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Abstract: Let q ≥ 2 be a positive integer and let (aj), (bj), and (cj) (with j a non-negative integer) be
three given C- valued and q-periodic sequences. Let A(q) := Aq−1 · · · A0, where Aj is as is given
below. Assuming that the "monodromy matrix" A(q) has at least one multiple eigenvalue, we prove
that the linear scalar recurrence xn+3 = anxn+2 + bnxn+1 + cnxn, n ∈ Z+ is Hyers-Ulam stable if
and only if the spectrum of A(q) does not intersect the unit circle Γ := {w ∈ C : |w| = 1}. Connecting
this result with a recently obtained one it follows that the above linear recurrence is Hyers-Ulam
stable if and only if the spectrum of A(q) does not intersect the unit circle.
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1. Introduction

An open problem, arising naturally in [1], is a problem referring to the relationship between
the Hyers-Ulam stability of a certain linear recurrence of order n with periodic coefficients and the
exponential dichotomy of the monodromy matrix associated to the recurrence. The corresponding
problem for second-order recurrences was completed in [2], where second-order linear differential
equations were also analyzed.

Here, we continue the analysis started in [3] and, finally, we complete the discussion raised in [1]
for periodic linear recurrences of order three. Thus, this article can be seen as a new link in the chain of
articles [1–5] which address the Hyers-Ulam stability of linear scalar recurrences. The connections of
this topic to those existing in the literature was already presented in [3], so we do not present them
again here.

It seems that the methods used here can be extended to recurrences of higher order in Banach
spaces and, hopefully, this will be considered in the future; the autonomous case was analyzed
in [6–9]. For developments concerning differential equations with impulses see, [10–13], and the
references therein.

2. Definitions and Notations

We use the same notation as in [3]. Recall that the entry mij (of a matrix M) is denoted by [M]ij,
and the uniform norm of a Cm-valued and bounded sequence g = (gn) is defined and denoted by
‖g‖∞ := supj∈Z+

‖gj‖. Let ε > 0 be given. We recall (see also [3]):
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Definition 1. A scalar valued sequence (yj) is called an ε-approximative solution of the linear recurrence

xn+3 = anxn+2 + bnxn+1 + cnxn, n ∈ Z+ (1)

if
|yn+3 − anyn+2 − bnyn+1 − cnyn| ≤ ε, ∀n ∈ Z+. (2)

Definition 2. ([3]) The recurrence (1) is Hyers-Ulam stable if there exists a positive constant L such that, for
every ε > 0 and ε-approximative solution y = (yj) of (1), there exists an exact solution θ = (θj) of (1) such
that ‖y− θ‖∞ ≤ Lε.

Obviously, any ε-approximative solution of the recurrence (1) can be seen as a solution of the
non-homogeneous equation

xn+3 − anxn+2 − bnxn+1 − cnxn = fn+1, n ∈ Z+, (3)

for some scalar valued sequence ( fn) with f0 = 0 and ‖( fk)‖∞ ≤ ε.
We denote the solution of the nonhomogeneous linear recurrence (3) initiated from Y0 by

(φ(n, Y0, ( fk)).
The solution of the system

Xn+1 = AnXn + Fn+1, n ∈ Z+, (4)

initiated from Z0, where Xn :=
(

zn vn wn

)T
∈ C3, Fn =

(
0 0 fn

)T
, and

An :=

 0 1 0
0 0 1
cn bn an

 , (5)

is given by
Φn := Φ(n, Z0, (Fk)) = UA(n, 0)Z0 + ∑n

k=1 UA(n, k)Fk. (6)

Denoting by (ϕ(n, Z0, ( fk)) the solution of (1), obviously we have

ϕn := ϕ(n, Z0, ( fk)) =
[
UA(n, 0)Z0 + ∑n

k=1 UA(n, k)Fk

]
11

(7)

and Φn =
(

ϕn ϕn+1 ϕn+2

)T
.

Here, A is the family of all matrices Aj (with j ∈ Z+, where Aj is given in (5)) and the matrix
UA(n, k) is given by UA(n, k) = An−1 · · · Ak, n > k and UA(n, n) = I3. The family UA := {UA(n, k) :
n ≥ k ∈ Z+} will be called the evolution family associated to A.

