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Abstract: Many higher order multiple-root solvers that require derivative evaluations are available
in literature. Contrary to this, higher order multiple-root solvers without derivatives are difficult to
obtain, and therefore, such techniques are yet to be achieved. Motivated by this fact, we focus on
developing a new family of higher order derivative-free solvers for computing multiple zeros by
using a simple approach. The stability of the techniques is checked through complex geometry shown
by drawing basins of attraction. Applicability is demonstrated on practical problems, which illustrates
the efficient convergence behavior. Moreover, the comparison of numerical results shows that the
proposed derivative-free techniques are good competitors of the existing techniques that require
derivative evaluations in the iteration.
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1. Introduction

Solving nonlinear equations is an important task in numerical analysis and has numerous
applications in engineering, mathematical biology, physics, chemistry, medicine, economics, and other
disciplines of applied sciences [1–3]. Due to advances in computer hardware and software, the problem
of solving the nonlinear equations by computational techniques has acquired an additional advantage
of handling the lengthy and cumbersome calculations. In the present paper, we consider iterative
techniques for computing multiple roots, say α, with multiplicity m of a nonlinear equation f (x) = 0,
that is f (j)(α) = 0, j = 0, 1, 2, . . . , m− 1 and f (m)(α) 6= 0. The solution α can be calculated as a fixed
point of some function M : D ⊂ C→ C by means of the fixed point iteration:

xn+1 = M(xn), n ≥ 0 (1)

where x ∈ D is a scalar.
Many higher order techniques, based on the quadratically-convergent modified Newton’s scheme

(see [4]):

xn+1 = xn −m
f (xn)

f ′(xn)
(2)

have been proposed in the literature; see, for example, [5–20] and the references therein. The techniques
based on Newton’s or the Newton-like method require the evaluations of derivatives of first order.
There is another class of multiple-root techniques involving derivatives of both the first and second
order; see [5,21]. However, higher order derivative-free techniques to handle the case of multiple roots
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are yet to be explored. The main problem of developing such techniques is the difficulty in finding their
convergence order. Derivative-free techniques are important in the situations when the derivative of
the function f is difficult to compute or is expensive to obtain. One such derivative-free technique is the
classical Traub–Steffensen method [22]. The Traub–Steffensen method actually replaces the derivative
in the classical Newton’s method with a suitable approximation based on the difference quotient,

f ′(xn) '
f (xn + β f (xn))− f (xn)

β f (xn)
, β ∈ R− {0}

or writing more concisely:
f ′(xn) ' f [xn, tn]

where tn = xn + β f (xn) and f [xn, tn] =
f (tn)− f (xn)

tn − xn
is a first order divided difference. In this way,

the modified Newton’s scheme (2) assumes the form of the modified Traub–Steffensen scheme:

xn+1 = xn −m
f (xn)

f [xn, tn]
. (3)

The Traub–Steffensen scheme (3) is a noticeable improvement of Newton’s scheme, since it
maintains the quadratic convergence without using any derivative.

The aim of the present contribution is to develop derivative-free multiple-root iterative techniques
with high computational efficiency, which means the techniques that may attain a high convergence
order using as small a number of function evaluations as possible. Consequently, we develop a family
of derivative-free iterative methods of seventh order convergence that requires only four function
evaluations per full iteration. The scheme is composed of three steps, out of which the first step is
the classical Traub–Steffensen iteration (3) and the last two steps are Traub–Steffensen-like iterations.
The methodology is based on the simple approach of using weight functions in the scheme. Many
special cases of the family can be generated depending on the different forms of weight functions.
The efficacy of the proposed methods is tested on various numerical problems of different natures.
In the comparison with existing techniques requiring derivative evaluations, the new derivative-free
methods are observed to be computationally more efficient.

We summarize the contents of the rest of paper. In Section 2, the scheme of the seventh order
multiple-root solvers is developed and its order of convergence is determined. In Section 3, the basins
of attractors are presented to check the stability of new methods. To demonstrate the performance and
comparison with existing techniques, the new techniques are applied to solve some practical problems
in Section 4. Concluding remarks are given in Section 5.

2. Development of the Family of Methods

Given a known multiplicity m ≥ 1, we consider a three-step iterative scheme with the first step as
the Traub–Steffensen iteration (3) as follows:

yn = xn −m
f (xn)

f [xn, tn]

zn = yn −muH(u)
f (xn)

f [xn, tn]

xn+1 = zn −mvG(u, w)
f (xn)

f [xn, tn]

(4)

where u =
( f (yn)

f (xn)

) 1
m , v =

( f (zn)

f (xn)

) 1
m , and w =

( f (zn)

f (yn)

) 1
m . The function H(u) : C→ C is analytic

in a neighborhood of 0, and the function G(u, w) : C×C→ C is holomorphic in a neighborhood of
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(0, 0). Note that second and third steps are weighted by the factors H(u) and G(u, w), so these factors
are called weight factors or weight functions.

We shall find conditions under which the scheme (4) achieves convergence order as high as
possible. In order to do this, let us prove the following theorem:

Theorem 1. Let f : C→ C be an analytic function in a region enclosing a multiple zero α with multiplicity
m. Assume that initial guess x0 is sufficiently close to α, then the iteration scheme defined by (4) possesses the
seventh order of convergence, provided that the following conditions are satisfied:{

H(0) = 1, H′(0) = 2 H′′(0) = −2, and |H′′′(0)| < ∞
G(0, 0) = 1, G10(0, 0) = 2, G01(0, 0) = 1, G20(0, 0) = 0 and |G11(0, 0)| < ∞

where Gij(0, 0) =
∂i+j

∂ui∂wj G(u, w)|(0,0).

