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Abstract: A new proper generalization of metric called as θ-metric is introduced by Khojasteh
et al. (Mathematical Problems in Engineering (2013) Article ID 504609). In this paper, first we
prove the Caristi type fixed point theorem in an alternative and comparatively new way in the
context of θ-metric. We also investigate two θ-metrics on CB(X) (family of nonempty closed and
bounded subsets of a set X). Furthermore, using the obtained θ-metrics on CB(X), we prove two
new fixed point results for multi-functions which generalize the results of Nadler and Lim type in
the context of such spaces. In order to illustrate the usability of our results, we equipped them with
competent examples.
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1. Introduction

A wide range of pertinence made fixed point theory one of the most attractive areas of research in
nonlinear analysis and hence mathematics. Fixed point results are the indispensable aid for showing
the existence of solutions, not only in mathematical sciences, but also in game theory and economics.
Kakutani [1] provided one such standard tool by means of a generalized form of Brouwer’s fixed point
theorem, which is used to prove the existence of Nash equilibrium in non-cooperative games. In order
to study the applications of fixed point theorems and their equivalence to other results like intersection
theorems, we refer the readers to a monograph of Border [2].

One of the most celebrated and applicable results in nonlinear analysis is Banach Contraction
Principle (BCP), which inspired many mathematicians to work in fixed point theory. A number of
generalizations of BCP have been obtained by many fixed point theorists in order to achieve the
likelihood of more general fixed point results for mappings (both single and multivalued) in metric
type spaces (cf. Boyd and Wong [3], Meir and Keeler [4], Geraghty [5], Lim [6], Khojasteh et al. [7],
etc.). The famous version of BCP for multivalued mappings is obtained by Nadler [8] using the notion
of the Pompeiu–Hausdorff metric. The fixed point theorem of Nadler is generalized by many authors
in complete metric spaces, one of which is given by Pathak et al. in [9] using the notion ofH+ metric.

An interesting and fruitful generalization of the Banach Contraction Principle (BCP) on a complete
metric space is the Caristi fixed point theorem (Caristi’s FPT) [10]. Caristi FPT is equivalent to the
Ekeland’s variational principle and Takahashi’s nonconvex minimization theorem [11,12]. Weston [13]
proved the equivalence of the conclusion of Caristi’s fixed point theorem with metric completeness.
The result of Caristi has been extended and generalized in various ways (cf. [14,15] and references
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therein). Caristi’s [10] fixed point theorem can be stated as follows: for a mapping T on a complete
metric space (X, d), if there exists a lower semicontinuous function ψ from X into [0, ∞) such that

d(x, Tx) ≤ ψ(x)− ψ(Tx)

for every x ∈ X, then T has a fixed point.
On the other hand, in an effort to generalize BCP, which holds in all complete metric spaces, to a

wide class of spaces, Khojasteh et al. [16] coined the notion of θ-metric. This proper generalization of
metric is accomplished by replacing the triangular inequality with a weaker assumption. The authors
in [16] also investigated the topology induced by θ-metric and presented some topological properties
of this space. In addition to this, they characterized the BCP and Caristi type fixed point theorems in
the setting of θ-metric space.

In this article, we prove the Caristi fixed point theorem in the θ-metric setting with a novel
approach of proof. In addition to this, we investigateHθ andH+

θ metrics along the lines of [9,17,18].
Moreover, we prove some fixed point results for multivalued mappings along with illustrative
examples.

The flow of work in this article is as follows: Section 2 presents some of the basic concepts. First,
in Section 3, we prove the Caristi type fixed point theorems in an alternative and comparatively new
way in the context of θ-metric. We also investigate two θ-metrics on CB(X) in Section 4. Furthermore,
fixed point theorems for multifunction in the context of θ-metric spaces are proved in Section 5, which
generalize various metric fixed point results. We equipped this article with competent examples.

2. Preliminaries

Let R+ = [0,+∞) and N be the set of all natural numbers. Let us begin with the
following definition.

Definition 1 ([16]). Let mapping θ : R+×R+ → R+ be continuous in both variables and Im(θ) = {θ(u, v) :
u ≥ 0, v ≥ 0}. Then, θ is said to be a B-action if and only if the following hold:

(i) θ(0, 0) = 0 and θ(v, u) = θ(u, v) for all v, u ≥ 0,
(ii)

θ(u, v) < θ(p, q) if


either u < p, v ≤ q,

or u ≤ p, v < q,

(iii) for each r ∈ Im(θ) and for each u ∈ [0, r], there exists v ∈ [0, r] such that θ(v, u) = r,
(iv) θ(u, 0) ≤ u, for all u > 0.

The set of all B-actions is denoted by Υ.

