θ)=0,if θ≤0,1,if θ>0,



(13)




and the sequence


uk=x(tk+)−x(tk),k≥1








is determined by the following non-autonomous recurrence equation


uk=hkξe−λtk+∫0tkf(s,xs)e−λ(tk−s)ds+∑0≤tj<tke−λ(tk−tj)uj,k≥1,








starting from


u1=h1ξe−λt1+∫0t1f(s,xs)e−λ(t1−s)ds.













Proof. 

Let us consider z(t)=eλtx(t),∀t∈[0,ω+τ], then the problem (1)–(3) becomes


dz(t)dt=f(t,e−λ(t+θ)zt)eλt,a.e.t∈[0,ω+τ],λ>0,ω>0,



(14)






z(tj)=z(tj−),andz(tj+)−z(tj)=eλtjhj(e−λtjz(tj)),∀j=1,…,l,



(15)






z0(θ)=eλθφ(θ)=φ˜(θ),θ∈[−τ,0],andz(0+)=ξ∈Rn.



(16)







Let us consider t∈[tj,tj+1),j=1,…,l−1, with t0=0, then we get


z(t)=z(tj+)+∫tjtf(s,e−λ(s+θ)zs)eλsds.











By passing to the limit as t goes to tj−, and by solving the delay differential Equation (14) on the interval [tj−1,tj), we have


z(tj)=z(tj−1+)+∫tj−1tjf(s,e−λ(s+θ)zs)eλsds.











Then, by taking into account the impulses condition (15), we have


z(t)=z(tj−1+)+∫tj−1tf(s,e−λ(s+θ)zs)eλsds+eλtjhj(e−λtjz(tj)),








for all t∈[tj,tj+1), for j=1,⋯,l−1. Consequently, we can rewrite the last equations in more general form for all t>0


z(t)=ξ+∫0tf(s,e−λ(s+θ)zs)eλsds+∑0≤tj<teλtjuj,t∉{tk}k≥1,



(17)




where z(0+)=x(0+)=ξ, and


uk=z(tk+)−z(tk)=hk(e−λtkz(tk)),k≥1.



(18)







Now, we will try to involve the uk′s. To this end, we will take the limit from the left of the Formula (17) as t tends to tk>0, we obtain


z(tk)=ξ+∫0tkf(s,e−λ(s+θ)zs)eλsds+∑0≤tj<tkeλtjuj.











Substituting the last expression into (18), we have


uk=hke−λtkξ+∫0tkf(s,e−λ(s+θ)zs)eλ(s−tk)ds+∑0≤tj<tkeλ(tj−tk)uj.











In particular, we have {j:0≤tj<t1}=∅, and therefore


u1=h1e−λt1ξ+∫0t1f(s,e−λ(s+θ)zs)eλsds.











By using, the Equation (16), we can rewrite the Equation (17) as


zt(θ)=ξ+∫0t+θf(s,e−λ(s+θ)zs)eλsds+∑0≤tj<t+θeλtjuj,t+θ∉{tk}k≥0,and t+θ≥0,



(19)




and by using x(t)=e−λtz(t), we have for t+θ∉{tk}k≥1, and t+θ≥0


xt(φ(θ))=ξe−λ(t+θ)+∫0t+θf(s,xs)e−λ(t+θ−s)ds+∑0≤tj<t+θe−λ(t+θ−tj)uj.











Using (12) and (13), we get


xt(φ)=φt0+Ht0⊗((ξe−λmax(0,•))t−φ(0))+∫0max(0,•)f(s,xs)e−λ(•−s)ds+∑0≤tj<•e−λ(•−tj)ujt,








where


uk=hkξe−λtk+∫0tkf(s,xs)e−λ(tk−s)ds+∑0≤tj<tke−λ(tk−tj)uj,k≥1.








starting from


u1=h1ξe−λt1+∫0t1f(s,xs)e−λ(t1−s)ds.











□





Remark 1.

Taking into account the conditions (II)–(III), we have ut∈R, ∀t∈[0,ω+τ], and t→xt is a regulated function, because the functions t→φt0, and t→Ht0 are regulated.





In the next section, we will investigate the existence of the periodic solution(s) for the delay differential equation with impulses (1)–(3) using Schäffer’s fixed point theorem [19].