Proof. Let the error at the nth iteration be en = xn − α. Using the Taylor expansion of f (xn) about α,
we have that:

f (xn) =
f (m)(α)

m!
em

n +
f (m+1)(α)

(m + 1)!
em+1

n +
f (m+2)(α)

(m + 2)!
em+2

n +
f (m+3)(α)

(m + 3)!
em+3

n +
f (m+4)(α)

(m + 4)!
em+4

n

+
f (m+5)(α)

(m + 5)!
em+5

n +
f (m+6)(α)

(m + 6)!
em+6

n +
f (m+7)(α)

(m + 7)!
em+7

n + O
(
em+8

n
)

or:

f (xn) =
f (m)(α)

m!
em

n
(
1 + C1en + C2e2

n + C3e3
n + C4e4

n + C5e5
n + C6e6

n + C7e7
n + O(e8

n)
)

(5)

where Ck =
m!

(m + k)!
f (m+k)(α)

f (m)(α)
for k ∈ N.

Using (5) in tn = xn + β f (xn), we obtain that:

tn − α = xn − α + β f (xn)

= en +
β f (m)(α)

m!
em

n
(
1 + C1en + C2e2

n + C3e3
n + C4e4

n + C5e5
n + C6e6

n + C7e7
n + O(e8

n)
)
.

(6)

Taylor’s expansion of f (tn) about α is given as:

f (tn) =
f (m)(α)

m!
(tn − α)m(1 + C1(tn − α) + C2(tn − α)2 + C3(tn − α)3 + C4(tn − α)4

+ C5(tn − α)5 + C6(tn − α)6 + C7(tn − α)7 + O((tn − α)8)
)
.

(7)

By using Equations (5)–(7) in the first step of (4), after some simple calculations, it follows that:

yn − α =
C1

m
e2

n +
2mC2 − (m + 1)C2

1
m2 e3

n +
1

m3

(
(m + 1)2C2

1 + m(4 + 3m)C1C2 − 3m2C3
)
e4

n +
3

∑
i=1

ωiei+4
n + O(e8

n) (8)

where ωi = ωi(m, C1, C2, . . . , C7) are given in terms of m, C1, C2, . . . , C7. The expressions of ωi are very
lengthy, so they are not written explicitly.

Taylor’s expansion of f (yn) about α is given by:

f (yn) =
f (m)(α)

m!

(C1

m

)m
e2m

n

(
1 +

2C2m− C2
1(m + 1)

C1
en +

1
2mC2

1

(
(3 + 3m + 3m2 + m3)C4

1

− 2m(2 + 3m + 2m2)C2
1C2 + 4(−1 + m)m2C2

2 + 6m2C1C3
)
e2

n +
4

∑
i=1

ω̄iei+2
n + O(e8

n)
) (9)
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where ω̄i = ω̄i(m, C1, C2, . . . , C7).
By using (5) and (9), we get the expression of u as:

u =
C1

m
en +

2C2m− C2
1(m + 2)

m2 e2
n +

5

∑
i=1

ηiei+2
n + O(e8

n) (10)

where ηi = ηi(m, C1, C2, . . . , C7) are given in terms of m, C1, C2, . . . , C7 with one explicitly-written

coefficient η1 =
1

2m3

(
C3

1(2m2 + 7m + 7) + 6C3m2 − 2C2C1m(3m + 7)
)
.

We expand the weight function H(u) in the neighborhood of 0 by the Taylor series, then we
have that:

H(u) ≈ H(0) + uH′(0) +
1
2

u2H′′(0) +
1
6

u3H′′′(0). (11)

Inserting Equations (5), (9), and (11) in the second step of Scheme (4) and simplifying,

zn − α = − A
m

C1e2
n +

1
m2

(
− 2mAC2 + C2

1(−1 + mA + 3H(0)− H′(0))
)
e3

n

+
1

2m3

(
− 6Am2C3 + 2mC1C2(−4 + 3Am + 11H(0)− 4H′(0)) + C3

1(2− 2Am2

− 13H(0) + 10H′(0) + m(4− 11H(0) + 4H′(0))− H′′(0))
)
e4

n +
3

∑
i=1

γiei+4
n + O(e8

n)

(12)

where A = −1 + H(0) and γi = γi(m, H(0), H′(0), H′′(0), H′′′(0), C1, C2, . . . , C7).
In order to attain higher order convergence, the coefficients of e2

n and e3
n should be simultaneously

equal to zero. That is possible only for the following values of H(0) and H′(0):

H(0) = 1, H′(0) = 2. (13)

By using the above values in (12), we obtain that:

zn − α =
−2mC1C2 + C3

1(9 + m− H′′(0))
2m3 e4

n +
3

∑
i=1

γiei+4
n + O(e8

n). (14)

Expansion of f (zn) about α leads us to the expression:

f (zn) =
f (m)(α)

m!
(zn − α)m(1 + C1(zn − α) + C2(zn − α)2 + O((zn − α)3)

)
. (15)

From (5), (9), and (15), we get the expressions of v and w as:

v =
(9 + m)C3

1 − 2mC1C2

2m3 e3
n +

4

∑
i=1

τiei+3
n + O(e8

n) (16)

and:

w =
(9 + m− H′′(0))C2

1 − 2mC2

2m3 e2
n +

5

∑
i=1

ςiei+2
n + O(e8

n) (17)

where τi and ςi are some expressions of m, H′′(0), H′′′(0), C1, C2, . . . , C7.
Expanding the function G(u, w) in the neighborhood of origin (0, 0) by Taylor series:

G(u, w) ≈ G00(0, 0) + uG10(0, 0) +
1
2

u2G20(0, 0) + w(G01(0, 0) + uG11(0, 0)) (18)
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where Gij =
∂i+j

∂ui∂wj G(u, w)|(0,0).