Example 1 ([16]). The following functions are examples of B-action:

(i) θ(v, u) = k(v + u), where k ∈ (0, 1],
(ii) θ(v, u) = k(v + u + vu), where k ∈ (0, 1],
(iii) θ(v, u) = vu/(1 + vu),
(iv) θ(v, u) = v + u +

√
vu.

In the following result, the notion of inverse B-action η is brought into focus.

Lemma 1 ([16]). Let θ be a B-action. For each r ∈ Im(θ) and s ∈ B = [0, r], there exist t ∈ [0, r] and a
function η : [0,+∞)× [0,+∞)→ [0,+∞) such that η(r, s) = t. Then, one derives the following.

(a1) η(0, 0) = 0.
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(a2) θ(η(r, s), s) = r and θ(r, η(s, r)) = s.
(a3) η is continuous with respect to the first variable.
(a4) If η(r, s) ≥ 0, then 0 ≤ s ≤ r.

In what follows, θ denotes B-actions. The authors of [16] formulated the concept of θ-metric
spaces as follows:

Definition 2 ([16]). A mapping dθ : X× X → R+ is said to be θ-metric on a nonempty set X with respect to
B-action θ ∈ Υ if the following hold true:

(i) dθ(a, b) = 0 if and only if a = b,
(ii) dθ(a, b) = dθ(b, a), for all a, b ∈ X,
(iii) dθ(a, b) ≤ θ(dθ(a, c), dθ(c, b)), for all a, b, c ∈ X.

A pair (X, dθ) is called θ-metric space. For examples of θ-metric, readers are referred to [16].

In the following definition, the notions of convergence of a sequence, Cauchy sequence,
completeness of θ-metric and continuity of mapping are discussed.

Definition 3 ([16]). Let (X, dθ) be a θ-metric space. Then,

(i) a sequence {xn} in X is said to be converged to x ∈ X if dθ(xn, x)→ 0 as n→ ∞,
(ii) a sequence {xn} is Cauchy if, for each ε > 0, there exists N > 0 such that, for all m ≥ n ≥ N,

dθ(xn, xm) < ε.
(iii) (X, dθ) is complete if every Cauchy sequence {xn} is convergent in X.
(iv) A self-mapping T on (X, dθ) is said to be θ-continuous if dθ(Txn, Tx)→ 0 whenever dθ(xn, x)→ 0 as

n→ ∞.

The authors of [16] observed that, in a θ-metric space (X, dθ), every open ball is an open set and
the topology is formed by the collection of open sets (denoted by τdθ

). A pair (X, τdθ
) is a Hausdorff

topological space induced by a θ-metric on X. The set {Bdθ
(u, 1

n ) : n ∈ N} is a local base at u and the
topology τdθ

is first countable.

Remark 1. Recently, Brzdek et al. [19] introduced a notion of generalized dq metric which can be defined as: a
function d : X× X → R+ satisfying following axioms for all a, b, c ∈ X,

(B1) if d(a, b) = 0 and d(b, a) = 0, then a = b;
(B2) there exist a mapping µ : R+ ×R+ → R+ which is nondecreasing with respect to each variable such that

d(a, c) ≤ µ(d(a, b), d(b, c)).

If we compare the two functions θ and µ, it is observed that µ enjoys more freedom over θ, since continuity
and symmetry are relaxed in case of µ. Prima facie, it appears that the concept of generalized dq-metric is more
general than the θ-metric. It is also noteworthy here that, in order to generalize the notion of metric in the
analogous form, the continuity and symmetry are necessary for θ function.

We consider the following class of mappings which act as auxiliary functions in defining Caristi
type contractive conditions.

Definition 4 ([16]). Suppose that (X, dθ) is a complete θ-metric space. Define Pθ as the class of all maps
µ : X× X → [0,+∞) which satisfies the following conditions:

(E1) there exists x̂ such that µ(x̂, .) is bounded below and lower semicontinuous, and µ(., y) is upper
semicontinuous for each y ∈ X,
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(E2) µ(x, y) = 0 if and only if x = y,
(E3) θ(µ(x, y), µ(y, z)) ≤ µ(x, z) for each x, y, z ∈ X.

By virtue of the above definition, the following results hold:

Lemma 2 ([16]). µ(x, y) ≤ η(µ(x, z), µ(x, y)) for each x, y, z ∈ X.

Definition 5 ([16]). Let Γθ denote the family of functionals ν : R+ → R+ such that

(i) ν(θ(x, y)) ≤ θ(ν(x), ν(y)) for each x, y ∈ R+,
(ii) ν is nondecreasing map,
(iii) ν is continuous,
(iv) ν(t) = 0 if and only if t = 0.

Example 2. (a) Let θ(t, s) = st
1+st ; thus, Im(θ) = [0, 1). Now, let µ1 : X× X → [0,+∞) be defined by

µ1(x, y) =


exp

(
ϕ(y)− ϕ(x)

)
if x 6= y,

0 if x = y.

