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Abstract: The non-homogeneous Poisson process (NHPP) software has a crucial role in computer
systems. Furthermore, the software is used in various environments. It was developed and tested in
a controlled environment, while real-world operating environments may be different. Accordingly,
the uncertainty of the operating environment must be considered. Moreover, predicting software
failures is commonly an important part of study, not only for software developers, but also for
companies and research institutes. Software reliability model can measure and predict the number
of software failures, software failure intervals, software reliability, and failure rates. In this paper,
we propose a new model with an inflection factor of the fault detection rate function, considering
the uncertainty of operating environments and analyzing how the predicted value of the proposed
new model is different than the other models. We compare the proposed model with several existing
NHPP software reliability models using real software failure datasets based on ten criteria. The results
show that the proposed new model has significantly better goodness-of-fit and predictability than the
other models.

Keywords: software reliability model; non-homogeneous Poisson process; software failure;
fault detection rate; predictive analysis

1. Introduction

The core technologies of the fourth industrial revolution, such as artificial intelligence (AI),
big data, the Internet of Things (IoT), are implemented in software, and software is essential as a
mediator to create new values by fusing these technologies in all industries. As the importance and role
of software in a computer system keep growing, a fatal software error can cause significant damage.
For the effective operation of software, it is imperative to reduce the possibilities of software failures
and maintain high levels of reliability. Software reliability is defined as the probability that the software
will run without a fault for a certain period. It is vital for developing skills and theories to improve the
software reliability. However, the development of a software system is a difficult and complex process.
Therefore, the main focus of software development is on improving the reliability and stability of a
software system. The number of software failures and the time interval of each failure have a significant
influence on the reliability of software. Therefore, the prediction of software failures is a research field
that is important not only for software developers, but also for companies and research institutes.
Software reliability models can be classified according to the applied software development cycle.
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Before the testing phase, a reliability prediction model is used that predicts reliability using information
such as past data or language used, development domain, complexity, and architecture. After the test
phase, a software reliability model is used, which is a mathematical model of software failures such as
the frequency of failures and failure interval times. A model makes it easier to evaluate the software
reliability using the fault data collected in the test or operating environment. In addition, the model
can measure the number of software failures, software failure interval, and software reliability; and
failure rate can be estimated and variously predicted.

Although various types of software reliability models have been studied, software defects
and failures generally do not occur at the same time intervals. Based on this, a non-homogeneous
Poisson process (NHPP) software reliability model was developed. The NHPP models determine
mathematically handled software reliability; they are used extensively because of their potential
for various applications. Most of the previous NHPP software reliability models were developed
based on the assumptions that faults detected in the testing phase are removed immediately with
no debugging time delay, new faults are not introduced, and software systems used in the field
environments are the same as or close to those used in the development-testing environment. Based on
this, Goel and Okumoto [1] presented a stochastic model for the software failure phenomenon using
an NHPP; this model describes the failure observation phenomenon by an exponential curve. Also,
there have been some other software reliability models that describe either S-shaped curves or a
mixture of exponential and S-shaped curves [2–4]. As the Internet became popular in the mid-1990s,
due to rapid changes in industrial structure and environment, a software reliability model with a
variety of operating environments begun to be studied. In early 2000, considering the uncertainty
of the operating environment, researchers began to try new approaches such as the application of
calibration factors [5–7]. Based on this, Teng and Pham [8] generalized the software reliability model
considering the uncertainty of the environment and its effects upon software failure rates. Recently,
Inoue et al. [9] proposed the software reliability model with the uncertainty of testing environments.
Li and Pham [10,11] proposed NHPP software reliability models considering fault removal efficiency
and error generation, and the uncertainty of operating environments with imperfect debugging and
testing coverage. Song et al. [12–15] studied NHPP software reliability models with various fault
detection rates considering the uncertainty of operating environments. Zhu and Pham [16] proposed
an NHPP software reliability model with a pioneering idea by considering software fault dependency
and imperfect fault removal. However, previous NHPP software reliability models [1–4,17–25] did not
take into account the uncertainty of the software operating environment, and did not consider the
learn-curve in the fault detection rate function [8–11,13,14,26,27].

In this paper, we discuss a new model with inflection factor of the fault detection rate function
considering the uncertainty of operating environments, and the predictive analysis. We examine the
goodness-of-fit and the predictability of a new software reliability model and other existing NHPP
models based on several datasets. The explicit solution of the mean value function for the new software
reliability model is derived in Section 2. Criteria for model comparisons, prediction, and selection of
the best model are discussed in Section 3. Model analysis and results through numerical examples are
discussed in Section 4. Section 5 presents conclusions and remarks.

2. NHPP Software Reliability Modeling

2.1. A General NHPP Software Reliability Model

N(t) (t ≥ 0) represents the cumulative number of failures up to the point of execution time t when
the software failure/defect follows the NHPP.

Pr
{
N(t) = n

}
=

{
m(t)

}n

n!
exp

{
−m(t)

}
, n = 0, 1, 2, 3 . . . .



Symmetry 2019, 11, 521 3 of 30

Assuming that m(t) is a mean value function, the relationship between the mean value function
m(t) and the intensity function λ(t) is

m(t) =
∫ t

0
λ(s)ds.

A general mean value function m(t) of NHPP software reliability models using the differential
equation is as follows [19]:

d m(t)
dt

= b(t)[a(t) −m(t)]. (1)

Solving Equation (1) by using different functions a(t) and b(t), the following mean value function
m(t) is observed [19],

m(t) = e−B(t)
[
m0 +

∫ t

t0

a(s)b(s)eB(s)bs
]

(2)

where B(t) =
∫ t

t0
b(s)ds, and m(t0) = m0 is the marginal condition of Equation (2), with t0 representing

the start time of the testing process.

2.2. A New NHPP Software Reliability Model

A general mean value function m(t) of NHPP software reliability models using the differential
equation considering the uncertainty of operating environments is as follows [26]:

d m(t)
dt

= η[b(t)][N −m(t)] (3)

where m(t) is the mean value function, b(t) is the fault detection rate function, N is the expected
number of faults that exist in the software before testing, and η is a random variable that represents the
uncertainty of the system fault detection rate in the operating environments with a probability density
function [26],

m(t) =
∫
η

N
(
1− e−η

∫ t
0 b(x)dx

)
dg(η). (4)

We find the following mean value function m(t) using the differential equation by applying the
random variable η; it has a generalized probability density function with two parameters α ≥ 0 and
β ≥ 0, where the initial condition m(0) = 0:

m(t) = N

1−
β

β+
∫ t

0 b(s)ds


α

. (5)

In this paper, we consider a fault detection rate function b(t) to be as follows:

b(t) =
b

1 + ae−bt
, a, b > 0 (6)

where b is the failure detection rate and a represents the inflection factor.
We obtain a new mean value function m(t) of NHPP software reliability model subject to the

uncertainty of operating environments that can be used to determine the expected number of software
failures detected by time t by substituting the function b(t) in Equation (5):

m(t) = N

1−
β

β+ ln
(

a+ebt

1+a

) 
α
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In this paper, the advantages of the proposed new model take into account the learn-curve in the
fault detection rate function and the uncertainty of the operating environments.

3. Parameter Estimation and Criteria for Model Comparisons

3.1. Parameter Estimation and Models for Comparison

Many NHPP software reliability models use the least square estimation (LSE) and the maximum
likelihood estimation (MLE) methods to estimate the parameters. However, if the expression of the
mean value function m(t) of the software reliability model is too complicated, an accurate estimate may
not be obtained from the MLE method. Here, we derived the parameters of the mean value function
m(t) using the Matlab and R programs based on the LSE method. Table 1 summarizes the mean value
functions of existing NHPP software reliability models and the proposed new model; among them,
NHPP software reliability models 18, 19, and 20 consider the uncertainty of the environment.