Then by substituting (5), (16), (17), and (18) into the last step of Scheme (4), we obtain the
error equation:

en+1 =
1

2m3

(
(−1 + G00(0, 0))C1

(
2mC1 − (9 + m− H′′(0))C2

1
))

e4
n +

3

∑
i=1

ξiei+4
n + O(e8

n) (19)

where ξi = ξi(m, H′′(0), H′′′(0), G00, G01, G10, G20, G11, C1, C2, . . . , C7).
It is clear from Equation (19) that we will obtain at least fifth order convergence if we have

G00(0, 0) = 1. Moreover, we can use this value in ξ1 = 0 to obtain:

G10(0, 0) = 2. (20)

By using G00 = 1 and (20) in ξ2 = 0, the following equation is obtained:

C1
(
2mC2 − C2

1(9 + m− H′′(0))
)(
− 2mC2(−1 + G01(0, 0)) + C2

1(−11 + m(−1 + G01(0, 0))

− (−9 + H′′(0))G01(0, 0) + G20(0, 0))
)
= 0

which further yields:
G01(0, 0) = 1, G20(0, 0) = 0 and H′′(0) = −2.

Using the above values in (19), the final error equation is given by:

en+1 =
1

360m6

(
360m3((47 + 5m)C3

2 − 6mC2
3 − 10mC2C4

)
+ 120m3C1

(
(623 + 78m)C2C3

− 12mC5
)
− 60m2C3

1C3

(
1861 + 1025m + 78m2 + 12H′′′(0)

)
+ 10mC4

1C2
(
32383

+ 9911m2 + 558m3 + 515H′′′(0) + 396G11(0, 0) + 36m
(
900 + 6H′′′(0) + G11(0, 0)

))
− 60m2C2

1

(
− 6m(67 + 9m)C4 + C2

2
(
3539 + 1870m + 135m2 + 24H′′′(0) + 6G11(0, 0)

))
− C6

1

(
95557 + 20605m + 978m4 + 2765H′′′(0) + 10890G11(0, 0) + m2(90305 + 600H′′′(0)

+ 90G11(0, 0)) + 5m(32383 + 515H′′′(0) + 396G11(0, 0))
))

e7
n + O(e8

n).

Hence, the seventh order convergence is established.

Forms of the Weight Function

Numerous special cases of the family (4) are generated based on the forms of weight functions
H(u) and G(u, w) that satisfy the conditions of Theorem 1. However, we restrict ourselves to simple
forms, which are given as follows:

I. Some particular forms of H(u)

Case I(a). When H(u) is a polynomial weight function, e.g.,

H(u) = A0 + A1u + A2u2.

By using the conditions of Theorem 1, we get A0 = 1, A1 = 2 and A2 = −1. Then, H(u) becomes:

H(u) = 1 + 2u− u2.
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Case I(b). When H(u) is a rational weight function, e.g.,

H(u) =
1 + A0u

A1 + A2u
.

Using the conditions of Theorem 1, we get that A0 =
5
2

, A1 = 1, and A2 =
1
2

. Therefore,

H(u) =
2 + 5u
2 + u

.

Case I(c). When H(u) is a rational weight function, e.g.,

H(u) =
1 + A0u + A1u2

1 + A2u
.

Using the conditions of Theorem 1, then we get A0 = 3, A1 = 2, and A2 = 1. H(u) becomes:

H(u) =
1 + 3u + u2

1 + u
.

Case I(d). When H(u) is a rational function of the form:

H(u) =
1 + A0u

1 + A1u + A2u2 .

Using the conditions of Theorem 1, we get A0 = 1, A1 = −1, and A2 = 1. Then,

H(u) =
1 + u

1− u + 3u2 .

II. Some particular forms of G(u, w)

Case II(a). When G(u, w) is a polynomial weight function, e.g.,

G(u, w) = A0 + A1u + A2u2 + (A3 + A4u + A5u2)w.

Using the conditions of Theorem 1, then we get A0 = 1, A1 = 2, A2 = 0, and A3 = 1. Therefore,
G(u, w) becomes:

G(u, w) = 1 + 2u + (1 + A4u + A5u2)w

where A4 and A5 are free parameters.
Case II(b). When G(u, w) is a rational weight function, e.g.,

G(u, w) =
B0 + B1u + B2w + B3uw
1 + A1u + A2w + A3uw

.

Using the conditions of Theorem 1, we have B0 = 1, A1 = 2, B1 = 2, A2 = 0, and B2 = 1. Then,

G(u, w) =
1 + 2u + w + B3uw

1 + A3uw

where A3 and B3 are free parameters.
Case II(c). When G(u, w) is the sum of two weight functions H1(u) and H2(w). Let H1(u) = A0 +

uA1 + u2 A2 and H2(u) = B0 + wB1 + w2B2, then G(u, w) becomes:

G(u, w) = A0 + A1u + A2u2 + B0 + B1w + B2w2.
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By using the conditions of Theorem 1, we get:

G(u, w) = 1 + 2u + w + B2w2

where B2 is a free parameter.
Case II(d). When G(u, w) is the sum of two rational weight functions, that is:

G(u, w) =
A0 + A1u
1 + A2u

+
B0 + B1w
1 + B2w

.

By using the conditions of Theorem 1, we obtain that:

G(u, w) = 2u +
1

1− w
.

Case II(e). When G(u, w) is product of two weight functions, that is:

G(u, w) =
A0 + A1u
1 + A2u

× B0 + B1w
1 + B2w

.

Using the conditions of Theorem 1, then we get:

G(u, w) = (1 + 2u)(1 + w).