(b) Let θ(s, t) = s + t; thus, Im(θ) = [0,+∞). Now, let µ2 : X× X → [0,+∞) be defined by

µ2(x, y) = ϕ(y)− ϕ(x).

(c) Let θ(s, t) = 2n+1
√

s + t, n ≥ 1; thus, Im(θ) = [0,+∞). Now, let µ3 : X× X → [0,+∞) be defined by

µ3(x, y) = 2n+1
√

ϕ(y)− ϕ(x).

If ϕ : X → R is a lower bounded, lower semicontinuous function, then clearly µi ∈ Pθ , i = 1, 2, 3.

Definition 6. Let (X, dθ) be a θ-metric space.

• A point x ∈ X is called a fixed point of a mapping f : X → X if and only if f (x) = x.
• A point x ∈ X is called a periodic point of a mapping f : X → X if and only if there exists n ∈ N such

that f n(x) = x.

3. Caristi Type Fixed Point Theorems

The following result is the restatement of Caristi type fixed point theorem presented by Khojasteh
et al. in ([16], Theorem 34). We prove this theorem with a new and simple approach in the context of
θ-metric space.

Theorem 1. Let (X, dθ) be a complete θ-metric space and µ ∈ Pθ and ν ∈ Γθ . Let T : X → X be a
mapping satisfying

ν(dθ(x, Tx)) ≤ µ(Tx, x) (1)

for any x ∈ X. Then, T has a fixed point in X.

Proof. Let us define a multivalued map S : X → 2X as

S(u) = {v ∈ X : ν(dθ(u, v)) ≤ µ(u, v)}, for any u ∈ X.

Since 0 = ν(0) = ν(dθ(u, u)) ≤ µ(u, u) = 0, thus u ∈ S(u). Hence, S(u) is nonempty for every
u ∈ X.
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We now show that, for each v ∈ S(u), S(v) ⊆ S(u).
Let v ∈ S(u). This gives us ν(dθ(u, v)) ≤ µ(u, v). As S(v) is nonempty, let w ∈ S(v). Then,

ν(dθ(v, w)) ≤ µ(v, w). We show that w ∈ S(u). Since ν is nondecreasing,

ν(dθ(u, w)) ≤ ν(θ(dθ(u, v), dθ(v, w)))

≤ θ(ν(dθ(u, v)), ν(dθ(v, w)))

≤ θ(µ(u, v), µ(v, w))

≤ µ(u, w).

Therefore, w ∈ S(u). Thus, S(v) ⊂ S(u).
We define a sequence {un} in X which starts from some arbitrary u1 ∈ X. Suppose un−1 is known

and choose un+1 ∈ S(un) such that, for û ∈ X,

lim
n→∞

µ(û, un+1) ≤ inf
z∈S(un)

µ(û, z) = τ. (2)

For any n ∈ N, since un+1 ∈ S(un), by using Lemma 2, we have

ν(dθ(un, un+1)) ≤ µ(un, un+1)

≤ η(µ(û, un), µ(û, un+1)).

Taking the limit as n→ ∞ and using continuity of ν, we have

lim
n→∞

ν(dθ(un, un+1)) = ν( lim
n→∞

dθ(un, un+1))

≤ η( lim
n→∞

µ(û, un), lim
n→∞

µ(û, un+1))

< η(τ, τ) = 0.

This yields us
ν( lim

n→∞
dθ(un, un+1)) = 0. (3)

From (iv) of Definition 5, we get

lim
n→∞

dθ(un, un+1) = 0.

Now, using (i) of Definition 5, we have

ν(dθ(un, un+k)) ≤ ν(θ(dθ(un, un+1), dθ(un+1, un+k)))

≤ θ(ν(dθ(un, un+1)), ν(dθ(un+1, un+k))).
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Taking the limit as n→ ∞ on both sides of the above inequality, we get

lim
n→∞

ν(dθ(un, un+k)) ≤ θ(0, lim
n→∞

ν(dθ(un+1, un+k)))

≤ lim
n→∞

ν(dθ(un+1, un+k))

≤ lim
n→∞

θ(ν(dθ(un, un+1)), ν(dθ(un+1, un+k)))

≤ θ(0, lim
n→∞

ν(dθ(un+2, un+k)))

≤ lim
n→∞

ν(dθ(un+2, un+k))

≤ · · ·
≤ lim

n→∞
ν(dθ(un+k−1, un+k))

≤ 0.

Therefore, by (iv) of Definition 5, we have

lim
n→∞

dθ(un, un+k) = 0.

Thus, {un} is a Cauchy sequence in X. By the completeness of X, there exists some p ∈ X such
that un → p as n→ ∞.