Table 1. Software reliability models.

No. Model m(t)

1 Goel–Okumoto (GO) [1] m(t) = a
(
1− e−bt

)
2 Yamada et al. (Y-DS) [2] m(t) = a

(
1− (1 + bt)e−bt

)
3 Ohba (O-IS) [3] m(t) =

a(1−e−bt)
1+βe−bt

4 Yamada et al.(Y-Exp) [4] m(t) = a(1− e−γα(1−e−βt))

5 Yamata et al. (Y-Ray) [4] m(t) = a(1− e−γα(1−e−βt2/2))

6 Yamada et al. (Y-ID 1) [17] m(t) = ab
α+b

(
eαt
− e−bt

)
7 Yamada et al. (Y-ID 2) [17] m(t) = a

[
1− e−bt

][
1− α

b

]
+ αat

8 Hossain-Dahiya (HD-GO) [18] m(t) = log [(ea
− c )/(eae−bt

− c)]

9 Pham et al. (P-GID 1) [19] m(t) =
a[1−e−bt][1− αb ]+αat

1+βe−bt

10 Pham–Zhang (P-GID) [20] m(t) = 1
1+βe−bt

(
(c + a)

[
1− e−bt

]
−

[
ab

b−α

(
e−αt
− e−bt

)])
11 Zhang et al. (Z-FR) [21] m(t) = a

p−β

⌊
1−

(
(1+α)e−bt

1+αe−bt

) c
b (p−β)

⌋

12 Teng-Pham (TP) [8] m(t) = a
p−q

1−
 β

β+(p−q)ln
(

c+ebt
c+1

)
α


13 Pham Zhang IFD (PZ-IFD) [22] m(t) = a

(
1− e−bt

)(
1 + (b + d)t + bdt2

)
14 Pham (DP 1) [23] m(t) = α(γt + 1)(γt− 1 + e−γt

)
15 Pham (DP 2) [23]

m(t) = m0
( γt+1
γt0+1

)
e−γ(t−t0)

+α(γt + 1)(γt− 1 + (1− γt0)e−γ(t−t0)

16 Kapur et al. (SRGM-3) [24] m(t) = A
1−α

⌊
1−

((
1 + bt + b2t2

2

)
e−bt

)p(1−α)⌋
17 Roy et al. (R-M-D) [25] m(t) = aα

[
1− e−bt

]
−

[
ab

b−β

(
e−βt
− e−bt

)]
18 Chang et al. (C-TC) [27] m(t) = N

[
1−

(
β

β+(at)b

)α]
19 Pham (P-Vtub) [26] m(t) = N

[
1−

(
β

β+atb−1

)α]
20 Song et al. (S-3PFD) [12] m(t) = N

1−
 β

β− a
b ln

(
(1+c)e−bt

1+ce−bt

)



21 Proposed New Model m(t) = N

1− β

β+ln
(

a+ebt
1+a

)
α
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3.2. Criteria for Model Comparison

We use ten criteria to estimate the goodness-of-fit of the proposed model, and use one criterion to
compare the predicted values.

(1) Mean squared error (MSE)

MSE =

∑n
i=1(m̂(ti) − yi)

2

n−m

The MSE measures the average of the squares of the errors that is the average squared difference
between the estimated values and the actual data.

(2) Root mean square error (RMSE)

RMSE =

√∑n
i=1(m̂(ti) − yi)

2

n−m

The RMSE is a frequently used measure of the differences between values predicted by a model or
an estimator and the values observed.

(3) Predictive ratio risk (PRR) [22]

PRR =
n∑

i=1

(
m̂(ti) − yi

m̂(ti)

)2

The PRR measures the distance of the model estimates from the actual data against the
model estimate.

(4) Predictive power (PP) [22]

PP =
n∑

i=1

(
m̂(ti) − yi

yi

)2

The PP measures the distance of the model estimates from the actual data.
(5) Akaike’s information criterion (AIC) [28]

AIC = −2logL + 2m

AIC is measured to compare the capability of each model in terms of maximizing the likelihood
function (L), while considering the degrees of freedom. L and log L are given as follows:

L =
n∏

i=1

(m(ti) −m(ti−1))
yi−yi−1

(yi − yi−1)!
e−(m(ti)−m(ti−1)),

log L =
n∑

i=1

{
(yi − yi−1)ln((m(ti) −m(ti−1)) − (m(ti) −m(ti−1)) − ln((yi − yi−1)!)

}
.

(6) R-square (R2) [10]

R2 = 1−

∑n
i=1(m̂(ti) − yi)

2∑n
i=1(yi − yi)

2

The R2 measures how successful fit is in explaining the variation of the data.
(7) Adjusted R-square (Adj R2) [10]
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Adj R2 = 1−

(
1−R2

)
(n− 1)

n−m− 1

The Adjusted R2 is a modification to R2 that adjusts for the number of explanatory terms in a
model relative to the number of data points.

(8) Sum of absolute errors (SAE) [13]

SAE =
n∑

i=1

∣∣∣m̂(ti) − yi
∣∣∣

The SAE measures the absolute distance of the model.
(9) Mean absolute errors (MAE) [29]

MAE =

∑n
i=1

∣∣∣m̂(ti) − yi
∣∣∣

n−m

The MAE measures the deviation by the use of absolute distance of the model.
(10) Variance [16]

Variance =

√∑n
i=1(yi − m̂(ti) − Bias)2

n− 1

The variance measures the standard deviation of the prediction bias, where Bias is given as:

Bias =
1
n

n∑
i=1

(m̂(ti) − yi).

(11) Sum of squared errors for predicted value (Pre SSE) [11]

Pre SSE =
n∑

i=k+1

(m̂(ti) − yi)
2

We use the data points up to time tk to estimate the parameters of the mean value function m(t),
then measure the square of the error between the estimated value and the actual data after the time tk,
obtained by substituting the estimated parameter into the mean value function.

Here, m̂(ti) is the estimated cumulative number of failures at ti for i = 1, 2, · · · , n; yi is the total
number of failures observed at time ti; n is the total number of observations; m is the number of
unknown parameters in the model.

The smaller the value of these nine criteria, i.e., MSE, RMSE, PRR, PP, AIC, SAE, MAE, Variance,
and Pre SSE, the better is the fit of the model (closer to 0). On the other hand, the higher the value of
the two criteria, i.e., R2 and Adj R2, the better is the fit of the model (closer to 1).

3.3. Confidence Interval

It is possible to check whether the value of the mean value function is included in the confidence
interval at each point, ti, or not and how much the confidence interval actually contains the value.
We use the following Equation (7) to obtain the confidence interval [22] of the proposed new model
and existing NHPP software reliability models;

m̂(t) ±Zα/2

√
m̂(t), (7)

where Zα/2 is 100(1− α), the percentile of the standard normal distribution.
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4. Numerical Examples

4.1. Data Information

Datasets #1 and #2 were reported by [22] based on system test data for a telecommunication
system. Both, the automated and human-involved tests are executed on multiple test beds. The system
records the cumulative of faults by each week. In Datasets #1 and #2, the week index is from week
1 to 21, and there are 26 and 43 cumulative failures in 21 weeks, respectively. Detailed information
can be seen in [22]. Datasets #3, #4, and #5 were reported by [22] based on the on-line communication
system. Here as well, the system records the cumulative of faults by each week. In Datasets #3, #4, and
#5, the week index is from week 1 to 12, and there are 26, 55, and 55 cumulative failures in 12 weeks,
respectively. Detailed information can be seen in [22].

