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Abstract: This study focuses on the flow of stagnation region and heat transfer of
carbon nanotubes (CNTs) over an exponentially stretching/shrinked sheet in the presence of
homogeneous–heterogeneous reactions. Kerosene and water are considered base fluids in both
single-wall and multi-wall carbon nanotubes. After employing the appropriate similarity variables,
the system of partial differential equations is transformed to a system of nonlinear ordinary differential
equations. Solution of the problems is obtained numerically using the bvp4c solver in MATLAB
software. The impact of physical parameters, such as solid volume fraction, stretching/shrinking
parameter, homogeneous and heterogeneous reaction rate, Schmidt number on the velocity,
temperature and concentration profiles, skin friction, and heat transfer rate are discussed graphically
and interpreted physically. The results indicate that for an exponentially shrinking sheet, dual
solutions exist for a certain range. It is clear from figures that the concentration profile increases for
increasing values of heterogeneous parameter and decreasing values of homogeneous parameter.
Heat transfer and skin friction were observed to have a greater impact for single-wall carbon
nanotubes (SWCNTs) compared to multi-wall carbon nanotubes (MWCNTs). A stability analysis has
been performed to show which solutions are linearly stable.

Keywords: carbon nanotubes; exponentially stretching/shrinking; homogeneous–heterogeneous
reaction; stability analysis

1. Introduction

In the last decades, the development of technology has undergone a considerable evolution in all
different sectors of industry. Almost all researchers have noticed the importance of nanotechnology in
their respective fields of research. This is due to the fact that nanotechnology has a great contribution
in numerous fields of study, from improving thermal characteristics of conventional fluids to creation
of a productive drug delivery system. Thereby, heat transfer is a very important issue that has to be
taken into account for most present industrial developments, such as in the generation of power, and
chemical, physical, and biological processes. Nanofluids are fluids that consist of nanometer-sized
particles, called nanoparticles. Dispersion of nanomaterials are employed to overwhelm the poor
thermal conductivity of base fluids such as water, kerosene, ethylene glycol, and engine oil. Carbon can
be used to form nanoparticles because of its unique electrical and mechanical properties, including
high thermal conductivity [1–3]. Carbon nanotubes (CNTs) are made by rolling up a sheet of graphene
into a cylindrical shape with a diameter between 1 and 50 nm. Single-wall CNTs consist of a single
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layer of graphene in the cylinder, while multi-wall CNTs have many layers [4]. Many numerical
investigations have been made to study the heat transfer of nanofluids [5,6]. However, there is still a
lack of research on carbon nanotubes.

The investigation of stagnation point flow past a stretching/shrinking surface has gained the
attention of researchers. The boundary layer flow due to a stretching surface is important in extrusion
processes, such as metal sheet extrusion, polymer extrusion, and other industrial processes, while
the shrinking issue is applicable in the research of environmental management strategies, shrink
swell behavior, and the capillary effects in smaller pores and hydraulic properties of agricultural
clay soils which are important for agricultural development [7]. The phenomena of shrinking sheets
can also be found in rising and shrinking balloons. The flow of heat transfer over an exponentially
shrinking sheet was first studied by Magyari and Keller [8]. More studies regarding flow over an
exponentially stretching surface can be found in the literature [9–16]. Hiemenz [17] was one of the first
who considered the flow of the stagnation region and solved the governing Navier–Stokes equations
using a similarity solution. Thus, Bhattacharya and Vajravellu [18] came up with the idea of an
exponential shrinking sheet on the flow of stagnation region. Later, Bachok et al. [19] extended their
problems by considering in nanofluids.

The natural process of chemical reactions that occurs in biochemical, combustion, and catalysis
mechanisms involves both homogeneous and heterogeneous reactions. A fraction of the reactions has
the capacity to either progress gradually or do not progress at all unless a catalyst is present. It should
be noted that a homogeneous reaction persists during the whole process, whereas heterogeneous
reactions take place in a confined region or within the boundary of a phase. A simple isothermal
model for homogeneous–heterogeneous reactions in boundary layer flow is studied by Merkin [20].
Later, Bachok et al. [21] investigated the problem of stagnation point flow towards a stretching sheet
in the existence of homogeneous–heterogeneous reactions. Hayat et al. [22] extended the idea of
stagnation region by considering the problem in carbon nanotubes with Newton heating. Afterwards,
Hayat et al. [23] examined the impact of homogeneous–heterogeneous reactions and melting heat
transfer in boundary layer flow with carbon nanotubes saturated in porous medium. In addition, some
of the related studies can be found in these articles [24–27].