Since ν is continuous and µ is upper semicontinuous in the first variable,

ν(dθ(p, un)) ≤ lim sup
m→∞

ν(dθ(um, un))

≤ lim sup
m→∞

µ(um, un)

≤ µ(p, un). (4)

Thus, p ∈ ∩∞
n=1S(un). Hence, ∩∞

n=1S(un) is nonempty and S(p) ⊆ ∩∞
n=1S(un).

Now, for any q ∈ ∩∞
n=1S(un) such that un 6= q, by Definition 4, we have

µ(û, q) ≤ inf
n∈N

µ(û, un) = lim
n→∞

µ(û, un).

Therefore, by Inequality (1), we have

0 ≤ ν(dθ(un, q)) ≤ µ(un, q) ≤ η(µ(û, un), µ(û, q)) < η(µ(û, un), lim
n→∞

µ(û, un)).

Varying n over N, we get
lim

n→∞
ν(dθ(un, q)) = 0.

Therefore {un} → q. The uniqueness of limit of a sequence ensures that p = q. Thus, we have,
S(p) ⊆ ∩∞

n=1S(un) = {p}. Thus, S(p) = {p}.
In addition, from Inequality (1), we have ν(dθ(p, Tp)) ≤ µ(p, Tp). This yields Tp ∈ S(p) = {p}.

Thus, p = Tp.

Remark 2. The earlier proofs of Caristi fixed point theorem in metric space setting involve assigning a partial
order on X. Then, they used Zorn’s Lemma or the Brezis Browder order principle or transfinite induction. Even
Khojasteh et al. [16] proved the above theorem using the same technique.

In our proof, we do not assume any partial order on X, so Zorn’s Lemma or the Brezis–Browder theorem
can not be applied. Thus, our proof is different from earlier proofs and comparatively new in the context of space
as well as technique.
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As a consequence, we obtain the following theorems.

Theorem 2. Let (X, dθ) be a complete θ-metric space and µ ∈ Pθ and ν ∈ Γθ . Let T : X → P(X) be a
mapping satisfying

ν(dθ(x, y)) ≤ µ(y, x), (5)

for any x ∈ X and y ∈ Tx. Then, T has a fixed point in X.

Proof. The proof follows in the same manner as proof of Theorem 1.

Theorem 3. Let (X, dθ) be a complete θ-metric space and µ ∈ Pθ and ν ∈ Γθ . Let f : X → X be a
mapping satisfying

ν(dθ(x, f nx)) ≤ µ( f nx, x), (6)

for any x ∈ X. Then, T has a periodic point in X.

Proof. Let T : X → X be defined by Tx = f nx. Then, from Inequality (6), we have

ν(dθ(x, Tx)) ≤ µ(Tx, x)

for any x ∈ X. Then, by Theorem 1, Tu = u. Hence, f nu = u, i.e., u is periodic point of f .

Example 3. Let X = [0, ∞) with dθ(x, y) = |x− y| and θ(s, t) = s + t. We define a mapping T : X → X as

Tx =



0, if x = 0,

3
2 , if x ∈ (0, 1],

x
2 , if x > 1.

Let ν : [0, ∞)→ [0, ∞) be defined by ν(t) = ln(1 + t). We now verify that ν ∈ Γ.

(i) For every s, t ∈ Im(θ), we have

θ(ν(s), ν(t)) = ν(s) + ν(t)

= ln(1 + s) + ln(1 + t)

= ln[(1 + s)(1 + t)]

= ln(1 + s + t + st)

> ln(1 + s + t)

= ν(s + t) = ν(θ(s, t)).

(ii) Since ln(t) is nondecreasing for t > 1, ν(t) for t > 0 is too.
(iii) Continuity of log function implies continuity of ν.
(iv) Let ν(t) = 0⇔ ln(1 + t) = 0⇔ 1 + t = 1⇔ t = 0.

Thus, ν(t) = ln(1 + t) ∈ Γθ .
Let ϕ : X → [0,+∞) be defined as ϕ(x) = dθ(x, Tx). Then, one can see that ϕ is lower bounded and a

lower semicontinuous function.
Consider µ(x, y) = ϕ(y)− ϕ(x). Then, clearly µ ∈ Pθ .
For the above ν and µ, T satisfies

ν(dθ(x, Tx)) ≤ µ(Tx, x)
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for every x ∈ X. Thus, T satisfies all the conditions of Theorem 1. Consequently, T has a fixed point 0.
Here, it is worth mentioning that T does not satisfy d(x, Tx) ≤ φ(x)− φ(Tx) when x = 1. Thus, T does

not obey the Caristi fixed point theorem.