4.2. Results of the Estimated Parameters

Tables 2–6 summarize the results of the estimated parameters using the LSE technique and the
values of the ten criteria (MSE, RMSE, PRR, PP, AIC, R2, Adj R2, SAE, MAE, and Variance) of all
21 models in Table 1. First, for comparison of the goodness-of-fit, we obtained the parameter estimates
and the criteria of all models using all data sets; when t = 1, 2, · · · , 21 from Dataset #1 and #2, and
when t = 1, 2, · · · , 12 from Dataset #3, #4 and #5. As shown in Tables 2–6, we can see that the proposed
new model has the best results when comparing the ten criteria to the other models.

As can be seen from Table 2, the MSE, RMSE, PRR, SAE, MAE, and Variance values for the
proposed new model are the lowest values compared to all models in Table 1. The MSE value of the
proposed new model is 0.5864, which is smaller than the value of MSE of other models. The RMSE
value is 0.7658, PRR value is 0.5024, SAE value is 11.3783, MAE value is 0.7111, and Variance value is
0.6903, which are smaller than the corresponding values of other models. The R2 and Adj R2 values
for the proposed new model are the largest values as compared to all models. The R2 value of the
proposed model is 0.9947, and the Adj R2 value is 0.9929, which are larger than the corresponding
values of other models.

From Table 3, we can see that the MSE, RMSE, PRR, PP, SAE, MAE, and Variance values for the
proposed new model are the lowest values in comparison with every model in Table 1. The MSE value
of the proposed new model is 0.8470, which is smaller than that of other models. The RMSE value is
0.9203, PRR value is 0.1159, PP value is 0.1355, SAE value is 14.0367, MAE value is 0.8773, and Variance
value is 0.8232, which are smaller than the corresponding values of other models. The AIC value is
77.0423, which is the second lowest value. The R2 and Adj R2 values for the proposed new model are
the largest values compared to all models. The value of R2 for the proposed model is 0.9970 and the
Adj R2 is 0.9960, which are larger than the respective values of other models.

As can be seen from Table 4, the MSE, RMSE, PP, AIC, SAE, and Variance values for the proposed
new model are the lowest values compared to all other models in Table 1. The MSE value of the
proposed new model is 4.4412, which is smaller than that of the other models. The RMSE value is
2.1074, PP value is 0.7376, AIC value is 54.3482, SAE value is 15.4691, and Variance value is 1.7189,
which are smaller than the value of other models. The MAE value is 2.2099, which is the second lowest
value. The R2 and Adj R2 values for the proposed new model are the largest values compared to all
models. The R2 value of the proposed model is 0.9682 and the Adj R2 value is 0.9416, which are larger
than the value of other models.

As seen from Table 5, the MSE, RMSE, PRR, PP, AIC, SAE, MAE, and Variance values for the
proposed new model are the lowest values in comparison with every model in Table 1. The MSE value
of the proposed new model is 6.7120, RMSE value is 2.5908, PRR value is 0.1812, PP value is 0.1363,
AIC value is 70.5195, SAE value is 18.2230, MAE value is 2.6033, and Variance value is 2.0735, which
are smaller than the value of other models. The values of R2 and Adj R2 for the proposed new model
are the largest values compared to all models. The value of R2 for the proposed model is 0.9877 and
that of Adj R2 is 0.9774, which are larger than the respective values of other models.
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As depicted in Table 6, the MSE, RMSE, PRR, PP, SAE, MAE, and Variance values for the proposed
new model are the lowest values as compared to all other models in Table 1. The MSE value of
the proposed new model is 2.3671, RMSE value is 1.5385, PRR value is 0.04121, PP value is 0.0333,
SAE value is 11.4867, MAE value is 1.6410, and Variance value is 1.2284, which are smaller than the
corresponding values of other models. The AIC value is 58.7819, which is the second lowest value.
The R2 and Adj R2 values for the proposed new model are the largest values compared to all models.
The value of R2 for the proposed model is 0.9940 and that of Adj R2 is 0.9890, which are larger than the
corresponding values of other models.
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Table 2. Results of Model Parameter Estimation and Criteria for Comparison from Dataset #1.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

1 GO â = 3,923,854.7292
b̂ = 3.2 × 10−7 3.8672 1.9665 1.3107 4.7001 65.3539 0.9582 0.9535 33.7895 1.7784 2.0637

2 Y-DS â = 39.82198
b̂ = 0.1104 1.4938 1.2222 12.0730 0.9675 63.9400 0.9838 0.9820 19.9951 1.0524 1.1926

3 O-IS â = 26.6845, b̂ = 0.2918
β̂ = 21.6851

0.6745 0.8213 2.8475 0.6556 64.1770 0.9931 0.9919 12.9369 0.7187 0.7996

4 Y-Exp â = 92,075.4308, α̂ = 0.3562
β̂ = 0.0005147, γ̂ = 0.07514 4.3392 2.0831 1.3380 4.8827 69.3634 0.9580 0.9475 33.9888 1.9993 2.1300

5 Y-Ray â = 29.0366, α̂ = 5.9677
β̂ = 0.000374, γ̂ = 4.8158 1.1421 1.0687 30.3583 1.2435 67.6217 0.9889 0.9862 16.6930 0.9819 0.9920

6 Y-ID 1 â = 1091.828, b̂ = 0.00098
α̂ = 0.0209

3.4470 1.8566 0.9414 2.7339 67.6756 0.9647 0.9584 30.9144 1.7175 1.8285

7 Y-ID 2 â = 2.3351, b̂ = 0.2451
α̂ = 0.6469

2.5766 1.6052 0.6847 0.9081 66.5843 0.9736 0.9689 25.0483 1.3916 1.5265

8 HD-GO â = 709.7827, b̂ = 0.00181
ĉ = 0.0998

4.1786 2.0442 1.3722 5.0982 67.3785 0.9572 0.9496 34.3708 1.9095 2.1867

9 P-GID 1 â = 10.6281, b̂ = 0.37304
α̂ = 0.0817, β̂ = 17.0709

1.2140 1.1018 8.5407 1.1317 66.6636 0.9883 0.9853 17.7928 1.0466 1.0894

10 P-GID 2
â = 7.1732, b̂ = 0.2784
α̂ = 0.2249, β̂ = 16.7796

ĉ = 19.9096
0.8041 0.8967 3.4790 0.7162 68.1690 0.9927 0.9902 13.3027 0.8314 0.8203

11 Z-FR
â = 0.5193, b̂ = 0.4377
α̂ = 5.5458, β̂ = 6.9059
ĉ = 4.6241, p̂ = 6.9172

1.7715 1.3310 1.8532 0.6332 70.9195 0.9849 0.9784 19.2629 1.2842 1.1597

12 TP

â = 6.7122, b̂ = 0.1818
α̂ = 0.0687, β̂ = 0.053
ĉ = 0.7196, p̂ = 0.1544

q̂ = 0.1534

3.6887 1.9206 0.7722 1.9488 74.7613 0.9706 0.9548 27.8156 1.9868 1.6781

13 PZ-IFD â = 6.3355, b̂ = 0.1287
d̂ = 0.0129

2.8339 1.6834 0.7156 1.6161 66.8070 0.9710 0.9658 27.3902 1.5217 1.6445
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Table 2. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

14 P-DP 1 α̂ = 2.7 × 10−6

γ̂ = 165.8689
14.5826 3.8187 172.8372 3.7900 75.9409 0.8423 0.8248 65.7605 3.4611 4.7568

15 P-DP 2 α̂ = 6879.0649, γ̂ = 0.00408
t̂0 = 0.3483, m̂0 = 3.9986 9.1284 3.0213 2.1272 22.1461 78.5680 0.9117 0.8896 48.5622 2.8566 2.7857