3. Complex Dynamics of Methods

Here, our aim is to analyze the complex dynamics of the proposed methods based on the visual
display of the basins of attraction of the zeros of a polynomial p(z) in the complex plane. Analysis
of the complex dynamical behavior gives important information about the convergence and stability
of an iterative scheme. Initially, Vrscay and Gilbert [23] introduced the idea of analyzing complex
dynamics. Later on, many researchers used this concept in their work, for example (see [24–26] and
the references therein). We choose some of the special cases (corresponding to the above forms of H(u)
and G(u, w)) of family (4) to analyze the basins. Let us choose the combinations of special Cases II(c)
(for B2 = 1) and II(d) with I(a), I(b), I(c), and I(d) in (4) and denote the corresponding new methods by
NM-i(j), i = 1, 2 and j = a, b, c, d.

We take the initial point as z0 ∈ D, where D is a rectangular region in C containing all the roots of
p(z) = 0. The iterative methods starting at a point z0 in a rectangle either converge to the zero of the
function p(z) or eventually diverge. The stopping criterion considered for convergence is 10−3 up to a
maximum of 25 iterations. If the desired tolerance is not achieved in 25 iterations, we do not continue
and declare that the iterative method starting at point z0 does not converge to any root. The strategy
adopted is the following: A color is assigned to each starting point z0 in the basin of attraction of a zero.
If the iteration starting from the initial point z0 converges, then it represents the basins of attraction
with that particular color assigned to it, and if it fails to converge in 25 iterations, then it shows the
black color.

To view complex geometry, we analyze the attraction basins for the methods NM-1(a–d) and
NM-2(a–d) on the following two polynomials:

Problem 1. In the first example, we consider the polynomial p1(z) = (z2 − 1)2, which has zeros {±1} with
multiplicity two. In this case, we use a grid of 400× 400 points in a rectangle D ∈ C of size [−2, 2]× [−2, 2]
and assign the color green to each initial point in the basin of attraction of zero ‘− 1′ and the color red to each
point in the basin of attraction of zero ‘1′. Basins obtained for the methods NM-1(a–d) and NM-2(a–d) are
shown in Figures 1–4 corresponding to β = 0.01, 0.002. Observing the behavior of the methods, we see that
the method NM-2(d) possesses a lesser number of divergent points and therefore has better stability than the
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remaining methods. Notice that there is a small difference in the basins for the rest of the methods with the same
value of β. Notice also that the basins are becoming wider as parameter β assumes smaller values.
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-2 -1 0 1 2
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Figure 1. Basins of attraction for NM-1 (for β = 0.01) in polynomial p1(z).
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Figure 2. Basins of attraction for NM-1 (for β = 0.002) in polynomial p1(z).
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Figure 3. Basins of attraction for NM-2 (for β = 0.01) in polynomial p1(z).-2 -1 0 1 2
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Figure 4. Basins of attraction for NM-2 (for β = 0.002) in polynomial p1(z).

Problem 2. Let us take the polynomial p2(z) = (z3 + z)3 having zeros {0,±i} with multiplicity three. To see
the dynamical view, we consider a rectangle D = [−2, 2]× [−2, 2] ∈ C with 400× 400 grid points and allocate
the colors red, green, and blue to each point in the basin of attraction of −i, 0, and i, respectively. Basins for
this problem are shown in Figures 5–8 corresponding to parameter choices β = 0.01, 0.002 in the proposed
methods. Observing the behavior, we see that again, the method NM-2(d) has better convergence behavior due to
a lesser number of divergent points. Furthermore, observe that in each case, the basins are becoming larger with
the smaller values of β. The basins in the remaining methods other than NM-2(d) are almost the same.
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Figure 5. Basins of attraction for NM-1 (for β = 0.01) in polynomial p2(z).
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Figure 6. Basins of attraction for NM-1 (for β = 0.002) in polynomial p2(z).
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Figure 8. Basins of attraction for NM-2 (for β = 0.002) in polynomial p2(z).

From the graphics, we can easily observe the behavior and applicability of any method. If we
choose an initial guess z0 in a region wherein different basins of attraction touch each other, it is difficult
to predict which root is going to be attained by the iterative method that starts from z0. Therefore,
the choice of z0 in such a region is not a good one. Both black regions and the regions with different
colors are not suitable to assume the initial guess as z0 when we are required to achieve a particular
root. The most intricate geometry is between the basins of attraction, and this corresponds to the cases
where the method is more demanding with respect to the initial point. We conclude this section with a
remark that the convergence behavior of the proposed techniques depends on the value of parameter
β. The smaller the value of β is, the better the convergence of the method.
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4. Numerical Examples and Discussion

In this section, we implement the special cases NM-1(a–d) and NM-2(a–d) that we have considered
in the previous section of the family (4), to obtain zeros of nonlinear functions. This will not only
illustrate the methods’ practically, but also serve to test the validity of theoretical results. The theoretical
order of convergence is also confirmed by calculating the computational order of convergence (COC)
using the formula (see [27]):

COC =
ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)| .