3. Existence of Periodic Solutions


Let us consider the Poincaré operator, given by:


J:R→Rφ→xω(φ),








where xω(φ) is the solution of the delay differential equation with impulses (1)–(3). It is clear that if the Poincaré operator J admit a fixed point, then (1)–(3) has a ω-periodic solution. The following lemma is useful to prove the main theorem.



Lemma 5.

The problem (1)–(3) has a ω-periodic solution in R if and only if the integral equation


xt(φ)(θ)=e−λθ∫t+θt+ω+θG(t,s)f(s,xs)ds+e−λθ∑t+θ≤tj<t+ω+θG(t,tj)uj,if 0≤t+θ≤ω,φ(t+θ),if −τ≤t+θ≤0,








has a solution ∀t∈[0,ω+τ] and ω≥τ, where


G(t,s)=e−λ(t−s)eλω−1,



(20)




and the sequence


uk=x(tk+)−x(tk),k≥1








is determined by the following non-autonomous recurrence equation


uk=hk∫tktk+ωG(t,s)f(s,xs)ds+∑tk≤tj<tk+ωG(t,tj)uj,k≥1,








starting from


u1=h1ξe−λt1+∫0t1f(s,xs)e−λ(t1−s)ds.













Proof. 

Using the expression (19) for t+ω+θ, where t≥0, and ω≥τ, we have for all t+θ≥0


zt+ω(θ)=ξ+∫0t+ω+θf(s,e−λ(s+θ)zs)eλsds+∑0≤tj<t+ω+θeλtjuj,=ξ+∫0t+θf(s,e−λ(s+θ)zs)eλsds+∑0≤tj<t+θeλtjuj+∫t+θt+ω+θf(s,e−λ(s+θ)zs)eλsds+∑t+θ≤tj<t+ω+θeλtjuj,=zt(θ)+∫t+θt+ω+θf(s,e−λ(s+θ)zs)eλsds+∑t+θ≤tj<t+ω+θeλtjuj,








and, by using the ω-periodic condition zt+ω(θ)=eλωzt(θ), we get


zt(θ)=1eλω−1∫t+θt+ω+θf(s,e−λ(s+θ)zs)eλsds+1eλω−1∑t+θ≤tj<t+ω+θeλtjuj.











Therefore, using zt(θ)=eλ(t+θ)xt(θ), we have


xt(θ)=e−λθ∫t+θt+ω+θG(t,s)f(s,xs)ds+e−λθ∑t+θ≤tj<t+ω+θG(t,tj)uj,








where


G(t,s)=e−λ(t−s)eλω−1.



(21)







Then


uk=hk∫tktk+ωG(t,s)f(s,xs)ds+∑tk≤tj<tk+ωG(t,tj)uj,k≥1,








starting from


u1=h1ξe−λt1+∫0t1f(s,xs)e−λ(t1−s)ds.











□





Example 1.

Let us consider the scalar delay differential equation with impulses:


dx(t)dt=−λx(t)+f(t,x(t−τ)),a.e.t∈[0,2τ],



(22)






x(τ)=x(τ−),andx(τ+)−x(τ)=cx(τ),



(23)






x(θ)=φ(θ),θ∈[−τ,0],



(24)




where f:[0,2τ]×R→Rn is a map satisfying (II). Let us investigate the existence of the τ-periodic solution of (22)–(24) such that xt+τ(−τ)=xt(−τ),τ≤t≤2τ. The solution of the delay differential Equations (22)–(24), can be written as


x(t)=φ(θ),if −τ≤t≤0,φ(0)e−λt+∫0te−λ(t−s)f(s,x(s−τ))ds,if 0≤t≤τ,x(τ+)e−λ(t−τ)+∫τte−λ(t−s)f(s,x(s−τ))ds,if τ<t≤2τ.



(25)







Using (23), we get


x(τ+)=x(τ)+cx(τ),=(c+1)x(0)e−λτ+(c+1)∫0τe−λ(τ−s)f(s,x(s−τ))ds.