16 K-SRGM 3 Â = 24.989, b̂ = 0.1385
α̂ = 0.1012, p̂ = 3.5204

1.2295 1.1088 768.1366 2.3759 70.3312 0.9881 0.9851 17.7006 1.0412 1.1036

17 R-M-D â = 40.2018, b̂ = 0.1152
α̂ = 0.9319, β̂ = 0.1402

2.0059 1.4163 6379037.09051.7234 80.0129 0.9806 0.9757 22.3624 1.3154 1.5591

18 C-TC
â = 0.00432, b̂ = 2.234

α̂ = 9959.1698, β̂ = 15.2504
N̂ = 26.8334

1.0939 1.0459 102.3904 1.7481 70.5589 0.9900 0.9867 16.0422 1.0026 0.9842

19 P-Vtub
â = 1.0985, b̂ = 1.2978
α̂ = 1.5176, β̂ = 11.3848

N̂ = 25.7412
0.7178 0.8472 4.3863 0.7200 69.0114 0.9935 0.9913 12.7522 0.7970 0.7803

20 S-3PFD
â = 0.038, = 0.292

β̂ = 0.002, N̂ = 26.889
ĉ = 1488.598

0.7590 0.8712 2.8538 0.6565 68.1694 0.9931 0.9908 12.9491 0.8093 0.7980

21 New Model
â = 108,232.8195

b̂ = 1.0047, α̂ = 0.2176
β̂ = 155.5011, N̂ = 47.7965

0.5864 0.7658 0.5024 1.2025 66.7301 0.9947 0.9929 11.3783 0.7111 0.6906

Table 3. Results of Model Parameter Estimation and Criteria for Comparison from Dataset #2.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

1 GO â = 5899.3694
b̂ = 0.0036 6.6537 2.5795 0.6859 1.0870 78.3163 0.9718 0.9687 43.1731 2.2723 2.6349

2 Y-DS â = 62.3045
b̂ = 0.1185 3.2732 1.8092 44.3612 1.4298 81.0873 0.9862 0.9846 32.5216 1.7117 1.8123

3 O-IS â = 46.5437, b̂ = 0.2409
β̂ = 12.2242

1.8704 1.3676 5.9546 0.8965 76.9477 0.9925 0.9912 21.9605 1.2200 1.3693
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Table 3. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

4 Y-Exp â = 616.2702, α̂ = 0.1998
β̂ = 0.00048, γ̂ = 36.8345 7.9598 2.8213 0.7015 1.1835 82.2610 0.9699 0.9623 44.2608 2.6036 2.7046

5 Y-Ray â = 47.0086, α̂ = 6.2232
β̂ = 0.00029, γ̂ = 6.3708 3.2147 1.7929 111.4178 1.8451 85.7632 0.9878 0.9848 27.7602 1.6330 1.8734

6 Y-ID 1 â = 647.4658, b̂ = 0.00295
α̂ = 0.0158

6.2463 2.4993 0.6833 0.7512 80.9818 0.9750 0.9705 40.9177 2.2732 2.4195

7 Y-ID 2 â = 68.4424, b̂ = 0.0265
α̂ = 0.0511

5.9996 2.4494 0.7308 0.6707 80.8924 0.9760 0.9717 39.9577 2.2199 2.3415

8 HD-GO â = 709.7826, b̂ = 0.00307
ĉ = 0.7659

7.3398 2.7092 0.7035 1.2045 80.2859 0.9706 0.9654 44.4142 2.4675 2.7776

9 P-GID 1 â = 46.4854, b̂ = 0.2410
α̂ = 0.000067, β̂ = 12.2127

1.9814 1.4076 5.9524 0.8964 78.9480 0.9925 0.9906 21.9749 1.2926 1.3673

10 P-GID 2
â = 0.000032, b̂ = 0.2409
α̂ = 1.6139, β̂ = 12.2219

ĉ = 46.5445
2.1042 1.4506 5.9510 0.8963 80.9477 0.9925 0.9900 21.9644 1.3728 1.3683

11 Z-FR
â = 283.299, b̂ = 0.173997
α̂ = 520.118, β̂ = 0.27156

ĉ = 1.8366, p̂ = 6.9716
1.8601 1.3639 3.9072 0.7296 84.2304 0.9938 0.9911 20.1020 1.3401 1.2316

12 TP

â = 192.3412, b̂ = 0.3131
α̂ = 0.029, β̂ = 0.1954

ĉ = 1 0.0202, p̂ = 0.5938
q̂ = 0.3842

3.5100 1.8735 6.2127 0.9182 86.2875 0.9891 0.9832 28.6293 2.0450 1.6235

13 PZ-IFD â = 13.1083, b̂ = 0.1154
d̂ = 0.0057

5.1126 2.2611 1.0650 0.6546 80.1375 0.9795 0.9759 36.4678 2.0260 2.1645

14 P-DP 1 α̂ = 7.6 × 10−7

γ̂ = 403.0753
43.7600 6.6151 613.6285 4.5758 104.7474 0.8149 0.7943 122.0195 6.4221 8.8176

15 P-DP 2 α̂ = 3343.5848, γ̂ = 0.00728
t̂0 = 0.3771, m̂0 = 7.7754 21.3006 4.6153 1.4148 5.4631 96.7740 0.9194 0.8992 76.4876 4.4993 4.2597

16 K-SRGM 3 Â = 21.2662, b̂ = 0.3874
α̂ = 0.6255, p̂ = 0.8962

3.9525 1.9881 439.7196 2.0575 90.5520 0.9850 0.9813 32.8146 1.9303 1.9720
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Table 3. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

17 R-M-D â = 157.3012, b̂ = 0.0144
α̂ = 1.2327, β̂ = 0.3454

4.6378 2.1536 6.7102 0.9139 83.3777 0.9824 0.9781 34.4805 2.0283 2.0045

18 C-TC
â = 0.00607, b̂ = 1.864

α̂ = 9445.7865, β̂ = 93.4027
N̂ = 48.9629

3.3003 1.8167 57.3169 1.5788 86.4442 0.9882 0.9843 28.8335 1.8021 1.7301

19 P-Vtub
â = 1.2575, b̂ = 0.98699
α̂ = 1.4559, β̂ = 16.4583

N̂ = 45.2916
1.9851 1.4089 4.7454 0.8092 80.7744 0.9929 0.9906 21.7860 1.3616 1.3047

20 S-3PFD
â = 3.078, b̂ = 0.2410
β̂ = 0.170, N̂ = 46.8430

ĉ = 999.493
2.1046 1.4507 5.9567 0.8967 80.9477 0.9925 0.9900 21.9661 1.3729 1.3680

21 New Model
â = 9198.8054

b̂ = 0.7274, α̂ = 0.2584
β̂ = 5.9777, N̂ = 50.2841

0.8470 0.9203 0.1159 0.1355 77.0423 0.9970 0.9960 14.0367 0.8773 0.8232

Table 4. Results of Model Parameter Estimation and Criteria for Comparison from Dataset #3.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

1 GO â = 464.5247
b̂ = 0.00536 9.0920 3.0153 0.9284 1.4443 62.4128 0.9069 0.8862 28.2200 2.8220 2.8899

2 Y-DS â = 35.8316
b̂ = 0.2396 7.0034 2.6464 13.4415 1.6025 63.3503 0.9283 0.9124 24.4671 2.4467 2.5391

3 O-IS â = 26.9254, b̂ = 0.6204
β̂ = 30.0163

5.1138 2.2614 22.9009 1.4436 57.8013 0.9529 0.9352 18.2801 2.0311 2.1767

4 Y-Exp â = 6456.5057, α̂ = 0.1461
β̂ = 0.00495, γ̂ = 0.5332 11.3652 3.3712 0.9284 1.4442 66.4149 0.9069 0.8537 28.2211 3.5276 2.8900