3. Background and the Main Result

The next two propositions appear (in a slightly different form) in [14].

Proposition 1. Suppose that the eigenvalues x, y, and z of the matrix A ∈ M(3,C) verify the condition

x = y = z 6= 0. (8)

Then,
An = xn(n2B + nC + I3) for all n ∈ Z+, (9)
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where
B =

1
2x2 (A− xI3)

2 (10)

and
C = − 1

2x2 (A− xI3)(A− 3xI3). (11)

Proposition 2. If the characteristic polynomial of the matrix A is

pA(λ) = (λ− x)2(λ− y), with x 6= y and x 6= 0, (12)

then its natural powers are given by

An = xn(nB + C) + ynD, n ∈ Z+, (13)

where B, C, and D are given by

B =
1

x(x− y)
(A− xI3)(A− yI3), (14)

C = − 1
(x− y)2 [A− (2x− y)I3](A− yI3), (15)

D =
1

(x− y)2 (A− xI3)
2. (16)

Remark 1. Taking into account that x and y are different roots of the minimal polynomial mA (of A), the
matrices C in (15) and D in (16) are not the zero matrix.

Let q, (aj), (bj), and (cj) be as above. Recall that

A(q) := Aq−1 · · · A0, where Aj :=

 0 1 0
0 0 1
cj bj aj

 , j ∈ Z+. (17)

Our main result reads as follows.

Theorem 1. Assume that either of the conditions (8) or (12) (concerning the spectrum of A(q)) are fulfilled.
The linear recurrence

xn+3 = anxn+2 + bnxn+1 + cnxn, n ∈ Z+ (18)

is Hyers-Ulam stable if and only if the spectrum of A(q) does not intersect the unit circle.

Combining this result with ([3], Theorem 3.1) we get the following Corollary that completes an
open problem, raised in [1] for the particular case n = 3.

Corollary 1. The linear recurrence (18) is Hyers-Ulam stable if and only if the spectrum of A(q) does not
intersect the unit circle.

Remark 2. Motivated by the applications suggested in [15], we are also interested in studying the Hyers-Ulam
stability of the linear recurrence in (18), but with Z instead of Z+. This can be seen as a symmetrization of the
result in Corollary 1. Next, we summarize some ideas, but do not give all the details. For simplicity, we assume
that cj 6= 0 for all j ∈ Z.

It is well-known that the equivalent statements of Corollary 1 are also equivalent to the fact that the system
of recurrences in C3
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
zn+1 = vn

vn+1 = wn

wn+1 = cnzn + bnvn + anwn n ∈ Z+

, (19)

possesses a discrete dichotomy on Z+; see ([1], Proposition 1.2, Theorem 2.1) for a more general framework of
this result.

A new challenge for us is to see if the following three statements (presented in formal terms) are equivalent.

1. The linear recurrence

xn+3 = anxn+2 + bnxn+1 + cnxn, n ∈ Z− := {· · · ,−2,−1, 0} (20)

is Hyers-Ulam stable on Z−.

2. The "symmetric" linear system
zn−1 = − bn

cn
zn − an

cn
vn +

1
cn

wn

vn−1 = zn

wn−1 = vn, n ∈ Z−
(21)

possesses a discrete dichotomy on Z−.

3. The spectrum of the monodromy matrix associated with (21) does not intersect the unit circle.
It seems that all these statements are also equivalent to the fact that the spectrum of the monodromy matrix

associated with (19) does not intersect the unit circle.

The main ingredient in the proof in Section 3 of the “if” part of the Theorem 1 is the following
technical Lemma, whose proof is presented in the next section.

Lemma 1. Assume that either of the conditions (8) or (12) (concerning the spectrum of A(q)) are fulfilled. If the
spectrum of A(q) intersects the unit circle then, for each ε > 0, there exists a C-valued sequence ( f j)j∈Z+

with
f0 = 0 and ‖( f j)‖∞ ≤ ε such that, for every initial condition Z0 = (x0, y0, z0)

T ∈ C3, the C-valued sequence([
UA(n, 0)Z0 + ∑n

k=1 UA(n, k)Fk

]
11

)
n∈Z+

(22)

(with Fk = (0, 0, fk)
T), is unbounded.