Therefore, if τ≤t<2τ, we have


x(t)=(c+1)φ(0)e−λτ+(c+1)∫0τe−λ(τ−s)f(s,x(s−τ))dse−λ(t−τ)+∫τte−λ(t−s)f(s,x(s−τ))ds,=(c+1)φ(0)e−λτe−λ(t−τ)+(c+1)e−λτ∫0t−τe−λ(t−τ−s)f(s,x(s−τ))ds+(c+1)e−λτ∫t−ττe−λ(t−τ−s)f(s,x(s−τ))ds+∫τte−λ(t−s)f(s,x(s−τ))ds,=(c+1)e−λτx(t−τ)+∫t−ττe−λ(t−τ−s)f(s,x(s−τ))ds+∫τte−λ(t−s)f(s,x(s−τ))ds,








which implies


xt+τ(−τ)=(c+1)e−λτxt(−τ)+∫t−ττe−λ(t−τ−s)f(s,x(s−τ))ds+∫τte−λ(t−s)f(s,x(s−τ))ds.








Then, we have three cases.

	(1) 

	
If 1−(c+1)e−λτ≠0, then, we have the existence and uniqueness of a τ-periodic solution.




	(2) 

	
If 1−(c+1)e−λτ=0, and


∫t−ττe−λ(t−τ−s)f(s,x(s−τ))ds+∫τte−λ(t−s)f(s,x(s−τ))ds=0,








then, we have the existence of infinitely many τ-periodic solutions.




	(3) 

	
If1−(c+1)e−λτ=0, and


∫t−ττe−λ(t−τ−s)f(s,x(s−τ))ds+∫τte−λ(t−s)f(s,x(s−τ))ds≠0,








then, there exists no τ-periodic solution.











Now, we can consider for each t≥−τ and ω≥τ, the Poincaré operator J:R→R defined by


Jφ=e−λ(•−t)∫••+ωG(t,s)f(s,φ)ds+e−λ(•−t)∑•≤tj<•+ωG(t,tj)ujt,








where


uk=hk∫tktk+ωG(t,s)f(s,xs)ds+∑tk≤tj<tk+ωG(t,tj)uj,k≥2,








and, starting from


u1=h1ξe−λt1+∫0t1f(s,xs)e−λ(t1−s)ds.











It is clear, that, the ω-periodic solutions in R of (1)–(3) are exactly the fixed points of the Poincaré operator J, i.e., Jφ=φ.



The following theorem, is known as the Schäffer’s fixed point theorem [19], which can be found for example in Deimling’s book [20].



Theorem 1.

[19,20,21,22] Let X be a normed space, F a continuous mapping of X into X, such that the closure of F(B) is compact for any bounded subset B of X. Then either:

	(i) 

	
the equationx=λFxhas a solution forλ=1,or




	(ii) 

	
the set of all such solutions x, for0<λ<1, is unbounded.











Before, we state the main theorem of our work, we will need the following lemma.



Lemma 6.

Let f:[0,ω+τ]×R→Rn be a map satisfying (I) and (II), where ω≥τ, and hj,j=1,…,l are bounded and satisfy the condition (III). Then, the Poincaré operator J:R→R is completely continuous.





Proof. 

Let B⊂R be a bounded set and φ∈B. Then by using the condition (I), we have


∥f(t,φ)∥R≤∥f(t,0)∥R+∥f(t,φ)−f(t,0)∥R≤M+K∥φ∥R<∞.











Therefore, there exist two constants M˜ and M¯ such that


∥Jφ(θ)∥=∥e−λθ∫t+θt+θ+ωf(s,φ)G(t,s)ds+e−λθ∑t+θ≤tj<t+θ+ωG(t,tj)uj∥,≤∥e−λθ∫t+θt+θ+ωf(s,φ)G(t,s)ds∥+eλr∥∑t+θ≤tj<t+θ+ωG(t,tj)uj∥,≤eλτωM˜+eλr∑t+θ≤tj<t+θ+ωM¯,



(26)




where


∥uk∥=∥hk∫tktk+ωG(t,s)f(s,xs)ds+∑tk≤tj<tk+ωG(t,tj)uj∥<∞,k≥2,








and starting from


∥u1∥=∥h1ξe−λt1+∫0t1f(s,xs)e−λ(t1−s)ds∥<∞,








and, we have


∥Jφ∥R≤eλτωM˜+eλrM¯∑t+θ≤tj<t+θ+ω1,








which imply that J(B) is uniformly bounded. For each t≥0, there exists n∈N* such that t∈[tn,tn+1), and for any θ,θ˜∈[−r,0], one can obtain for any φ∈B