The performance is compared with some well-known higher order multiple-root solvers such as
the sixth order methods by Geum et al. [8,9], which are expressed below:

First method by Geum et al. [8]: 
yn = xn −m

f (xn)

f ′(xn)

xn+1 = yn −Q f (u, s)
f (yn)

f ′(yn)

(21)

where u =
( f (yn)

f (xn)

) 1
m and s =

( f ′(yn)

f ′(xn)

) 1
m− 1 , and Q f : C2 → C is a holomorphic function in the

neighborhood of origin (0, 0). The authors have also studied various forms of the function Q f leading
to sixth order convergence of (21). We consider the following four special cases of function Q f (u, s) in
the formula (21) and denote the corresponding methods by GKN-1(j), j = a, b, c, d:

(a) Q f (u, s) = m(1 + 2(m− 1)(u− s)− 4us + s2)

(b) Q f (u, s) = m(1 + 2(m− 1)(u− s)− u2 − 2us)

(c) Q f (u, s) =
m + au

1 + bu + cs + dus
,

where a =
2m

m− 1
, b = 2− 2m, c =

2(2− 2m + m2)

m− 1
, and d = −2m(m− 1)

(d) Q f (u, s) =
m + a1u

1 + b1u + c1u2
1

1 + d1s
,

where a1 =
2m(4m4 − 16m3 + 31m2 − 30m + 13

(m− 1)(4m2 − 8m + 7)
, b1 =

4(2m2 − 4m + 3)
(m− 1)(4m2 − 8m + 7)

,

c1 = −4m2 − 8m + 3
4m2 − 8m + 7

, and d1 = 2(m− 1).

Second method by Geum et al. [9]: 

yn = xn −m
f (xn)

f ′(xn)

zn = xn −mG f (u)
f (xn)

f ′(xn)

xn+1 = xn −mK f (u, v)
f (xn)

f ′(xn)

(22)

where u =
( f (yn)

f (xn)

) 1
m and v =

( f (zn)

f (xn)

) 1
m . The function G f : C→ C is analytic in a neighborhood

of 0, and K f : C2 → C is holomorphic in a neighborhood of (0, 0). Numerous cases of G f and K f
have been proposed in [9]. We consider the following four special cases and denote the corresponding
methods by GKN-2(j), j = a, b, c, d:

(a) Q f (u) =
1 + u2

1− u
, K f (u, v) =

1 + u2 − v
1− u + (u− 2)v
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(b) Q f (u) = 1 + u + 2u2, K f (u, v) = 1 + u + 2u2 + (1 + 2u)v

(c) Q f (u) =
1 + u2

1− u
, K f (u, v) = 1 + u + 2u2 + 2u3 + 2u4 + (2u + 1)v

(d) Q f (u) =
(2u− 1)(4u− 1)

1− 7u + 13u2 , K f (u, v) =
(2u− 1)(4u− 1)

1− 7u + 13u2 − (1− 6u)v

Computations were carried out in the programming package Mathematica with multiple-precision
arithmetic. Numerical results shown in Tables 1–4 include: (i) the number of iterations
(n) required to converge to the solution, (ii) the values of the last three consecutive errors
en = |xn+1 − xn|, (iii) the computational order of convergence (COC), and (iv) the elapsed CPU time
(CPU-time). The necessary iteration number (n) and elapsed CPU time are calculated by considering
|xn+1 − xn|+ | f (xn)| < 10−350 as the stopping criterion.

The convergence behavior of the family of iterative methods (4) is tested on the following problems:

Example 1. (Eigenvalue problem). Finding eigenvalues of a large square matrix is one of the difficult tasks in
applied mathematics and engineering. Finding even the roots of the characteristic equation of a square matrix of
order greater than four is a big challenge. Here, we consider the following 6× 6 matrix:

M =



5 8 0 2 6 −6
0 1 0 0 0 0
6 18 −1 1 13 −9
3 6 0 4 6 −6
4 14 −2 0 11 −6
6 18 −2 1 13 −8


.

The characteristic equation of the above matrix (M) is given as follows:

f1(x) = x6 − 12x5 + 56x4 − 130x3 + 159x2 − 98x + 24.

This function has one multiple zero at α = 1 of multiplicity three. We choose initial approximation
x0 = 0.25. Numerical results are shown in Table 1.

Table 1. Comparison of the performance of methods for Example 1.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 5.46× 10−3 2.40× 10−14 1.78× 10−82 6.0000 0.05475
GKN-1(b) 4 5.65× 10−3 3.22× 10−14 1.13× 10−81 6.0000 0.05670
GKN-1(c) 4 5.41× 10−3 2.80× 10−14 5.59× 10−82 6.0000 0.05856
GKN-1(d) 4 7.52× 10−3 4.85× 10−13 3.78× 10−74 6.0000 0.05504
GKN-2(a) 4 2.85× 10−3 1.57× 10−16 4.32× 10−96 6.0000 0.07025
GKN-2(b) 4 9.28× 10−3 1.58× 10−12 4.13× 10−71 6.0000 0.05854
GKN-2(c) 4 7.11× 10−3 1.87× 10−13 6.53× 10−77 6.0000 0.06257
GKN-2(d) 5 1.03× 10−5 3.87× 10−30 1.07× 10−176 6.0000 0.07425
NM-1(a) 4 1.62× 10−3 1.79× 10−19 3.58× 10−131 7.0000 0.04675
NM-1(b) 4 1.62× 10−3 1.85× 10−19 4.63× 10−131 6.9990 0.05073
NM-1(c) 4 1.62× 10−3 1.96× 10−19 5.92× 10−131 6.9998 0.05355
NM-1(d) 4 1.60× 10−3 1.02× 10−19 4.36× 10−133 6.9990 0.05077
NM-2(a) 4 1.37× 10−3 5.56× 10−20 1.02× 10−134 6.9997 0.05435
NM-2(b) 4 1.37× 10−3 5.77× 10−20 1.35× 10−134 6.9998 0.05454
NM-2(c) 4 1.38× 10−3 5.98× 10−20 1.77× 10−134 6.9996 0.05750
NM-2(d) 4 1.34× 10−3 2.97× 10−20 8.00× 10−137 6.9998 0.05175

Example 2. (Kepler’s equation). Let us consider Kepler’s equation:

f2(x) = x− α sin(x)− K = 0, 0 ≤ α < 1 and 0 ≤ K ≤ π.
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A numerical study, for different values of the parameters α and K, has been performed in [28]. As a

particular example, let us take α =
1
4

and K =
π

5
. Consider this particular case four times with same values of

the parameters, then the required nonlinear function is:

f2(x) =
(

x− 1
4

sin x− π

5

)4
.