4. Proofs

Proof. Proof of Lemma 1. We use Propositions 1 and 2, with A(q) instead of A. Denote by x, y, and z
the eigenvalues of A(q).

Case I. Let x = y = z and |x| = 1. We use the notation of the previous sections.
I.1. When B = (brs)r,s∈{1,2,3} 6= 03, there exists a pair (i, j) with i, j ∈ {1, 2, 3} such that bij 6= 0.

We analyze three cases:
I.1.1. Let j = 3 and b13 6= 0. Set

Fk = F1
k :=

{
xk/qu0, if k = nq, n ∈ Z+

0, if k is not a multiple of q,
(23)

where u0 :=
(

0 0 c0

)T
and c0 is a given nonzero complex scalar with |c0| < ε. Successively, we

have

Φnq = UA(nq, 0)Z0 + ∑nq
k=1 UA(nq, k)Fk
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= UA(nq, 0)Z0 + ∑n
j=1 UA(nq, jq)Fjq

= xn
(

n2B + nC + I3

)
Z0 + ∑n

j=1 xjxn−j
[
(n− j)2B + (n− j)C + I3

]
u0

= xn
(

n2B + nC + I3

)
Z0 + xnBu0

n−1

∑
j=0

j2 + xnCu0

n−1

∑
j=0

j +
n

∑
j=1

xnu0

=
(n− 1)n(2n− 1)

6
xnBu0 + xn

[(
n2B + nC + I3

)
Z0 +

(n− 1)n
2

Cu0 + nu0

]
. (24)

On the other hand,∣∣∣∣[ (n− 1)n(2n− 1)
6

xnBu0

]
11

∣∣∣∣ = (n− 1)n(2n− 1)
6

|b13c0| → ∞ as n→ ∞. (25)

Thus, (24) and (25) yield the unboundedness of the sequence (φn). When b23 6= 0 or b33 6= 0,
arguing as above, we can show that the sequences (ϕn+1) and (ϕn+2) are unbounded, and that then
(ϕn) is unbounded as well.

I.1.2. Let j = 2 and b12 6= 0. Set

Fk = F2
k :=

{
xk/q Aq−1u0, if k = nq
0, if k is not a multiple of q,

(26)

where u0 and c0 are taken as above. We obtain

Φnq = A(q)nZ0 + ∑n
j=1 xj A(q)n−j Aq−1u0,

which leads to
ϕnq =

[
A(q)nZ0 + ∑n

j=1 xj A(q)n−j Aq−1u0

]
11

=

[
xn (n− 1)n(2n− 1)

6
BAq−1u0

]
11

(27)

+

[
xnn2BZ0 + xnC

(
nZ0 +

(n− 1)n
2

Aq−1u0

)
+ xn (Z0 + nAq−1u0

)]
11

.

For our purposes, it is enough to prove that the sequence (whose general term is given in (27)) is
unbounded. Indeed, we have∣∣∣∣[xn (n− 1)n(2n− 1)

6
BAq−1u0

]
11

∣∣∣∣ = (n− 1)n(2n− 1)
6

|b12c0| → ∞,

as n→ ∞.
The cases when b22 6= 0 and b23 6= 0 can be treated in a similar manner, and we omit the details.
I.1.3. Let j = 1 and b11 6= 0. Set

Fk = F3
k :=

{
xk/q Aq−2 Aq−1u0, if k = nq
0, if k is not a multiple of q,

(28)

with u0 and c0 as above.
As in the previous cases, we obtain that

φnq =

[
xnB

(
n2Z0 +

(n− 1)n(2n− 1)
6

Aq−2 Aq−1u0

)]
11

,
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and so (φnq) is unbounded, as ∣∣∣∣[xn (n− 1)n(2n− 1)
6

BAq−2 Aq−1u0

]
11

∣∣∣∣
=

(n− 1)n(2n− 1)
6

|b11c0| → ∞ as n→ ∞.

I.2. Let B = 03 and C 6= 03 be of the form

C =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 .

Let cij 6= 0, for some pair (i, j) with i, j ∈ {1, 2, 3}. Then,

A(q)n = xn (nC + I3) for all n ∈ Z+.