4. Hθ andH+
θ Metrics

Let (X, dθ) be a θ-metric space. Let CB(X) = {P ⊂ X : φ 6= P is θ-bounded and closed}. For
P, Q ∈ CB(X), define

Hθ(P, Q) = max
{

sup{dθ(q, P)|q ∈ Q}, sup{dθ(p, Q)|p ∈ P}
}

and
H+

θ (P, Q) =
1
2
[

sup{dθ(q, P)|q ∈ Q}+ sup{dθ(p, Q)|p ∈ P}
]
,

where
dθ(p, Q) = inf{dθ(p, q)|q ∈ Q}.

We call Hθ a θ-Pompeiu–Hausdorff distance (see [20] and references therein). We also denote
sup{dθ(p, Q)|p ∈ P} by ρθ(P, Q).

Theorem 4. (CB(X),Hθ) is a θ-metric space if (X, dθ) is θ-metric space.

Proof. Clearly, due to non-negativity and symmetry of dθ ,Hθ is also non-negative and symmetric.
Next, we show Hθ(P, Q) = 0 if and only if P = Q. We only require to show that Hθ(P, Q) = 0 =⇒
P = Q; the converse will be true due to property (i) of Definition 2. For this, suppose thatHθ(P, Q) = 0
for any P, Q ∈ CB(X). This implies that sup{dθ(q, P)|q ∈ Q} = 0, which gives us dθ(q, P) = 0 for
q ∈ Q. This yields q ∈ P. Thus, Q ⊂ P = P. Similarly, sup{dθ(p, Q)|p ∈ P} = 0 implies p ∈ Q, which
yields P ⊂ Q = Q. Therefore, P = Q.

Now, it remains to prove thatHθ(P, R) ≤ θ(Hθ(P, Q),Hθ(Q, R)) for any P, Q, R ∈ CB(X).
Suppose P, Q, R ∈ CB(X). Let u ∈ P be arbitrary; there exists v ∈ Q and ε > 0 such that

dθ(u, v) ≤ dθ(u, Q) +
ε

2
.

In addition, there exists w ∈ R such that

dθ(v, w) ≤ dθ(v, R) +
ε

2
.

Now,

dθ(u, R) ≤ dθ(u, w)

≤ θ(dθ(u, v), dθ(v, w))

< θ
(
dθ(u, Q) +

ε

2
, dθ(v, R) +

ε

2
)

< θ
(
Hθ(P, Q) +

ε

2
,Hθ(Q, R) +

ε

2
)
.

Since u is arbitrary in P, we have

sup{dθ(a, R)|a ∈ P} ≤ θ
(
Hθ(P, Q) +

ε

2
,Hθ(Q, R) +

ε

2
)
.

Since ε is arbitrary, the above inequality yields

sup{dθ(a, R)|a ∈ P} ≤ θ
(
Hθ(P, Q),Hθ(Q, R)

)
. (7)
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Using the similar argument, we obtain

sup{dθ(c, P)|c ∈ R} ≤ θ
(
Hθ(P, Q),Hθ(Q, R)

)
. (8)

Thus, from Inequalities (7) and (8), we get

Hθ(P, R) ≤ θ
(
Hθ(P, Q),Hθ(Q, R)

)
.

Theorem 5. (CB(X),H+
θ ) is θ-metric space if (X, dθ) is θ-metric space.

Proof. We only prove H+
θ (P, R) ≤ θ

(
H+

θ (P, Q),H+
θ (Q, R)

)
for any P, Q, R ∈ CB(X). Other things

follow in the same way as in the proof of Theorem 4. Suppose P, Q, R ∈ CB(X). Letting u ∈ P, there
exists v ∈ Q and ε > 0 such that

dθ(u, v) ≤ dθ(u, Q) +
ε

2
.

In addition, there exists w ∈ R such that

dθ(v, w) ≤ dθ(v, R) +
ε

2
.

Furthermore, for ε > 0, there exist a ∈ P and b ∈ Q such that

1
2
[
dθ(a, Q) + dθ(b, P)

]
+

ε

2
≥ dθ(a, Q),

1
2
[
dθ(b, P) + dθ(a, Q)

]
+

ε

2
≥ dθ(b, P).

Now,

dθ(a, R) ≤ dθ(a, c)

≤ θ(dθ(a, b), dθ(b, c))

< θ
(
dθ(a, Q) +

ε

2
, dθ(b, R) +

ε

2
)

< θ
(1

2
[
dθ(a, Q) + dθ(b, P)

]
+ ε,

1
2
[
dθ(b, R) + dθ(c, Q)

]
+ ε
)

≤ θ
(
H+

θ (P, Q) + ε,H+
θ (Q, R) + ε

)
.

Taking supremum in the above inequality, we get

sup{dθ(a, R)|a ∈ P} ≤ θ
(
H+

θ (P, Q) + ε,H+
θ (Q, R) + ε

)
.