5 Y-Ray â = 28.4774, α̂ = 23.884
β̂ = 2.3 × 10−6, γ̂ = 746.3198 7.4818 2.7353 36.8584 1.5855 66.0682 0.9387 0.9037 21.3831 2.6729 2.5201

6 Y-ID 1 â = 316.6384, b̂ = 0.00789
α̂ = 0.0016

10.1040 3.1787 0.9243 1.4515 64.3742 0.9069 0.8720 28.1806 3.1312 2.8893
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Table 4. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

7 Y-ID 2 â = 4.4246, b̂ = 0.4623
α̂ = 0.5756

9.9746 3.1583 1.2645 1.2271 64.9967 0.9081 0.8736 29.0765 3.2307 2.8578

8 HD-GO â = 446.4583, b̂ = 0.00558
ĉ = 1 × 10−9 10.1022 3.1784 0.9279 1.4447 64.4008 0.9069 0.8720 28.2149 3.1350 2.8889

9 P-GID 1 â = 27.1316, b̂ = 0.5709
α̂ = 2.1 × 10−11, β̂ = 22.163

5.8233 2.4132 14.4703 1.3672 59.5427 0.9523 0.9250 18.2613 2.2827 2.1505

10 P-GID 2
â = 1 × 10−10, b̂ = 0.6204
α̂ = 0.0387, β̂ = 30.0163

ĉ = 26.9254
6.5749 2.5642 22.9009 1.4436 61.8013 0.9529 0.9136 18.2801 2.6114 2.1767

11 Z-FR
â = 46.9742, b̂ = 0.1457
α̂ = 0.1382, β̂ = 0.1987
ĉ = 0.0596, p̂ = 0.4732

14.9849 3.8710 0.9416 1.4419 70.2105 0.9079 0.7975 28.0342 4.6724 2.8709

12 TP

â = 107.787, b̂ = 2.6× 10−8

α̂ = 0.2044, β̂ = 1.1 × 10−7

ĉ = 1.1232, p̂ = 0.00142
q̂ = 0.000061

18.2859 4.2762 0.9453 1.4258 72.7010 0.9064 0.7426 28.3832 5.6766 2.9222

13 PZ-IFD â = 281.2703, b̂ = 0.0083
d̂ = 0.000031

10.2029 3.1942 1.0336 1.2844 64.9647 0.9060 0.8707 29.1055 3.2339 2.8893

14 P-DP 1 α̂ = 2.0 × 10−6

γ̂ = 1115.343
34.4416 5.8687 246.9020 2.6126 86.7862 0.6474 0.5690 54.1442 5.4144 6.8563

15 P-DP 2 α̂ = 2070.3183, γ̂ = 0.0125
t̂0 = 8.7785, m̂0 = 19.516 21.2667 4.6116 1.0306 1.5407 72.4094 0.8258 0.7263 41.3919 5.1740 3.9346

16 K-SRGM 3 Â = 27.2536, b̂ = 0.1691
α̂ = 0.00, p̂ = 9.476

7.2970 2.7013 444.6336 1.9569 71.8813 0.9402 0.9061 20.6929 2.5866 2.5289

17 R-M-D â = 35.969, b̂ = 0.24269
α̂ = 0.9901, β̂ = 0.2427

8.7525 2.9585 15.6161 1.6246 67.6920 0.9283 0.8873 24.4048 3.0506 2.5408

18 C-TC
â = 0.2739, b̂ = 2.604

α̂ = 12.2099, β̂ = 50.5848
N̂ = 26.7229

7.9859 2.8259 302.4876 1.9056 71.5591 0.9428 0.8951 19.7573 2.8225 2.4696
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Table 4. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

19 P-Vtub
â = 1.9764, b̂ = 0.8427

α̂ = 33.7789, β̂ = 804.4101
N̂ = 25.8336

6.1408 2.4781 9.4191 1.1932 59.4576 0.9560 0.9193 18.0194 2.5742 2.0513

20 S-3PFD
â = 10.6227, b̂ = 0.6211
β̂ = 1.3819, N̂ = 27.808

ĉ = 397.0025
6.6075 2.5705 23.0454 1.4412 61.9886 0.9526 0.9132 18.3461 2.6209 2.1986

21 New Model
â = 9643.4774

b̂ = 1.3046, α̂ = 0.3131
β̂ = 1.4073, N̂ = 27.70003

4.4412 2.1074 1.7190 0.7376 54.3482 0.9682 0.9416 15.4691 2.2099 1.7189

Table 5. Results of Model Parameter Estimation and Criteria for Comparison from Dataset #4.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

1 GO â = 270.1056
b̂ = 0.02075 18.3634 4.2853 0.3249 0.4503 80.3676 0.9519 0.9412 41.4895 4.1490 4.1060

2 Y-DS â = 69.8210
b̂ = 0.2627 14.0418 3.7472 6.7145 0.8711 82.3170 0.9632 0.9550 35.4185 3.5418 3.6596

3 O-IS â = 59.0235, b̂ = 0.4417
β̂ = 9.7336

10.8677 3.2966 2.6138 0.6298 75.1254 0.9744 0.9647 28.1022 3.1225 3.0973

4 Y-Exp â = 5981.4323, α̂ = 0.0778
β̂ = 0.0199, γ̂ = 0.6051 22.9599 4.7916 0.3250 0.4498 84.3686 0.9518 0.9243 41.5089 5.1886 4.1045

5 Y-Ray
â = 57.701, α̂ = 58.8436
β̂ = 2.6 × 10−8, γ̂ =

30,017.6386
16.6108 4.0756 20.8256 1.0967 86.7089 0.9652 0.9453 31.4668 3.9334 3.9710

6 Y-ID 1 â = 270.1054, b̂ = 0.02075
α̂ = 1.4 × 10−8 20.4038 4.5171 0.3249 0.4503 82.3676 0.9519 0.9338 41.4896 4.6100 4.1060

7 Y-ID 2 â = 270.1041, b̂ = 0.0208
α̂ = 9.9 × 10−8 20.4110 4.5179 0.3238 0.4546 82.3842 0.9518 0.9338 41.3885 4.5987 4.1220

8 HD-GO â = 270.1056, b̂ = 0.0208
ĉ = 1 × 10−9 20.4111 4.5179 0.3238 0.4546 82.3843 0.9518 0.9338 41.3882 4.5987 4.1221
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Table 5. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

9 P-GID 1 â = 59.0239, b̂ = 0.4417
α̂ = 1.4 × 10−10, β̂ = 9.7338

12.2261 3.4966 2.6139 0.6298 77.1255 0.9744 0.9597 28.1025 3.5128 3.0972

10 P-GID 2
â = 1 × 10−10, b̂ = 0.4418
α̂ = 0.1819, β̂ = 9.7336

ĉ = 59.0235
13.9727 3.7380 2.6113 0.6298 79.1245 0.9744 0.9530 28.0991 4.0142 3.0944

11 Z-FR
â = 88.285, b̂ = 0.2295
α̂ = 1.1342, β̂ = 0.1063
ĉ = 0.1169, p̂ = 1.0616

25.7905 5.0784 0.4037 0.4399 85.8969 0.9594 0.9107 38.1771 6.3629 3.7579

12 TP

â = 5.5526, b̂ = 0.1157
α̂ = 2.7637, β̂ = 0.2783
ĉ = 0.1523, p̂ = 0.0844

q̂ = 0.0632

36.2811 6.0234 0.3289 0.4475 90.2214 0.9524 0.8692 41.3061 8.2612 4.0814

13 PZ-IFD â = 13.351, b̂ = 0.3015
d̂ = 1 × 10−10 18.9582 4.3541 0.5563 0.4514 82.7552 0.9553 0.9385 41.5660 4.6184 3.9404