We have to consider the following three steps:
I.2.1. Let j = 3 and c13 6= 0. Set Fk = F1

k . As above, we have

Φnq = xnC
(

Z0 +
(n− 1)n

2
xnCu0

)
+ xn (Z0 + nu0) .

Thus,

ϕn =

[
xn (n− 1)n

2
Cu0

]
11
+

[xnCZ0 + xn (Z0 + nu0)]11 .

The sequence (φn) is unbounded, since[
xn (n− 1)n

2
Cu0

]
11

=
(n− 1)n

2
|c13c0| → ∞ as n→ ∞.

When c23 6= 0 or c33 6= 0, we can argue as in the previous cases.
I.2.2. Let j = 2 and c12 6= 0. Set Fk = F2

k . Then, we obtain

Φnq = A(q)nZ0 + ∑n
j=1 xj A(q)n−j Aq−1u0 ,

which leads to

ϕnq =

[
(n− 1)n

2
CAq−1u0

]
11

+
[
xnCZ0 + xn (Z0 + nAq−1u0

)]
11 ,

and the sequence (φnq) is unbounded because∣∣∣∣[xn (n− 1)n
2

CAq−1u0

]
11

∣∣∣∣ =
n(n− 1)

2
|c12c0| → ∞ as n→ ∞.

When c22 6= 0 or c23 6= 0, we can proceed in a similar manner.
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I.2.3. let j = 1 and c11 6= 0. Set Fk = F3
k . As in the previous cases, we obtain∣∣∣∣[xn (n− 1)n
2

CAq−2 Aq−1u0

]
11

∣∣∣∣ =
n(n− 1)

2
|c11c0| → ∞ as n→ ∞.

Therefore, (ϕn) is unbounded.
I.3. When B = 03 and C = 03, then A(q)n = xn I3 for all n ∈ Z+. Set Fk = F1

k . Then,

Φnq = A(q)nZ0 + ∑n
j=1 xj A(q)n−ju0

= xnZ0 + ∑n
j=1 xjxn−ju0

= xnZ0 + nxnu0.

It is enough to prove that the sequence ([nxnu0]11)n is unbounded, and note that

|[nxnu0]11| = n |c0| → ∞ as n→ ∞.

Case II. When the characteristic polynomial pA(q)(λ) is given by

pA(q)(λ) = (λ− x)2(λ− y), x 6= y.

Let λ be an eigenvalue of A(q) and let Pλ be the Riesz projection associated to A(q) and λ; that is,

Pλ =
1

2πi

∫
C(λ,r)

(wI3 − A(q))−1 dw,

where C(λ, r) is the circle centered at λ of radius r, and r is small enough such that all other eigenvalues
of A(q) are located outside of the circle. Using the Dunford integral calculus (see [16]) and the Cauchy
formula (see, e.g., [17], Theorem 10.15) it is easy to show that P2

x = Px and PxPy = PyPx = 03.
On the other hand, by Proposition 2 and the Spectral Decomposition Theorem (see, e.g., [18],

Theorem 1), for every v ∈ C3, one has

A(q)nv = xn (nB + C) v + ynDv
= xn (nB + C) Pxv + ynDPyv

,

and so Px A(q)n = xn(nB + C)Px = xn(nB + C) and Py A(q)n = ynDPy = ynD for every n ∈ Z+.
In the following, we will analyze three cases:
II.1. When |x| = 1 and |y| < 1.
II.1.1. When B 6= 03, let us first assume that b13 6= 0 and set Fk = F1

k . Then,

PxΦnq = Px A(q)nZ0 + ∑n
j=1 xjPx A(q)n−ju0

= xn (nB + C) Z0 + ∑n
j=1 xjxn−j [(n− j)B + C] u0

= xn (nB + C) Z0 + xnBu0 ∑n−1
j=0 j + ∑n−1

j=0 xnCu0

=
(n− 1)n

2
xnBu0 + xn (nB + C) Z0 + nxnCu0.

It is enough to prove that
([

PxΦnq
]

11

)
n is unbounded; it follows because
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∣∣∣∣[ (n− 1)n
2

xnBu0

]
11

∣∣∣∣ = (n− 1)n
2

|b13c0| → ∞ as n→ ∞.