The existence of dual or multiple solutions has gained the attention of many researchers, and
most of them have attempted to run a stability analysis. However, most of them could not conclude
whether the solution obtained is physically stable when using appropriate computation and analysis.
The existence of the smallest eigenvalues was pioneered by Merkin [28] during his studies of mixed
convection in a porous medium. He concluded that stable solutions were shown by a positive
eigenvalue, while a negative eigenvalue indicates an unstable solution. Inspired by Merkin [28], the
problem of stability analysis was studied by Weidman et al. [29], Merrill et al. [30], and Harris et al. [31].
Following these, numerous researchers, such as Ishak [32], Nazar et al. [33], Awaludin et al. [34],
Najib et al. [35,36], and Anuar et al. [37], implemented the stability analysis for dual solutions in
their works.

The majority of researchers have focused their studies of nanofluid to improve the cooling
efficiency when using copper, alumina, and titania as a nanoparticle. To the best of our knowledge,
the characteristics of a carbon nanotube-based nanofluid with homogeneous–heterogeneous reactions
specially induced by an exponentially stretching/shrinking sheet have not been explored so far. Thus,
the aim for the current paper is to investigate the behavior of the base fluids (kerosene and water) for
both single-wall and multi-wall CNTs by following the governing equations proposed by Bhattacharya
and Vajravellu [18] and Bachok et al. [21]. The novelty of this research is the numerical solutions
obtained in the stagnation point flow region past an exponentially stretching/shrinking sheet in carbon
nanotubes. The results obtained will then be examined to identify the stability of the solutions.
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2. Problem Formulation

Two-dimensional, steady stagnation point flow of carbon nanotubes past over an exponentially
stretching/shrinking sheet in the presence of homogeneous–heterogeneous reactions was investigated
as shown in Figure 1. As depicted in Figure 1a, when the velocity on the boundary moved away from
a fixed point, sheet stretching occurred, and when the velocity at the boundary moved towards a
fixed point, sheet shrinking was generated, as shown in Figure 1b. Here, single-wall and multi-wall
carbon nanotubes (SWCNTs and MWCNTs, respectively) were used as nanoparticles, while water
and kerosene oil were used as the base fluids. A simple homogeneous reaction can be expressed as
suggested by Chaudhary and Merkin [38] in the following form:

A + 2B→ 3B, rate = k1ab2, (1)

whereas the first order of heterogeneous reactions is given by

A→ B, rate = ksa, (2)

where the concentrations of the chemical species A and B are denoted by a and b, while k1 = khmex/L

and ks = khtex/2L are the reactions involved where k1 and ks are constants. Both homogeneous
and heterogeneous reactions are assumed to be isothermal. In addition, reactant A has a constant
concentration ao and there is no autocatalyst B in the external flow. Then, the homogeneous reaction
(l) assures that the reaction rate in the external flow and at the outer edge of the boundary layer will
be zero. In this case there is a simple relation between the concentrations a and b, and this leads to
the standard forward stagnation point boundary layer flow together with a single equation for the
concentration of reactant A.
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Figure 1. Physical model and coordinate system. (a) Stretching sheet; (b) shrinking sheet.

Under the foregoing assumptions, the boundary layer equations can be written as

∂u
∂x

+
∂v
∂y

= 0, (3)

u
∂u
∂x

+ v
∂u
∂y

= U∞
dU∞

dx
+

µn f

ρn f

∂2u
∂y2 , (4)

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 , (5)
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u
∂a
∂x

+ v
∂a
∂y

= DA
∂2a
∂y2 − k1ab2, (6)

u
∂b
∂x

+ v
∂b
∂y

= DB
∂2b
∂y2 + k1ab2, (7)

with the boundary conditions

u = Uw(x), v = 0, T = Tw = T∞ + Toex/2L, DA
∂a
∂y = ksa, DB

∂b
∂y = −ksa at y = 0

u→ U∞(x), T → T∞, a→ ao, b→ 0 as y→ ∞.
(8)