This function has one multiple zero at α = 0.80926328 . . . of multiplicity four. The required zero is
calculated using initial approximation x0 = 1. Numerical results are displayed in Table 2.

Table 2. Comparison of the performance of methods for Example 2.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 5 1.90× 10−25 2.55× 10−76 1.19× 10−228 3.0018 2.1405
GKN-1(b) 5 1.74× 10−25 1.94× 10−76 5.28× 10−229 3.0018 2.1445
GKN-1(c) 5 2.31× 10−25 4.56× 10−76 6.79× 10−228 3.0018 2.1835
GKN-1(d) 5 1.75× 10−25 1.97× 10−76 5.51× 10−229 3.0018 2.1797
GKN-2(a) 5 3.52× 10−19 5.28× 10−117 1.22× 10−233 1.1923 1.8047
GKN-2(b) 4 9.33× 10−9 6.67× 10−53 8.88× 10−318 6.0000 1.4452
GKN-2(c) 4 3.74× 10−9 9.33× 10−56 2.27× 10−335 6.0000 1.4415
GKN-2(d) 4 1.64× 10−8 2.04× 10−51 7.50× 10−309 6.0000 1.4492
NM-1(a) 3 1.91× 10−1 5.70× 10−10 6.59× 10−70 7.0000 0.9845
NM-1(b) 3 1.91× 10−1 6.02× 10−10 1.04× 10−69 7.0000 0.9650
NM-1(c) 3 1.91× 10−1 6.32× 10−10 1.58× 10−69 7.0000 0.9570
NM-1(d) 3 1.90× 10−1 9.62× 10−11 2.48× 10−76 7.0540 0.8590
NM-2(a) 3 1.91× 10−1 5.70× 10−10 6.59× 10−70 7.0000 0.9842
NM-2(b) 3 1.91× 10−1 6.02× 10−10 1.04× 10−69 7.0000 0.9607
NM-2(c) 3 1.91× 10−1 6.32× 10−10 1.58× 10−69 7.0000 0.9767
NM-2(d) 3 1.91× 10−1 9.68× 10−11 2.63× 10−76 7.0540 0.7460

Example 3. (Manning’s equation). Consider the isentropic supersonic flow around a sharp expansion corner.
The relationship between the Mach number before the corner (i.e., M1) and after the corner (i.e., M2) is given by
(see [3]):

δ = b1/2

(
tan−1

(M2
2 − 1
b

)1/2
− tan−1

(M2
1 − 1
b

)1/2
)
−
(

tan−1(M2
2 − 1)1/2 − tan−1(M2

1 − 1)1/2
)

where b =
γ + 1
γ− 1

and γ is the specific heat ratio of the gas.

As a particular case study, the equation is solved for M2 given that M1 = 1.5, γ = 1.4, and δ = 100.
Then, we have that:

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1
(√ x2 − 1

6

)
− tan−1

(1
2

√
5
6

))
− 11

63
= 0

where x = M2.
Consider this particular case three times with the same values of the parameters, then the required

nonlinear function is:

f3(x) =
(

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1
(√ x2 − 1

6

)
− tan−1

(1
2

√
5
6

))
− 11

63

)3

.

This function has one multiple zero at α = 1.8411027704 . . . of multiplicity three. The required
zero is calculated using initial approximation x0 = 1.5. Numerical results are shown in Table 3.
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Table 3. Comparison of the performance of methods for Example 3.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 2.17× 10−8 4.61× 10−25 1.01× 10−151 6.0000 1.3047
GKN-1(b) 4 2.17× 10−8 4.60× 10−25 2.27× 10−151 6.0000 1.2852
GKN-1(c) 4 2.11× 10−8 4.21× 10−25 1.03× 10−151 6.0000 1.3203
GKN-1(d) 4 1.77× 10−8 2.48× 10−25 2.68× 10−151 6.0000 1.2970
GKN-2(a) 4 4.83× 10−7 1.36× 10−41 6.84× 10−249 6.0000 1.2382
GKN-2(b) 4 4.90× 10−7 2.89× 10−41 1.21× 10−246 6.0000 1.2440
GKN-2(c) 4 4.88× 10−7 2.22× 10−41 1.98× 10−247 6.0000 1.2422
GKN-2(d) 4 4.89× 10−7 3.22× 10−41 2.62× 10−246 6.0000 1.2577
NM-1(a) 4 7.85× 10−9 1.56× 10−60 0 7.0000 1.0274
NM-1(b) 4 7.85× 10−9 1.58× 10−60 0 7.0000 1.0272
NM-1(c) 4 7.89× 10−9 1.60× 10−60 0 7.0000 1.0231
NM-1(d) 4 7.84× 10−9 1.31× 10−60 0 7.0000 1.0235
NM-2(a) 4 7.69× 10−9 1.35× 10−60 0 7.0000 1.0398
NM-2(b) 4 7.69× 10−9 1.37× 10−60 0 7.0000 1.0742
NM-2(c) 4 7.69× 10−9 1.38× 10−60 0 7.0000 1.0467
NM-2(d) 4 7.68× 10−9 1.13× 10−60 0 7.0000 1.0192

Example 4. Next, consider the standard nonlinear test function:

f4(x) =
(
−
√

1− x2 + x + cos
πx
2

+ 1
)4

which has a multiple zero at α = −0.72855964390156 . . . of multiplicity four. Numerical results are shown in
Table 4 with initial guess x0 = −0.5.