14 P-DP 1 α̂ = 5.5 × 10−8
γ̂ = 3036.6077 146.2340 12.0927 193.5342 2.9279 132.5762 0.6166 0.5314 120.1415 12.0141 15.5642

15 P-DP 2 α̂ = 71,469.8104, γ̂ = 0.00313
t̂0 = 8.7 × 10−6, m̂0 = 13.8578 64.8252 8.0514 0.7452 1.5864 108.7149 0.8640 0.7863 71.5589 8.9449 6.8673

16 K-SRGM3 Â = 47.998, b̂ = 0.9041
α̂ = 0.2937, p̂ = 0.394

18.9589 4.3542 23.2982 1.1112 91.8189 0.9602 0.9375 34.9075 4.3634 3.8929

17 R-M-D â = 66.7919, b̂ = 0.2313
α̂ = 1.10797, β̂ = 0.23129

16.9597 4.1182 2.1336 0.6528 83.0580 0.9644 0.9441 35.9526 4.4941 3.5372

18 C-TC
â = 0.3805, b̂ = 1.7675

α̂ = 6021.5496
β̂ = 33,686.7619, N̂ = 61.0142

18.1240 4.2572 7.6284 0.8839 86.1250 0.9667 0.9390 32.2656 4.6094 3.5264

19 P-Vtub
â = 2.3187, b̂ = 0.6928

α̂ = 13.81799, β̂ = 269.3212
N̂ = 55.7854

12.2331 3.4976 1.2508 0.4708 76.2949 0.9775 0.9588 26.5196 3.7885 2.8320
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Table 5. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

20 S-3PFD
â = 223.3416, b̂ = 0.4424
β̂ = 4.4956, N̂ = 59.245

ĉ = 1213.0757
13.9742 3.7382 2.6264 0.6308 79.1281 0.9744 0.9530 28.0662 4.0095 3.0997

21 New Model
â = 42763.1241

b̂ = 1.6385, α̂ = 0.2005
β̂ = 12.6879, N̂ = 65.868

6.7120 2.5908 0.1812 0.1363 70.5195 0.9877 0.9774 18.2230 2.6033 2.0735

Table 6. Results of Model Parameter Estimation and Criteria for Comparison from Dataset #5.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

1 GO â = 94.3479
b̂ = 0.0733 4.0245 2.0061 0.2932 0.1627 57.7077 0.9855 0.9822 19.4198 1.9420 1.9150

2 Y-DS â = 57.5047
b̂ = 0.3437 8.2095 2.8652 7.3903 0.6184 69.6185 0.9704 0.9638 20.9577 2.0958 3.0188

3 O-IS â = 65.8343, b̂ = 0.2055
β̂ = 1.2874

4.0555 2.0138 0.4802 0.1903 60.1404 0.9868 0.9819 17.0533 1.8948 1.8479

4 Y-Exp â = 3344.357, α̂ = 0.1819
β̂ = 0.0718, γ̂ = 0.1584 5.0365 2.2442 0.2929 0.1625 61.7078 0.9855 0.9771 19.4216 2.4277 1.9171

5 Y-Ray â = 62.3356, α̂ = 0.038
β̂ = 0.0315, γ̂ = 51.9474 15.0669 3.8816 18.8397 0.8508 81.3798 0.9565 0.9316 26.5145 3.3143 3.7589

6 Y-ID 1 â = 94.3479, b̂ = 0.0733
α̂ = 1.1 × 10−9 4.4716 2.1146 0.2932 0.1627 59.7077 0.9855 0.9800 19.4198 2.1578 1.9150

7 Y-ID 2 â = 94.3479, b̂ = 0.0733
α̂ = 1 × 10−10 4.4716 2.1146 0.2932 0.1627 59.7077 0.9855 0.9800 19.4198 2.1578 1.9150

8 HD-GO â = 94.3479, b̂ = 0.0733
ĉ = 0.000109

4.4716 2.1146 0.2932 0.1627 59.7077 0.9855 0.9800 19.4198 2.1578 1.9150

9 P-GID 1 â = 65.8343, b̂ = 0.2055
α̂ = 3.8 × 10−8, β̂ = 1.2874

4.5624 2.1360 0.4802 0.1903 62.1404 0.9868 0.9793 17.0533 2.1317 1.8479

10 P-GID 2
â = 0.0023, b̂ = 0.2055
α̂ = 0.2328, β̂ = 1.2874

ĉ = 65.832
5.2142 2.2835 0.4803 0.1903 64.1404 0.9868 0.9759 17.0539 2.4363 1.8480
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Table 6. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation

11 Z-FR
â = 27.83996, b̂ = 0.1217
α̂ = 5.0642, β̂ = 0.2853
ĉ = 1.3182, p̂ = 0.7382

6.0591 2.4615 0.4518 0.1844 66.1861 0.9869 0.9711 17.0776 2.8463 1.8421

12 TP

â = 14.3726, b̂ = 0.1574
α̂ = 10.3379, β̂ = 2.9351
ĉ = 0.1765, p̂ = 0.2112

q̂ = 0.05296

7.8879 2.8085 0.3120 0.1652 67.7199 0.9858 0.9609 18.9981 3.7996 1.8967

13 PZ-IFD â = 6.4775, b̂ = 0.6673
d̂ = 1 × 10−10 9.0608 3.0101 0.8594 0.2657 62.8008 0.9706 0.9595 25.3217 2.8135 2.9951

14 P-DP 1 α̂ = 0.0115
γ̂ = 6.5411 183.4378 13.5439 432.0333 3.4669 124.8012 0.3380 0.1909 136.0472 13.6047 18.4397

15 P-DP 2 α̂ = 36,611.3949, γ̂ = 0.004045
t̂0 = 15.3658, m̂0 = 90.9356 43.7504 6.6144 0.5473 1.0956 81.2894 0.8737 0.8015 57.2136 7.1517 5.6431

16 K-SRGM3 Â = 55.9248, b̂ = 5.8366
α̂ = 0.2215, p̂ = 0.029

6.6314 2.5751 1.9490 0.3686 66.8324 0.9809 0.9699 19.5164 2.4396 2.3443

17 R-M-D â = 39.8594, b̂ = 0.18996
α̂ = 1.7852, β̂ = 0.1900

4.6755 2.1623 0.4548 0.1884 62.0841 0.9865 0.9788 17.5748 2.1969 1.8633

18 C-TC
â = 0.1375, b̂ = 1.0738
α̂ = 16,035.1043

β̂ = 24,002.2196, N̂ = 80.5179
5.6419 2.3753 0.4285 0.1883 64.2419 0.9857 0.9739 18.3880 2.6269 1.9083

19 P-Vtub
â = 2.3789, b̂ = 0.6047
α̂ = 1.2364, β̂ = 14.6987

N̂ = 64.9314
4.4144 2.1010 0.2444 0.1304 62.5181 0.9888 0.9796 16.5855 2.3694 1.6903

20 S-3PFD
â = 0.05496, b̂ = 0.2072
β̂ = 0.0245, N̂ = 68.5181

ĉ = 25.0097
5.2143 2.2835 0.4812 0.1905 64.1366 0.9868 0.9759 17.0484 2.4355 1.8470

21 New Model
â = 276.2278

b̂ = 1.1084, α̂ = 0.2693
β̂ = 54.0622, N̂ = 93.8052

2.3671 1.5385 0.0412 0.0333 58.7819 0.9940 0.9890 11.4867 1.6410 1.2284
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Figures 1–5 show graphs of the mean value functions for all models based on Datasets #1–#5,
respectively. Figures 6–10 show graphs of the 95% confidence interval of the proposed new model,
which serve to confirm whether the value of the mean value function is included in the confidence
interval of each time point. Figures 11–15 show graphs of the relative error value of all models, which
serve to confirm its ability to provide better accuracy.
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4.3. Prediction Analysis

In this paper, we use Dataset #1 and #2 to compare how the predicted values of each model
are different to fulfill the objective of this paper. We compare the goodness-of-fit of all models by
using up to 75% of the dataset and compare the predicted value of all models using the remaining
25% of dataset. For comparison of the goodness-of-fit, we obtained the parameter estimates and
the criteria (MSE, RMSE, PRR, PP, AIC, R2, Adj R2, SAE, MAE, and Variance) for all models when
t = 1, 2, · · · , 16, and, for comparison of the predicted value, we obtained the PreSSE value of all models
when t = 17, 18, · · · , 21 from Dataset #1 and #2.