Here, u and v are the fluid velocities along the x- and y-axes. Next, µn f , αn f , and ρn f are the dynamic
viscosity, thermal diffusivity, and density of the nanofluid, respectively. T, Tw, and T∞ are the
temperature in the boundary layer, sheet, and free stream, respectively, while To is the constant
that measures the rate of temperature increase along the sheet. The mentioned term has been taken
from Oztop and Abu-Nada [39]:

αn f =
kn f

(ρCp)n f
, µn f =

µ f

(1−ϕ)2.5 , ρn f = (1− ϕ)ρ f + ϕρCNT ,

(
ρCp

)
n f = (1− ϕ)

(
ρCp

)
f + ϕ

(
ρCp

)
CNT ,

kn f
k f

=
1−ϕ+2ϕ

kCNT
kCNT−k f

ln
kCNT+k f

2k f

1−ϕ+2ϕ
k f

kCNT−k f
ln

kCNT+k f
2k f

,
(9)

where µ f is the viscosity of the base fluid;
(
ρCp

)
n f is the heat capacity of the nanoparticle, ϕ is the

nanoparticle volume fraction; and kn f , k f , and kCNT are the thermal conductivity of the nanofluid, base
fluid, and carbon nanotubes, respectively. ρ f and ρCNT are the densities of the base fluid and carbon
nanotubes. In addition, the effective thermal conductivity of CNTs–nanofluid, kn f /k f was taken from
Xue [40]. Thermophysical properties for different base fluids and CNT particles are presented in
Table 1.

Table 1. Thermophysical properties of carbon nanotubes (CNTs)–nanofluid (Khan et al. [41]).

Physical Properties
Base Fluids Nanoparticle

Water (Pr = 6.2) Kerosene (Pr = 21) SWCNT MWCNT

ρ
(
kg/m3) 997 783 2600 1600

cp(J/kg K) 4179 2090 425 796
k(W/m K) 0.613 0.145 6600 3000

The velocity of stretching/shrinking, Uw, and velocity of external flow, U∞, are given by

Uw(x) = dex/L, U∞(x) = cex/L, (10)

where d and c are positive constants and L is the characteristic length of a sheet. A similarity solution
of Equations (3)–(8) are represented in the following form:

η = y

(
c

2ν f L

)1/2

ex/2L, ψ =
(

2ν f Lc
)1/2

f (η)ex/2L, θ(η) =
T − T∞

Tw − T∞
, g(η) =

a
ao

, h(η) =
b
ao

, (11)

where η is the similarity variable, ν f refers to the kinematic viscosity of the base fluid, and ψ represents
the stream function which are defined as u = ∂ψ/∂y and v = −∂ψ/∂x. Equation (3) is identically
satisfied and Equations (4)–(7) are transformed to ordinary differential equations by employing
similarity variables (11):
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1

(1− ϕ)2.5
(

1− ϕ + ϕρCNT/ρ f

) f ′′′ + f f ′′ − 2 f ′2 + 2 = 0, (12)

1
Pr

kn f /k f[
1− ϕ + ϕ

(
ρCp

)
CNT/

(
ρCp

)
f

] θ′′ + f θ′ − f ′θ = 0, (13)

1
Sc

g′′ + f g′ − Kgh2 = 0, (14)

δ

Sc
h′′ + f h′ + Kgh2 = 0. (15)

The boundary conditions take the form

f (0) = 0, f ′(0) = ε, θ(0) = 1, g′(0) = Ksg(0), δh′(0) = −Ksg(0)
f ′(η)→ 1, θ(η)→ 0, g(η)→ 1, h(η)→ 1 as η → ∞

(16)

where Pr is the Prandtl number, Sc refers to the Schmidt number, and K and Ks denote the strength
of the homogeneous and heterogeneous reaction, respectively. δ is the ratio of the mass diffusion
coefficient; ε is the stretching/shrinking parameter, with ε > 0 for stretching and ε < 0 for a shrinking
sheet; and prime represents differentiation with respect to η. These terms are defined as follows:

Pr =
ν f

α f
, Sc =

ν f

DA
, K =

2khma2
o L

c
, Ks =

kht
DA

√
2ν f L

c
, δ =

DB
DA

, ε =
d
c

. (17)