Table 4. Comparison of the performance of methods for Example 4.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 7.20× 10−6 1.80× 10−30 4.39× 10−178 6.0000 0.1017
GKN-1(b) 4 7.21× 10−6 1.85× 10−30 5.32× 10−178 5.9999 0.0977
GKN-1(c) 4 7.42× 10−6 2.52× 10−30 3.84× 10−177 5.9999 0.1055
GKN-1(d) 4 8.83× 10−6 1.30× 10−29 1.34× 10−172 5.9999 0.1015
GKN-2(a) 4 2.15× 10−5 8.22× 10−28 2.60× 10−162 5.9999 0.1132
GKN-2(b) 4 2.39× 10−5 4.22× 10−27 1.27× 10−157 5.9999 0.1052
GKN-2(c) 4 2.33× 10−5 2.57× 10−27 4.61× 10−159 5.9999 0.1055
GKN-2(d) 4 2.43× 10−5 5.31× 10−27 5.83× 10−157 5.9999 0.1095
NM-1(a) 4 2.87× 10−6 1.03× 10−37 8.12× 10−258 6.9999 0.0720
NM-1(b) 4 2.88× 10−6 1.06× 10−37 9.60× 10−258 6.9999 0.0724
NM-1(c) 4 2.88× 10−6 1.08× 10−37 1.13× 10−257 6.9999 0.0722
NM-1(d) 4 2.83× 10−6 7.39× 10−38 6.09× 10−259 6.9999 0.0782
NM-2(a) 4 2.80× 10−6 8.55× 10−38 2.15× 10−258 6.9999 0.0732
NM-2(b) 4 2.80× 10−6 8.74× 10−37 2.54× 10−258 6.9999 0.0723
NM-2(c) 4 2.80× 10−6 8.93× 10−38 3.00× 10−258 6.9999 0.0746
NM-2(d) 4 2.76× 10−6 6.09× 10−38 1.56× 10−259 6.9999 0.0782

Example 5. Consider the standard function, which is given as (see [8]):

f5(x) =
(

x−
√

3x3 cos
πx
6

+
1

x2 + 1
− 11

5
+ 4
√

3
)
(x− 2)4.

The multiple zero of function f5 is α = 2 with multiplicity five. We choose the initial approximation
x0 = 1.5 for obtaining the zero of the function. Numerical results are exhibited in Table 5.
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Table 5. Comparison of the performance of methods for Example 5.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 1.20× 10−5 6.82× 10−31 2.31× 10−182 6.0000 0.5820
GKN-1(b) 4 1.20× 10−5 6.86× 10−31 2.40× 10−182 6.0000 0.5860
GKN-1(c) 4 1.21× 10−5 7.72× 10−31 5.18× 10−182 6.0000 0.5937
GKN-1(d) 4 1.58× 10−5 1.00× 10−29 6.51× 10−175 6.0000 0.5832
GKN-2(a) 4 3.17× 10−5 1.64× 10−28 3.21× 10−168 6.0000 0.7120
GKN-2(b) 4 3.50× 10−5 6.90× 10−28 4.05× 10−164 6.0000 0.6992
GKN-2(c) 4 3.41× 10−5 4.42× 10−28 2.09× 10−165 6.0000 0.6915
GKN-2(d) 4 3.54× 10−5 8.45× 10−28 1.56× 10−163 6.0000 0.6934
NM-1(a) 4 2.35× 10−6 1.81× 10−40 2.92× 10−279 7.0000 0.3712
NM-1(b) 4 2.35× 10−6 1.84× 10−40 3.31× 10−279 7.0000 0.3360
NM-1(c) 4 2.35× 10−6 1.87× 10−40 3.74× 10−279 7.0000 0.3555
NM-1(d) 4 2.33× 10−6 1.41× 10−40 4.23× 10−280 7.0000 0.3633
NM-2(a) 4 2.25× 10−6 1.34× 10−40 3.65× 10−280 7.0000 0.3585
NM-2(b) 4 2.25× 10−6 1.37× 10−40 4.15× 10−280 7.0000 0.3592
NM-2(c) 4 2.25× 10−6 1.39× 10−40 4.70× 10−280 7.0000 0.3791
NM-2(d) 4 2.24× 10−6 1.05× 10−40 5.20× 10−281 7.0000 0.3467

Example 6. Consider another standard function, which is given as:

f6(x) = sin
( xπ

3

)(
ex2−2x−3 − cos(x− 3) + x2 − 9

)(27e2(x−3) − x3

28(x3 + 1)
+ x cos

xπ

6

)
which has a zero α = 3 of multiplicity three. Let us choose the initial approximation x0 = 3.5 for obtaining the
zero of the function. Numerical results are shown in Table 6.