Since ε is arbitrary, this yields

sup{dθ(a, R)|a ∈ P} ≤ θ
(
H+

θ (P, Q),H+
θ (Q, R)

)
. (9)

Using a similar argument, we get

sup{dθ(c, P)|c ∈ R} ≤ θ
(
H+

θ (P, Q),H+
θ (Q, R)

)
. (10)

Adding Inequalities (9) and (10), we get

1
2
[

sup{dθ(a, R)|a ∈ P}+ sup{dθ(c, P)|c ∈ R}
]
≤ θ

(
H+

θ (P, Q),H+
θ (Q, R)

)
,
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that is,
H+

θ (P, R) ≤ θ
(
H+

θ (P, Q),H+
θ (Q, R)

)
.

Remark 3. Hθ andH+
θ defined above are equivalent metrics on CB(X), since

1
2
Hθ(P, Q) ≤ H+

θ (P, Q) ≤ Hθ(P, Q).

It is worth mentioning here that the equivalence of the two θ-metric does not mean that the results proved
with one are equivalent to others. This is shown by means of some examples in [9] in the case of metric spaces.

5. Fixed Point Results for Set-Valued Mappings

This section presents some fixed point results in θ-metric spaces for multivalued mappings. Firstly,
we obtain a fixed point theorem using θ–Pompeiu–Hausdorff metric. Secondly, we prove some fixed
point theorems of Pathak and Sahzad type [9] for the multivalued case using the H+

θ metric. The
results presented here generalize various results of the metric fixed point theory.

5.1. Lim–Nadler Type Fixed Point Theorems

Let Φθ be a collection of mappings ϕ : R+ → R+ with

(i) for each α > 0, there exists β > 0 such that α < u < β implies ϕ(u) ≤ α,
(ii) ϕ(θ(u, v)) ≤ θ(ϕ(u), ϕ(v)) for all u, v ∈ Im(θ),
(iii) ϕ(u) = 0 if and only if u = 0.

The following result is required to prove the fixed point theorem.

Lemma 3. Let ϕ ∈ Φθ such that for some u > 0, ϕ(u) ≤ u. Then,

(i) ϕ(l) < l for every l > 0,
(ii) for every sequence {ln} such that ln → l as n→ ∞, ln ≥ l > 0, we have

lim sup
n→∞

ϕ(ln) < l.

Proof. (i) Suppose there exists c > 0 such that ϕ(c) = c. Let c ∈ Im(θ) then for every u ∈ Im(θ) such
that u < c, we can find v ∈ Im(θ) by (iii) of Definition 1 such that θ(u, v) = c.

Therefore,
c = ϕ(c) = ϕ(θ(u, v)) ≤ θ(ϕ(u), ϕ(v)) ≤ θ(u, v) = c.

This implies that ϕ(u) = u for every u ≤ c. Since ϕ ∈ Φθ , for α = c
2 , there exists β > c

2 such that
ϕ(l) < c

2 for every l ∈ ( c
2 , β). If l ∈ ( c

2 , β) ∩ ( c
2 , c), we have ϕ(l) = l > c

2 , which is a contradiction.
Thus, ϕ(l) < l for every l > 0.

(ii) Letting ln ≥ l, then we can find l∗ > 0 such that θ(l, l∗) = ln by using (iii) of Definition 1. Now,
we have

ϕ(ln) = ϕ
(
θ(l, l∗)

)
≤ θ

(
ϕ(l), ϕ(l∗)

)
< θ(l, l∗) = ln.

Therefore, lim sup
n→∞

ϕ(ln) < l.

Example 4. Let ϕ : R+ → R+ be defined by ϕ(t) = ln(1 + t). Clearly, ϕ(t) < t. Let θ : R+ → R+ be
defined by θ(s, t) = s + t + st. We now verify that ϕ ∈ Φθ .

(i) for α > 0, we consider β = exp(α)− 1; then, β > α. For t ∈ (α, β), we have ϕ(t) = ln(1 + t) <

ln exp(α) = α.
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(ii) For every s, t ∈ Im(θ), we have

θ(ϕ(s), ϕ(t)) = ϕ(s) + ϕ(t) + ϕ(s)ϕ(t)

= ln(1 + s) + ln(1 + t) + ln(1 + s) ln(1 + t)

> ln(1 + s) + ln(1 + t)

= ln(1 + s + t + st) = ϕ(s + t + st) = ϕ(θ(s, t)).

(iii) ϕ(t) = 0 ⇐⇒ ln(1 + t) = 0 ⇐⇒ 1 + t = 1 ⇐⇒ t = 0.

Thus, ϕ ∈ Φθ .