The diffusion coefficients of chemical species A and B are assumed to be similar in size. Therefore,
we can make an additional deduction that the diffusion coefficients DA and DB are the same, i.e., δ = 1
(Chaudhary and Merkin [38]) and thus

g(η) + h(η) = 1. (18)

Now, Equations (14) and (15) yield

1
Sc

g′′ + f g′ − Kg(1− g)2 = 0 (19)

with the boundary conditions

g′(0) = Ksg(0), g(η)→ 1 as η → ∞. (20)

Two essential quantities of physical interest are skin friction coefficient C f and local Nusselt
number Nux. They are characterized as follows:

C f =
τw

ρ f u2
w

, Nux =
2Lqw

k f (Tw − T∞)
, (21)

where τw represents the shear stress and qw symbolizes surface heat flux. Their mathematical
expressions are as follows:

τw = µn f

(
∂u
∂y

)
y=0

, qw = −kn f

(
∂T
∂y

)
y=0

. (22)

Using Equation (22) in (21), we get the following:

C f Re1/2
x =

1

(1− ϕ)2.5 f ′′ (0), NuxRe−1/2
x = −

kn f

k f
θ′(0). (23)
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The local Reynolds number is represented by Rex = 2Ld/ν f .

3. Stability of Solutions

To perform a stability analysis, the problem needs to be considered as an unsteady case. Following
Weidman et al. [29], a variable τ has to be introduced. Then, Equations (4)–(7) are substituted by

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= U∞
dU∞

dx
+

µn f

ρn f

∂2u
∂y2 , (24)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂y2 , (25)

∂a
∂t

+ u
∂a
∂x

+ v
∂a
∂y

= DA
∂2a
∂y2 − k1ab2, (26)

∂b
∂t

+ u
∂b
∂x

+ v
∂b
∂y

= DB
∂2b
∂y2 + k1ab2, (27)

subject to

u = Uw(x), v = 0, T = Tw = T∞ + Toex/2L, DA
∂a
∂y = ksa, DB

∂b
∂y = −ksa at y = 0

u→ U∞(x), T → T∞, a→ ao, b→ 0 as y→ ∞
(28)

where t represents the time. As identified by the variable (11), the new dimensionless variable for the
unsteady problem is introduced:

η = y
(

c
2ν f L

)1/2
ex/2L, ψ =

(
2ν f Lc

)1/2
f (η, τ)ex/2L, θ(η, τ) = T−T∞

Tw−T∞
,

g(η, τ) = a
ao

, h(η, τ) = b
ao

, τ = ct
2L ex/2L

(29)

so that Equations (24)–(27) can be expressed as

1

(1− ϕ)2.5
(

1− ϕ + ϕρCNT/ρ f

) ∂3 f
∂η3 − 2

(
∂ f
∂η

)2
+ f

∂2 f
∂η2 + 2− 2τ

(
∂ f
∂η

∂2 f
∂η∂τ

− ∂ f
∂τ

∂2 f
∂η2

)
− ∂2 f

∂η∂τ
= 0, (30)

1
Pr

kn f /k f[
1− ϕ + ϕ

(
ρCp

)
CNT/

(
ρCp

)
f

] ∂2θ

∂η2 + f
∂θ

∂η
− θ

∂ f
∂η
− 2τ

(
∂ f
∂η

∂θ

∂τ
− ∂ f

∂τ

∂θ

∂η

)
− ∂θ

∂τ
= 0, (31)

1
Sc

∂2g
∂η2 + f

∂g
∂η
− Kgh2 − 2τ

∂ f
∂η

∂g
∂τ

+ 2τ
∂ f
∂τ

∂g
∂η
− ∂g

∂τ
= 0, (32)

δ

Sc
∂2h
∂η2 + f

∂h
∂η

+ Kgh2 − 2τ
∂ f
∂η

∂h
∂τ

+ 2τ
∂ f
∂τ

∂h
∂η
− ∂h

∂τ
= 0, (33)

corresponding to the boundary conditions

f (0, τ) + 2τ
∂ f (0,τ)

∂τ = 0, ∂ f
∂η (0, τ) = ε, θ(0, τ) = 1, ∂g

∂η (0, τ) = Ksg(0, τ), δ ∂h
∂η (0, τ) = −Ksg(0, τ)

∂ f
∂η (η, τ)→ 1, θ(η, τ)→ 0, g(η, τ)→ 1, h(η, τ)→ 1 as η → ∞.