Table 6. Comparison of the performance of methods for Example 6.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 5.04× 10−4 6.20× 10−22 2.15× 10−129 6.0000 3.8670
GKN-1(b) 4 9.53× 10−4 4.36× 10−20 3.98× 10−118 6.0000 4.1287
GKN-1(c) 4 1.37× 10−4 2.87× 10−25 2.43× 10−149 5.9999 3.8866
GKN-1(d) 4 2.53× 10−3 5.53× 10−17 6.03× 10−99 6.0000 4.5195
GKN-2(a) 5 4.22× 10−7 8.51× 10−41 9.95× 10−81 5.4576 5.5310
GKN-2(b) 4 7.24× 10−3 4.58× 10−14 2.94× 10−81 6.0000 3.9647
GKN-2(c) 4 4.43× 10−3 1.12× 10−15 2.90× 10−91 5.9995 3.7772
GKN-2(d) 8 8.78× 10−10 1.75× 10−55 1.09× 10−329 6.0000 6.2194
NM-1(a) 4 8.78× 10−3 1.35× 10−15 2.76× 10−105 7.0000 1.9372
NM-1(b) 4 3.50× 10−6 4.38× 10−41 2.10× 10−285 7.0000 1.5625
NM-1(c) 4 3.57× 10−6 5.15× 10−41 6.69× 10−285 7.0000 1.5662
NM-1(d) 4 1.83× 10−6 2.66× 10−43 3.70× 10−301 7.0000 1.5788
NM-2(a) 4 3.42× 10−6 3.63× 10−41 5.51× 10−286 7.0000 1.5900
NM-2(b) 4 3.50× 10−6 4.36× 10−41 2.05× 10−285 7.0000 1.5585
NM-2(c) 4 3.57× 10−6 5.13× 10−41 6.53× 10−285 7.0000 1.6405
NM-2(d) 4 1.82× 10−6 2.62× 10−43 3.30× 10−301 7.0000 1.3444

Example 7. Finally, considering yet another standard function:

f7(x) =
(

cos(x2 + 1)− x log(x2 − π + 2) + 1
)3
(x2 + 1− π).

The zero of function f7 is α = 1.4632625480850 . . . with multiplicity four. We choose the initial
approximation x0 = 1.3 to find the zero of this function. Numerical results are displayed in Table 7.
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Table 7. Comparison of the performance of methods for Example 7.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 6.61× 10−5 8.80× 10−25 4.90× 10−144 6.0000 1.7305
GKN-1(b) 4 6.87× 10−5 1.15× 10−24 2.57× 10−143 6.0000 1.7545
GKN-1(c) 4 6.35× 10−5 7.67× 10−25 2.38× 10−144 6.0000 1.7150
GKN-1(d) 4 1.15× 10−4 8.83× 10−23 1.82× 10−131 6.0000 1.7852
GKN-2(a) 4 5.57× 10−6 8.57× 10−32 1.14× 10−186 6.0000 1.6405
GKN-2(b) 4 1.27× 10−4 1.23× 10−22 1.02× 10−130 6.0000 1.7813
GKN-2(c) 4 7.49× 10−5 2.89× 10−24 9.62× 10−141 6.0000 1.7382
GKN-2(d) 4 1.18× 10−3 9.34× 10−17 2.31× 10−95 6.0000 1.9150
NM-1(a) 4 5.19× 10−5 1.05× 10−28 1.42× 10−194 7.0000 1.0077
NM-1(b) 4 5.29× 10−5 1.23× 10−28 4.63× 10−194 7.0000 0.9062
NM-1(c) 4 5.37× 10−5 1.41× 10−28 1.23× 10−193 7.0000 1.0040
NM-1(d) 4 2.73× 10−5 7.07× 10−31 5.57× 10−210 7.0000 1.0054
NM-2(a) 4 5.14× 10−5 9.79× 10−29 8.91× 10−195 7.0000 0.8867
NM-2(b) 4 5.24× 10−5 1.16× 10−28 3.02× 10−194 7.0000 0.9802
NM-2(c) 4 5.33× 10−5 1.34× 10−28 8.30× 10−194 7.0000 0.9412
NM-2(d) 4 2.60× 10−5 5.06× 10−31 5.39× 10−211 7.0000 0.9142

It is clear from the numerical results shown in Tables 1–7 that the accuracy in the successive
approximations increases as the iterations proceed. This shows the stable nature of the methods.
Moreover, the present methods like that of existing methods show consistent convergence behavior.
We display the value zero of |en| in the iteration at which |xn+1 − xn|+ |F(xn)| < 10−350. The values
of the computational order of convergence exhibited in the penultimate column in each table verify the
theoretical order of convergence. However, this is not true for the existing methods GKN-1(a–d) and
GKN-2(a) in Example 2. The entries in the last column in each table show that the new methods use
less computing time than the time used by existing methods. This verifies the computationally-efficient
nature of the new methods. Similar numerical tests, performed for many problems of different types,
have confirmed the aforementioned conclusions to a large extent.

We conclude the analysis with an important problem regarding the choice of initial approximation
x0 in the practical application of iterative methods. The required convergence speed of iterative
methods can be achieved in practice if the selected initial approximation is sufficiently close to the root.
Therefore, when applying the methods for solving nonlinear equations, special care must be given
for guessing close initial approximations. Recently, an efficient procedure for obtaining sufficiently
close initial approximation has been proposed in [29]. For example, the procedure when applied to the
function of Example 1 in the interval [0, 1.5] using the statements:

f[x_ ]=xˆ 6-12xˆ 5+56xˆ 4-130xˆ 3+159xˆ 2-98x+24; a=0; b=1.5;
k=1; x0=0.5*(a+b+Sign[f[a]]*NIntegrate[Tanh[k *f[x]],{x,a,b}])

in programming package Mathematica yields a close initial approximation x0 = 1.04957 to the root
α = 1.

5. Conclusions

In the present work, we have designed a class of seventh order derivative-free iterative techniques
for computing multiple zeros of nonlinear functions, with known multiplicity. The analysis of
convergence shows the seventh order convergence under standard assumptions for the nonlinear
function, the zeros of which we have searched. Some special cases of the class were stated. They were
applied to solve some nonlinear equations and also compared with existing techniques. Comparison
of the numerical results showed that the presented derivative-free methods are good competitors of
the existing sixth order techniques that require derivative evaluations. The paper is concluded with
the remark that unlike the methods with derivatives, the methods without derivatives are rare in the
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literature. Moreover, such algorithms are good options to Newton-like iterations in the situation when
derivatives are difficult to compute or expensive to obtain.
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