Theorem 6. Let (X, dθ) be a complete θ-metric space and T : X → CB(X) be a multivalued mapping such
that there exists ϕ ∈ Φθ satisfying

Hθ(Ta, Tb) ≤ ϕ(dθ(a, b))

for all a, b ∈ X. Then, T has a fixed point.

Proof. Let us take arbitrary a0 in X and Fix a1 ∈ Ta0. We choose a2 ∈ Ta1 such that

dθ(a1, a2) ≤ Hθ(Ta0, Ta1) ≤ ϕ(dθ(a0, a1)) < dθ(a0, a1).

In general, if an is chosen such that an /∈ Tan, then we can choose an+1 ∈ Tan such that

dθ(an, an+1) ≤ Hθ(Tan−1, Tan) ≤ ϕ(dθ(an−1, an)) < dθ(an−1, an). (11)

Then, {dn = dθ(an, an+1)} is a strictly decreasing sequence. Thus, there exists some d ≥ 0 such
that dn → d. Suppose d > 0 .

Then, from Inequality (11), we have

dn ≤ ϕ(dn) ≤ dn.

Tending n to ∞, we get
d ≤ lim

n→∞
ϕ(dn) ≤ d.

That is, lim
n→∞

ϕ(dn) = d, which contradicts (ii) of Lemma 3. Thus, d = 0. Hence,Hθ(Tan, Tan+1)→
0, dn → 0 as n→ ∞.

Supposing that {an} is not Cauchy, then there exist two subsequences of {an} say {an(k)}, {am(k)}
and ε > 0 such that

dθ(an(k), am(k)) ≥ ε

for all k, where m(k) > n(k) ≥ k. Then, clearly

dθ(an(k)−1, am(k)) < ε.

Thus, we have

ε ≤ dθ(an(k), am(k))

≤ θ
(
dθ(an(k), an(k)−1), dθ(an(k)−1, am(k))

)
≤ θ

(
dθ(an(k), an(k)−1), ε

)
.

Tending k to ∞, we get
lim
k→∞

dθ(an(k), am(k)) = ε.
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In addition, we have

ε ≤ dθ(an(k)+1, am(k)+1)

≤ Hθ(Tan(k), Tam(k))

≤ ϕ(dθ(an(k), am(k)))

< dθ(an(k), am(k)).

Taking k→ ∞, we get
lim
k→∞

ϕ(dθ(an(k), am(k))) = ε. (12)

However, due to Lemma 3(ii), we have

lim sup
k→∞

ϕ(dθ(an(k), am(k))) < ε,

which contradicts Equation (12). Thus, {an} is a Cauchy sequence and completeness of θ-metric space
X gives rise to existence of v ∈ X such that an → v as n→ ∞. Now,

dθ(v, Tv) ≤ θ
(
dθ(v, an+1), ρθ(Tan, Tv)

)
< θ

(
dθ(v, an+1),Hθ(Tan, Tv)

)
< θ

(
dθ(v, an+1), ϕ(dθ(an, v))

)
< θ

(
dθ(v, an+1), dθ(an, v)

)
.

Letting n→ ∞, we get dθ(v, Tv) = 0, which implies v ∈ Tv.

Example 5. Let X = [0, 10] be a θ-metric space with dθ : X × X → R+ defined as dθ(x, y) = |x− y| and
θ(s, t) = s + t + st. Clearly, (X, dθ) is complete. Let T : X → CB(X) be given by

T(a) =


{0}, if a = 0,

[0, ln(1 + a)] , if a > 0.

Let us define a mapping ϕ : R+ → R+ by ϕ(v) = ln(1 + v). Then, clearly ϕ ∈ Φθ and ϕ(v) < v,
for every v > 0 (as shown in Example 4).

We now show thatHθ(Ta, Tb) ≤ ϕ(dθ(a, b)) holds for all a, b ∈ X.
For this, let b ≥ a ≥ 0, then Ta ⊂ Tb, so we have

Hθ(Ta, Tb) = ln(1 + b)− ln(1 + a) = ln
(

1 + b
1 + a

)
.

Since a ≤ b, we have 1+b
1+a ≤ 1+ b− a, which implies ln

(
1+b
1+a

)
≤ ln(1+ |b− a|). Thus, we getHθ(Ta, Tb) ≤

ϕ(dθ(a, b)).
All of the requirements of Theorem 6 are fulfilled. Hence, T has a fixed point a = 0.

Remark 4. In 1969, Meir and Keeler [4] obtained an interesting generalization of BCP on a complete metric
space. In 2001, Lim [6] characterized the Meir–Keeler contraction by introducing an L-function ϕ which satisfies
the condition (i) of class Φθ in metric context. Thus, our Theorem 6 characterizes Lim type fixed point results.
Consequently, Theorem 6 generalizes various fixed point results of Lim–Nadler type in metric spaces in the
context of both space and contractive conditions.
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5.2. Pathak and Sahzad Type Fixed Point Theorem

We require the following concepts to prove our results in this section.