(34)

As discussed above, the diffusion coefficient DA = DB, hence δ = 1 (see Equations (18), (32) and
(33)) are reduced to

1
Sc

∂2g
∂η2 + f

∂g
∂η

+ 2τ
∂g
∂η

∂ f
∂τ
− 2τ

∂ f
∂η

∂g
∂τ
− ∂g

∂τ
− Kg(1− g)2 = 0 (35)
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and the boundary conditions are

∂g(0, τ)

∂η
= Ksg(0, τ), g(∞, τ)→ 1 as η → ∞. (36)

Furthermore, the stability of the steady flow solution f (η) = fo(η), θ(η) = θo(η), and
g(η) = go(η) comply with the boundary value problem (30), (31), and (35), and the following terms
are introduced:

f (η, τ) = fo(η) + e−γτ F(η, τ), θ(η, τ) = θo(η) + e−γτ H(η, τ), g(η, τ) = go(η) + e−γτG(η, τ), (37)

where F(η, τ), H(η, τ), and G(η, τ) are relatively small compared to fo(η), θo(η), and go(η), and γ is
an unknown eigenvalue. Substitute Equation (37) into Equations (30), (31), and (35), and the following
linearized problem is obtained:

1

(1− ϕ)2.5
(

1− ϕ + ϕρCNT/ρ f

) ∂3F
∂η3 − 4

∂ fo

∂η

∂F
∂η

+ fo
∂2F
∂η2 + F

∂2 fo

∂η2 + γ
∂F
∂η
− ∂2F

∂η∂τ
= 0, (38)

1
Pr

kn f /k f[
1− ϕ + ϕ

(
ρCp

)
CNT/

(
ρCp

)
f

] ∂2H
∂η2 + fo

∂H
∂η

+ F
∂θo

∂η
− θo

∂F
∂η
− H

∂ fo

∂η
+ γH − ∂H

∂τ
= 0, (39)

1
Sc

∂2G
∂η2 + fo

∂G
∂η

+ F
∂go

∂η
+ γG− ∂G

∂τ
− K

(
G− 4goG + 3go

2G
)
= 0, (40)

along with boundary conditions

F(0, τ) + 2τ
(
−γF(0, τ) +

∂F(0,τ)
∂τ

)
= 0, ∂F

∂η (0, τ) = 0, H(0, τ) = 0, ∂G(0,τ)
∂η = KsG(0, τ)

∂F
∂η (η, τ)→ 0, H(η, τ)→ 0, G(η, τ)→ 1, as η → ∞.

(41)

The stability of steady flow fo(η), θo(η), and go(η) are investigated by setting τ = 0, and hence
F(η) = Fo(η), H(η) = Ho(η), and G(η) = Go(η) in Equations (38)–(40) describe the initial growth or
decay of the solution (37). Therefore, the final equations are in the following form:

1

(1− ϕ)2.5
(

1− ϕ + ϕρCNT/ρ f

) Fo
′′′ + foFo

′′ + fo
′′ Fo −

(
4 fo
′ − γ

)
Fo
′ = 0, (42)

1
Pr

kn f /k f[
1− ϕ + ϕ

(
ρCp

)
CNT/

(
ρCp

)
f

]Ho
′′ + fo Ho

′ + Foθo
′ − Fo

′θo − Ho fo
′ + γHo = 0, (43)

1
Sc

Go
′′ + go

′Fo + foGo
′ −
(

K− 4Kgo + 3Kg2
o − γ

)
Go = 0, (44)

along with the following boundary conditions

Fo(0) = 0, Fo
′(0) = 0, Ho(0) = 0, Go

′(0) = KsGo(0)
Fo
′(η)→ 0, Ho(η)→ 0, Go(η)→ 0 as η → ∞

(45)

By relaxing a boundary condition on Fo(η), Ho(η), or Go(η) as recommended by Harris et al. [31],
the range of possible eigenvalues can be acquired. Therefore, the boundary condition Fo

′(η)→ 0 as
η → ∞ can be relaxed, and the system of Equations (42)–(44), subject to the boundary conditions (45)
along with the new boundary condition Fo ′′ (0) = 1, needs to be solved.
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4. Results and Discussion