First of all, as seen in Tables 7 and 8 for comparison of the goodness-of-fit, it is evident that the
proposed new model has the best results when comparing the ten criteria with the other models.
As seen from Table 7, the MSE, RMSE, PRR, SAE, and Variance values for the proposed new model
are the lowest values compared to all models in Table 1. The MSE value of the proposed new model
is 0.5915, which is smaller than the corresponding value of other models. The RMSE value is 0.7691,
the PRR value is 0.3380, the SAE value is 8.2769, and the Variance value is 0.6591, which are smaller
than the value of other models. The R2 and Adj R2 values for the proposed new model are the largest
values compared to all models. The value of R2 for the proposed model is 0.9923 and that of Adj R2 is
0.9885, which are larger than the respective values of other models. As seen from Table 8, the MSE,
RMSE, PRR, PP, SAE, MAE, and Variance values for the proposed new model are the lowest values in
comparison with all models in Table 1. The MSE value of the proposed new model is 0.7827, RMSE
value is 0.8847, PRR value is 0.1103, PP value is 0.1306, SAE value is 9.9671, MAE value is 0.7576, and
Variance value is 0.7576, which are smaller than the corresponding values of other models. The R2 and
Adj R2 values for the proposed new model are the largest values compared to all models. The value
of R2 for the proposed model is 0.9959 and that of Adj R2 is 0.9939, both of which are larger than
the respective values of other models. Finally, as shown in Tables 7 and 8 for the comparison of the
predicted value, it is evident that the proposed new model has the best results when comparing the
criterion of PreSSE with the other models. As it can be seen from Table 7, the PreSSE value for the
proposed new model is the lowest value as compared to all models in Table 1. The PreSSE value of the
proposed new model is 2.6780, which is smaller than that of the other models. The PreSSE value of the
proposed new model is 8.6532, which is smaller than the value of PreSSE of other models in Table 8.
Figures 16 and 17 show graphs of the goodness-of-fit and prediction of mean value functions for all
models from Datasets #1 and #2, respectively.
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Table 7. Results of Model parameter estimation, criteria, and prediction for comparison-Dataset #1.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation PreSSE

1 GO â = 2439.1963
b̂ = 0.00052 4.8579 2.2041 1.3269 4.8721 53.2386 0.9199 0.9076 29.4319 2.1023 2.5172 5.7456

2 Y-DS â = 81.5159
b̂ = 0.0657 0.8455 0.9195 25.1885 1.1392 52.1261 0.9861 0.9839 11.1007 0.7929 0.9257 128.7087

3 O-IS â = 32.2358, b̂ = 0.2378
β̂ = 16.9353

0.6685 0.8176 1.4552 0.4588 52.1602 0.9898 0.9872 9.4132 0.7241 0.7726 36.1311

4 Y-Exp â = 8326.9505, α̂ = 0.5383
β̂ = 0.00029, γ̂ = 0.9697 5.6573 2.3785 1.3088 4.7500 57.2550 0.9201 0.8910 29.2644 2.4387 2.4581 6.0419

5 Y-Ray â = 54.2003, α̂ = 0.0486
β̂ = 0.00296, γ̂ = 35.7066 1.0206 1.0102 39.9442 1.3655 56.1363 0.9856 0.9803 11.9100 0.9925 0.9885 70.2926

6 Y-ID 1 â = 174.82114, b̂ = 0.00407
α̂ = 0.08606

1.0997 1.0487 0.4140 0.6004 53.9407 0.9832 0.9790 10.7461 0.8266 0.9927 518.5369

7 Y-ID 2 â = 26.9978, b̂ = 0.0173
α̂ = 0.3124

0.8788 0.9374 0.9227 0.4135 53.3683 0.9865 0.9832 8.7974 0.6767 0.8735 299.6604

8 HD-GO â = 709.7826, b̂ = 0.00179
ĉ = 27.17296

5.3433 2.3116 1.3283 4.8597 55.3403 0.9182 0.8978 29.6288 2.2791 2.4842 6.2455

9 P-GID 1 â = 12.7655, b̂ = 0.2324
α̂ = 0.095, β̂ = 6.7409

0.7999 0.8944 1.9120 0.5175 54.5868 0.9887 0.9846 9.6560 0.8047 0.8168 89.6441

10 P-GID 2
â = 0.00079, b̂ = 0.2378
α̂ = 6.79798, β̂ = 16.9353

ĉ = 32.235
0.7900 0.8888 1.4552 0.4588 56.1602 0.9898 0.9847 9.4132 0.8557 0.7726 36.1309

11 Z-FR
â = 339.2109, b̂ = 0.2114
α̂ = 208.6339, β̂ = 0.1286
ĉ = 0.2734, p̂ = 13.3842

0.7917 0.8897 1.3398 0.4410 57.6773 0.9907 0.9845 9.2198 0.9220 0.7383 4.4041

12 TP

â = 1.9773, b̂ = 0.2819
α̂ = 0.6614, β̂ = 0.2226
ĉ = 2.2607, p̂ = 0.0576

q̂ = 0.0702

1.2346 1.1111 0.7866 0.4119 61.1905 0.9869 0.9755 8.9309 0.9923 0.8616 258.9145

13 PZ-IFD â = 3.0369, b̂ = 0.1407
d̂ = 0.1038

0.8589 0.9268 1.1519 0.4317 53.2961 0.9869 0.9836 8.8436 0.6803 0.8636 268.2888

14 P-DP 1 α̂ = 0.00053
γ̂ = 13.6882 2.5693 1.6029 89.2144 2.1491 55.2758 0.9577 0.9511 19.9041 1.4217 2.0091 803.4099

15 P-DP 2 α̂ = 16,554.0442, γ̂ = 0.00323
t̂0 = 1.1159, m̂0 = 1.8408 1.4601 1.2083 0.6654 2.0357 56.3830 0.9794 0.9719 12.3365 1.0280 1.0812 598.1091

16 K-SRGM 3 Â = 43.9312, b̂ = 1.3062
α̂ = 2.2423, p̂ = 0.0265

1.0199 1.0099 20.5291 0.9348 56.6049 0.9856 0.9804 10.1636 0.8470 0.9148 264.3312
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Table 7. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation PreSSE