∥Jφ(θ)−Jφ(θ˜)∥≤∥e−λθ∫t+θt+θ+ωf(s,φ)G(t,s)ds−e−λθ∫t+θ˜t+θ˜+ωf(s,φ)G(t,s)ds∥+∥e−λθ∑t+θ≤tj<t+θ+ωG(t,tj)uj−e−λθ∑t+θ˜≤tj<t+θ˜+ωG(t,tj)uj∥,≤eλ(r+ω)M+K∥φ∥1−e−λω∥∫t+θt+θ+ωe−λ(t−s)ds−∫t+θ˜t+θ˜+ωe−λ(t−s)ds∥+eλ(r+ω)1−e−λω∥∑t+θ≤tj<t+θ+ωuj−∑t+θ˜≤tj<t+θ˜+ωuj∥.











Therefore, for each t∈[tn,tn+1), we will have as ∣θ−θ˜∣ goes to 0, ∥Jφ(θ)−Jφ(θ˜)∥ goes to 0, which imply that the Poincaré operator J(B) is equicontinuous. Using Arzelà-Ascoli’s theorem, we conclude that the Poincaré operator J is completely continuous. □





Now, we are ready to state the main result of our work, related to the existence of ω-periodic solution(s) of (1)–(3).



Theorem 2.

Let f:[0,ω+τ]×R→Rn be a map satisfying (I) and (II), where ω≥τ, and hj,j=1,…,l are bounded and satisfy the condition (III). Then, the nonlinear impulsive problem (1)–(3), has at least one ω-periodic solution in R.





Proof. 

Let us define H(φ,μ):R×[0,1]⟶R by


H(φ,μ)=μJφ.



(27)







Then, by using (26), we have


∥H(φ,μ)∥R≤μeλτωM˜+eλr∑t+θ≤tj<t+θ+ωM¯.











Then, for each μ∈(0,1) the set S={φ:φ=H(φ,μ)} is bounded. Since J is completely continuous, then by using Schäffer’s fixed point theorem, the Poincaré operator J admits a fixed point. □





Next, we give the conditions of the existence and uniqueness of a ω-periodic solution of (1)–(3).



Theorem 3.

Let f:[0,ω+τ]×R→Rn be a map satisfying (I) and (II), where ω≥τ, and hj,j=1,…,l are bounded and satisfy the condition (III), and there exist constants H¯j, j=1,…,l, such that


∥hj(φ(0))−hj(ψ(0))∥≤H¯j∥φ−ψ∥R.











If, there exists a constant C<1, such that


Kωeλr1−e−λω+eλr1−e−λω∑t−r+ω≤tj<t+ωH¯j≤C,








then, the nonlinear impulsive problem (1)–(3), has a unique ω-periodic solution in R.





Proof. 

Let φ,ψ∈R be two solutions of (1)–(3), i.e., Jφ=φ and Jψ=ψ. Assume ϕ≠ψ. We have


∥φ(θ)−ψ(θ)∥=∥Jφ(θ)−Jψ(θ)∥,≤eλr∫t+θt+θ+ω∣G(t,s)∣∥f(s,φ)−f(s,ψ)∥Rds+eλr∑t−r+ω≤tj<t+ω∣G(t,tj)∣∥hj(φ(0)−hj(ψ(0))∥,≤Kωeλr1−e−λω+eλr1−e−λω∑t−r+ω≤tj<t+ωH¯j∥φ−ψ∥R,≤C∥φ−ψ∥R.











Hence


∥φ−ψ∥R≤C∥φ−ψ∥R,<∥φ−ψ∥R.



(28)







This contradiction implies, the uniqueness of the ω-periodic solution of (1)–(3). □






4. Conclusions


The method described in this work presents new challenges for more investigation on more realistic models; such as the extension of the ascorbic acid model [12] and HIV model [13,14]. Taking into account the delay effect on respective compartments [23,24,25]. This kind of work, will need more investigation on modeling validation effort, keeping a close eye on the real life data in order to have a more realistic model. The explicit solutions presented in the technical Lemma 4 and methods of proving the existence of periodic solutions are very useful for further future investigations.
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