The system of nonlinear ordinary differential Equations (12), (13), and (19), together with
boundary condition (16) and (20), are numerically solved using the bvp4c solver in MATLAB software
for different values of homogeneous–heterogeneous parameter, nanoparticle volume fraction, and
stretching/shrinking parameter on dimensionless velocity, temperature, concentration, skin friction
coefficient, and Nusselt number. In addition, bvp4c is a built-in function in MATLAB software
that solve a two-point boundary value problem for ordinary differential equations. The values of
nanoparticle volume fraction used in this present problem were between 0 and 0.2 (0 < ϕ < 0.2),
where ϕ = 0 corresponds to the regular fluid. In this case, a unique solution was obtained for ε > 0
and dual solutions exist when −1.487068 < ε < 0 with the assistance of suitable initial guesses and an
appropriate value of η∞.

Figures 2–5 exhibit the influences of nanoparticle volume fraction ϕ and base fluid on the
reduced skin friction f ′′ (0) and reduced heat transfer −θ′(0) with stretching/shrinking parameter ε.
On observing these figures, it has been concluded that reduced skin friction decreases and heat transfer
increases with an increase of nanoparticle volume fraction. This is consistent with the fact that the
movement of fluid tends to slow down in the presence of nanoparticles. It is further observed that by
increasing the nanoparticle volume fraction, thermal conductivity of the nanofluid will also increase.
The results for ϕ = 0 shown in Figures 2 and 3 display similar characteristics with those found by
Bhattacharya and Vajravellu [18]. It is seen that carbon nanotubes with kerosene oil as base fluid
exhibit the highest skin friction coefficient and heat transfer rate. The range of stretching/shrinking
parameter for the solution to exist is greater in the exponential case, i.e., −1.487068 < ε < ∞ compared
to the range of stretching/shrinking parameter for the linear case, i.e., −1.2465 < ε < ∞ (see [42]).
The critical value, εc, obtained in this research is in concurrence with those reported by Bhattacharya
and Vajravellu [18]. Note that for the exponential case, the shrinking rate is faster than a linear case;
the number of vorticities produced and exponential straining motion are larger and stronger for
exponential shrinking compared to linear shrinking. Thus, to control the produced vorticity due to
exponential shrinking sheet, the stagnation flow velocity is more definite for the exponential case in
contrast with the linear case. It can be seen that for the exponential case, the second solution can be
obtained, and the range of solutions widens even though the shrinking rate is low, i.e., ε > −1.
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The variations in the concentration of species A, g′(0), are presented in Figures 6–8 for a variety
of ranges of strength of the homogeneous reaction K, heterogeneous reaction Ks, and Schmidt number
Sc. The concentration is clearly observed to be significantly enhanced with decreasing homogeneous
reaction parameter values, and reversed behavior is observed for heterogeneous parameters. It is well
understood that higher values of heterogeneous parameter cause the diffusion coefficient to decrease
and, thus, less diffused particles intensify the concentration field. This result coincides with preceding
observations made by Bachok et al. [21]. Further, it is observed that the concentration increases for
large values of Schmidt number, which is defined as the average of momentum to mass diffusivity.
The concentration profile is enhanced due to the fact that the mass diffusivity is small for increasing
values of Schmidt number.

The influence of nanoparticles on the skin friction coefficient C f Re1/2
x and the local Nusselt

number NuxRe−1/2
x given by Equation (23) when a stretching sheet is considered (ε = 0.5) is presented

in Figures 9 and 10. These values enhanced almost linearly with nanoparticle volume fraction. Thermal
conductivity of the fluid increases significantly with the presence of the nanoparticles and, therefore,
enhanced the heat transfer characteristics. In this respect, skin friction coefficient and Nusselt number
of SWCNTs are higher than for MWCNTs. Physically, this is because SWCNTs possess higher density
and thermal conductivity compared to MWCNTs, as illustrated in Table 1. Further, it is worthwhile
to mention that the skin friction and heat transfer rate near the wall are higher in kerosene oil due
to more viscosity and density as compared to water. Moreover, it can be observed that CNTs have a
dominant contribution in the heat transfer phenomenon and nanofluid flow motion.