17 R-M-D â = 153.5748, b̂ = 0.0327
α̂ = 1.0556, β̂ = 0.0463

0.9091 0.9535 2.6861 0.5630 55.2528 0.9872 0.9825 9.2852 0.7738 0.8606 188.6321

18 C-TC
â = 0.0288, b̂ = 1.6825

α̂ = 193.5851, β̂ = 167.6135
N̂ = 86.0872

1.0215 1.0107 8.9612 0.8232 57.6870 0.9868 0.9802 10.0127 0.9102 0.8859 160.1096

19 P-Vtub
â = 1.2816, b̂ = 0.9844
α̂ = 1.1473, β̂ = 20.7523

N̂ = 31.4297
0.7830 0.8849 1.3879 0.4508 56.1136 0.9899 0.9848 9.3983 0.8544 0.7681 32.5458

20 S-3PFD
â = 0.1496, b̂ = 0.2372
β̂ = 0.1982, N̂ = 36.9478

ĉ = 62.4407
0.8172 0.9040 1.3089 0.4455 56.1928 0.9894 0.9841 9.7423 0.8857 0.7774 45.9267

21 New Model
â = 10453.17249

b̂ = 0.53348, α̂ = 0.4174
β̂ = 0.1175, N̂ = 24.9924

0.5915 0.7691 0.3380 0.6053 54.8572 0.9923 0.9885 8.2769 0.7524 0.6591 2.6780

Table 8. Results of Model parameter estimation, criteria, and prediction for comparison-Dataset #2.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation PreSSE

1 GO â = 3631.5077
b̂ = 0.00058856 8.0914 2.8445 0.6812 1.1134 61.1966 0.9463 0.9380 36.5962 2.6140 3.0456 13.3815

2 Y-DS â = 92.9084
b̂ = 0.08688 2.7180 1.6486 70.6100 1.6218 65.0441 0.9820 0.9792 19.8586 1.4185 1.8435 157.7642

3 O-IS â = 76.8382, b̂ = 0.1513
β̂ = 9.348

1.5104 1.2290 2.7478 0.6084 61.0251 0.9907 0.9884 15.2338 1.1718 1.1949 276.1112

4 Y-Exp â = 16,029.2962, α̂ = 0.2561
β̂ = 0.000375, γ̂ = 1.3887 9.4224 3.0696 0.6816 1.1158 65.1857 0.9464 0.9269 36.5870 3.0489 3.0523 13.4557

5 Y-Ray â = 83.3575, α̂ = 0.06002
β̂ = 0.005, γ̂ = 20.2075 3.7509 1.9367 122.7334 1.9015 70.1373 0.9787 0.9709 20.9782 1.7482 2.1406 64.8807

6 Y-ID 1 â = 1829.4685, b̂ = 0.00074
α̂ = 0.0672

1.7208 1.3118 1.5540 0.4759 61.5783 0.9894 0.9867 16.5054 1.2696 1.2638 826.9275

7 Y-ID 2 â = 2404.9698, b̂ = 0.00049
α̂ = 0.1324

1.6375 1.2796 2.2863 0.5616 61.5103 0.9899 0.9874 15.9021 1.2232 1.2062 605.1401

8 HD-GO â = 709.7827, b̂ = 0.00306
ĉ = 1 × 10−9 9.1979 3.0328 0.6912 1.1752 63.4061 0.9433 0.9292 37.7317 2.9024 3.1490 12.6426

9 P-GID 1 â = 45.3264, b̂ = 0.1489
α̂ = 0.0343, β̂ = 5.1894

1.6792 1.2958 2.9736 0.6315 63.1427 0.9904 0.9870 15.3907 1.2826 1.2188 306.8552
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Table 8. Cont.

No. Model Parameter Estimation MSE RMSE PRR PP AIC R2 Adj R2 SAE MAE Variation PreSSE

10 P-GID 2
â = 0.00085, b̂ = 0.1513
α̂ = 0.8954, β̂ = 9.34796

ĉ = 76.8381
1.7850 1.3360 2.7477 0.6084 65.0251 0.9907 0.9860 15.2335 1.3849 1.1948 276.1485

11 Z-FR
â = 110.9274, b̂ = 0.1443
α̂ = 243.7368, β̂ = 0.04498

ĉ = 2.4367, p̂ = 2.1721
1.8974 1.3774 2.9162 0.6253 66.7569 0.9910 0.9850 14.8415 1.4841 1.1887 129.7523

12 TP

â = 3.1572, b̂ = 0.1481
α̂ = 5.3435, β̂ = 0.1162
ĉ = 18.143, p̂ = 0.0997

q̂ = 0.0547

2.1636 1.4709 2.7535 0.6092 68.9644 0.9908 0.9827 15.1312 1.6812 1.1850 244.6593

13 PZ-IFD â = 31.2103, b̂ = 0.038
d̂ = 0.0429

1.6279 1.2759 2.2668 0.5577 61.4700 0.9900 0.9875 15.9819 1.2294 1.2277 583.1510

14 P-DP 1 α̂ = 0.00055
γ̂ = 17.3503 10.7490 3.2786 328.0224 2.9526 72.2485 0.9287 0.9177 44.4948 3.1782 4.6393 2211.9360

15 P-DP 2 α̂ = 59,270.7316, γ̂ = 0.00215
t̂0 = 6.7491, m̂0 = 10.6115 2.4626 1.5693 0.2884 0.4953 63.5555 0.9860 0.9809 17.6701 1.4725 1.4047 1310.6154

16 K-SRGM 3 Â = 7.5932, b̂ = 0.799
α̂ = 0.9886, p̂ = 0.6217

3.2377 1.7994 153.8475 1.7084 71.3605 0.9816 0.9749 20.3997 1.7000 1.9248 253.8031

17 R-M-D â = 3618.8593, b̂ = 0.00207
α̂ = 1.1458, β̂ = 0.0255

1.7907 1.3382 2.7803 0.6101 63.5428 0.9898 0.9861 16.0428 1.3369 1.2495 500.8745

18 C-TC
â = 0.0624, b̂ = 1.3996

α̂ = 58.5612, β̂ = 3755.7385
N̂ = 2468.2417

2.3527 1.5338 8.7659 0.9162 67.1476 0.9877 0.9816 17.5609 1.5964 1.3852 383.3217

19 P-Vtub
â = 1.8042, b̂ = 0.6499
α̂ = 2.9707, β̂ = 103.1556

N̂ = 66.0397
1.5601 1.2490 1.2753 0.4419 64.0424 0.9919 0.9878 14.5886 1.3262 1.0982 233.1903

20 S-3PFD
â = 0.0649, b̂ = 0.1509

β̂ = 0.07298, N̂ = 83.3809
ĉ = 64.9276

1.7861 1.3365 2.7395 0.6073 65.0284 0.9907 0.9860 15.2673 1.3879 1.2011 278.3163

21 New Model

â = 14,718.555
b̂ = 0.5631, α̂ = 0.3272

β̂ = 0.1884
N̂ = 41.8677

0.7827 0.8847 0.1103 0.1306 61.2342 0.9959 0.9939 9.9671 0.9061 0.7576 8.6532
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5. Conclusions

The software is used in a variety of environments; however, it is typically developed and tested
in a controlled environment. The uncertainty of the operating environment is considered because
the environment in which the software is operated varies. Therefore, we consider the uncertainty
of the operating environment and the learn-curve in the fault detection rate function. In this paper,
we discussed a new model with inflection factor of the fault detection rate function considering the
uncertainty of operating environments and analyzed how the predicted values of the proposed new
model are different than the other models. We provided numerical proof by goodness-of-fit and also
predicted the values for all models, and compared the proposed new model with several existing
NHPP software reliability models based on eleven criteria (MSE, RMSE, PRR, PP, AIC, R2, Adj R2,
SAE, MAE, Variance, and Pre SSE). As shown with the numerical examples, the results prove that
the proposed new model has significantly better goodness-of-fit and predicts the value better than
the other existing models. Future work will involve broader validation of this conclusion based on
recent data sets. In addition, we need to apply Bayesian and big-data estimation method to estimate
parameters, and also need to consider the multi-release point.
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