The cases b23 6= 0 and b33 6= 0 can be treated in a similar manner, and we omit the details.
II.1.2. When b12 6= 0, set Fk = F2

k . Then,

Φnq = A(q)nZ0 + ∑n
j=1 xj A(q)n−j Aq−1u0,

which yields

PxΦnq =
(n− 1)n

2
xnBAq−1u0 + xn (nB + C) Z0 + nxnCAq−1u0.

Therefore, the sequence
([

PxΦnq
]

11

)
n is unbounded, as∣∣∣∣[ (n− 1)n

2
xnBAq−1u0

]
11

∣∣∣∣ = (n− 1)n
2

|b12c0| → ∞ as n→ ∞.

The cases b22 6= 0 and b32 6= 0 can be treated in a similar manner, and we omit the details.
The case when b11 6= 0 is similar to Case I.1.3., so we omit the details.
II.1.2. Let B = 03. As C 6= 03 (see Remark 1), we can proceed in a similar manner as in Case I.2..
II.2. When |x| = |y| = 1.
II.2.1. Let |x| = |y| = 1 and B = 03. Let Fk = F1

k and u0 be as defined above. An easy calculation
yields

Φnq = xnnCu0 + xnCZ0 + ynDZ0 +

[
xn − yn

x− y
+ xn

]
Du0. (29)

Note that the last three terms in (29) are bounded (as functions of n). Now, if [C]13 6= 0 then
|[xnnCu0]11| = n|[C]13c0| → ∞ as n → ∞, and (29) yields the unboundedness of the sequence
(ϕnq). As C 6= 03, at least one of its entries is nonzero and we arrive at the same conclusion by arguing
in a similar manner (such arguments were given above a few times, so we omit the details).

II.2.2. When |x| = |y| = 1 and B 6= 03, it can be treated like in Case II.1.1..
II. 3. When |x| = 1 and |y| > 1. Taking into account that D is not the zero matrix (of order 3), we

can choose a sequence (Fk) and a pair (i, j) such that the sequence ([PyΦ(nq)]i,j)n is unbounded (we
omit the details).

The proof of Lemma 1 is now complete.

Proof. Proof of Theorem 1. Necessity: We argue by contradiction. Suppose that σ(A(q)) intersects the
unit circle. Let Y0 and X0 be as in [[3], Remark 1]. From Lemma 1, it follows that the sequence in (22)
with (Y0 − X0) instead of Z0 is unbounded and this contradicts the Hyers-Ulam stability property of
the recurrence given in (18).

Sufficiency: Can be done exactly as in the proof of the implication 2⇒ 1 in ([3], Theorem 1); we
omit the details.

5. Examples

The following example illustrates our theoretical result.

Example 1. Let consider the linear recurrence of order 3

xn+3 = sin
2nπ

3
xn+2 + cos

2nπ

3
xn+1 + a tan

2nπ

3
xn, n ∈ Z+. (30)

We find the values of the real parameter a, such that the recurrence in (30) is Hyers-Ulam stable. With the
above notation, we have:
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A0 =

 0 1 0
0 0 1
0 1 0

 , A1 =

 0 1 0
0 0 1

−a
√

3 − 1
2

√
3

2

 ,

and

A2 =

 0 1 0
0 0 1

a
√

3 − 1
2 −

√
3

2

 .

Now, the monodromy matrix associated to (30) is

A(3) = A2 A1 A0 =


0 1 0

0
√

3
(

1
2 − a

)
− 1

2

0 − 5
4 + 3

2 a
√

3
(

a + 1
4

)
 ,

and the characteristic equation associated to A(3) is

λ3 − 3

√
3

4
λ2 +

(
−3a2 +

3
2

a− 1
4

)
λ = 0. (31)

Obviously, all roots of the equation (31) are real; one of them being 0. An easy calculation (which is omitted)
shows that the recurrence (30) is Hyers-Ulam stable if and only if

a 6= 1
2

(
1
2
∓
√√

3− 17
12

)
.

Remark 3. We thank the anonymous reviewers for their comments and suggestions on the original version of
the manuscript that allowed us to improve it. In particular, the suggestion to complement the results presented
here with the appropriate variants for differential equations will be an important goal for us in future research.
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