Figures 11–16 represent the effects of shrinking velocity and carbon nanotubes on the
dimensionless profiles. It is observed that velocity and concentration profiles significantly decrease
with shrinking velocity for the upper branch solution, while increasing for the lower branch solution
except for very small η. Also, it is revealed that the temperature profile increases in the first solution
and decreases for the second solution with an increasing value of shrinking velocity. For these profiles,
single-wall CNTs are more dominant than multi-wall CNTs. It can be seen that all these profiles
asymptotically satisfied all boundary conditions. Hence, excellent convergence was achieved, and
the numerical results obtained are valid. The physical importance of this problem shows that in the
case of dual solutions, the flow separates from the plate, which is very important for many practical
problems. An improved understanding of such flows and the application of this knowledge to new
design techniques should provide substantial improvements in the performance, reliability, and cost of
many fluid dynamic devices.
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The stability of solutions obtained in this study was conducted numerically using the bvp4c
solver in MATLAB software by substituting the set of linearized Equations (42)–(44) along with the
new boundary condition (45) into the codes to validate if either upper or lower solution were stable
and could be physically realized. From Table 2, it was clear that the first solution bestowed a positive
eigenvalue and was a stable solution (initial decay of disturbance), whereas the second solution
was not (initial growth of disturbance), i.e., it had a negative eigenvalue which led to an unstable
solution. It was also observed that as the stretching/shrinking parameter approached a critical point,
the smallest eigenvalue also approached zero. Interestingly, the alteration from negative values to
positive values of eigenvalues γ occurred at the critical point of the solution curve (Figure 2), that is,
εc = −1.487068.

Table 2. Smallest eigenvalues of γ for different values of ε when ϕ = 0.1, K = 0.2, Ks = 1, Sc = 1.2, and
Pr = 6.2 (Water–SWCNT).

ε First Solution Second Solution

−1.48706 0.0147 −0.0147
−1.487 0.0413 −0.0413
−1.485 0.2271 −0.2261
−1.482 0.3557 −0.3533
−1.48 0.4202 −0.4168
−1.42 1.2926 −1.2599
−1.4 1.4705 −1.4278

5. Conclusions

The present study investigates the flow and heat transfer of carbon nanotubes over an
exponentially stretching/shrinking sheet with homogeneous–heterogeneous reactions. It is
concluded that:

• The skin friction and heat transfer rates increase linearly with nanoparticle volume fraction.
• Kerosene-based CNTs have higher heat transfer rates and skin friction compared to

water-based CNTs.
• Single-wall CNTs show greater impact on skin friction and heat transfer rate than multi-wall

CNTs in both water and kerosene.
• The concentration of species A at the surface increases with an increase in heterogeneous reaction

parameter Ks and Schmidt number Sc, while it decreases when homogeneous reaction parameter
K is increased.
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• The range of solutions were widely expanded for exponentially shrinking cases compared with
linear cases.

• The existence of unique solutions occurs for an exponentially stretching surface (ε > 0), whereas
dual solutions occur for an exponentially shrinking surface (εc < ε < 0).

• The first solution is stable and physically realizable, while the second solution is unstable.
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Nomenclature

a, b concentrations of the chemical species
A, B chemical species
ao constant concentration
c, d constants
C f skin friction coefficient
Cp specific heat at constant pressure
DA, DB diffusion coefficients
f dimensionless stream function
g(η) concentration of species A
h(η) concentration of species B
k thermal conductivity
K strength of the homogeneous reaction
Ks strength of the heterogeneous reaction
k1, ks constants
khm, kht constants
L characteristic length of a sheet
Nux local Nusselt number
Pr Prandtl number
qw surface heat flux
Rex local Reynolds numbers
Sc Schmidt number
t time
T temperature
To temperature constant
u, v velocity components along the x- and y- directions, respectively
Uw stretching/shrinking velocity
U∞ velocity of inviscid flow
x, y cartesian coordinates along the surface and normal to it, respectively
Greek symbols
α thermal diffusivity
δ ratio of the diffusion coefficient
ϕ nanoparticle volume fraction
θ dimensionless temperature
γ unknown eigenvalues
ε stretching/shrinking parameter
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ν kinematic viscosity
µ dynamic viscosity
ρ fluid density
ρCp heat capacity of the fluid
τ dimensionless time variable
τw surface shear stress
ψ stream function
η similarity variable
Subscripts
w condition at the surface of the plate
∞ ambient condition
CNT carbon nanotubes
f fluid
n f nanofluid
Superscript
′ differentiation with respect to η
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