Definition 7. Let (X, dθ) be a θ-metric space. A mapping T : X → CB(X) is anH+
θ -contraction if

(i) there exists L ∈ (0, 1) such thatH+
θ (Ta, Tb) ≤ Ldθ(a, b), for every a, b ∈ X,

(ii) for every a ∈ X, b ∈ Ta and k > 0, there exists c ∈ Tb such that

dθ(b, c) ≤ H+
θ (Ta, Tb) + k.

Definition 8. A mapping T : X → CB(X) is called generalizedH+
θ -contraction if dθ(a, b) in (i) of Definition 7

is replaced by mθ(a, b) = max{dθ(a, b), dθ(a, Ta), dθ(b, Tb)}.

Theorem 7. Every generalizedH+
θ -contraction on a complete θ-metric space has a fixed point.

Proof. Let (X, dθ) be a complete θ-metric space. We may choose k > 0 satisfying 0 < L + k = β < 1.
Let us take arbitrary a0 in X and fix a1 ∈ Ta0. From (ii) of Definition 7, it follows that we can choose
a2 ∈ Ta1 such that

dθ(a1, a2) ≤ H+
θ (Ta0, Ta1) + kmθ(a0, a1)

≤ (L + k)mθ(a0, a1) = β mθ(a0, a1). (13)

Similarly, there exists a3 ∈ Ta2 such that

dθ(a2, a3) ≤ β mθ(a1, a2).

In general, if an be chosen, then we can choose an+1 ∈ Tan such that

dθ(an+1, an+2) ≤ β mθ(an, an+1)

≤ β max{dθ(an, an+1), dθ(an, an+1), dθ(an+1, an+2)}
≤ β max{dθ(an, an+1), dθ(an+1, an+2)}. (14)

If we take max{dθ(an, an+1), dθ(xn+1, xn+2)} = dθ(an+1, an+2), then, from Inequality (14), we get
dθ(an+1, an+2) ≤ β dθ(an+1, an+2), which is a contradiction. Thus, we have

dθ(an+1, an+2) ≤ β dθ(an, an+1).

Inductively,
dθ(an+1, an+2) ≤ βn dθ(a0, a1).

Furthermore, we show that sequence {an} is Cauchy sequence. Since we have

0 ≤ dθ(an, an+p) ≤ θ
(
dθ(an, an+1), dθ(an+1, an+p)

)
,
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tending n to ∞, we get

0 ≤ lim
n→∞

dθ(an, an+p) ≤ lim
n→∞

θ
(

βndθ(a0, a1), dθ(an+1, an+p)
)

≤ θ
(
0, lim

n→∞
dθ(an+1, an+p)

)
≤ lim

n→∞
dθ(an+1, an+p)

≤ lim
n→∞

θ
(
dθ(an+1, an+2), dθ(an+2, an+p)

)
≤ lim

n→∞
θ
(

βndθ(a0, an+1), dθ(an+2, an+p)
)

≤ θ
(
0, lim

n→∞
dθ(an+2, an+p)

)
≤ · · ·
≤ θ

(
0, lim

n→∞
dθ(an+p−1, an+p)

)
≤ θ

(
0, 0
)
= 0.

Thus, we get lim
n,m→∞

dθ(an, am) = lim
n→∞

dθ(an, an+p) = 0. Therefore, {an} is a Cauchy sequence and

completeness of (X, dθ) gives rise to existence of c in X such that lim
n→∞

dθ(an, c) = 0.
Now, since

1
2
[
ρθ(Tan, Tc) + ρθ(Tc, Tan)

]
= H+

θ (Tan, Tc) ≤ Lmθ(an, c),

where ρθ(Tan, Tc) = sup{dθ(an+1, Tc)|an+1 ∈ Tan}. Thus, we have

lim inf
n→∞

1
2
[
ρθ(Tan, Tc) + ρθ(Tc, Tan)

]
≤ Ldθ(c, Tc).

Now,

dθ(c, Tc) =
1
2
[dθ(c, Tc) + dθ(c, Tc)]

≤ 1
2
[θ(dθ(c, Tan), ρθ(Tan, Tc)) + θ(dθ(c, Tan), ρθ(Tan, Tc))].

Taking limit as n→ ∞, we get

dθ(c, Tc) ≤ Ldθ(c, Tc),

a contradiction. Thus, dθ(c, Tc) = 0, and hence u ∈ Tc = Tc.

Theorem 8. EveryH+
θ -contraction on a complete θ-metric space has a fixed point.

Proof. Proof follows from the proof of Theorem 7.

Example 6. Let X = {x, y, z} and dθ : X× X → R+ be defined by

dθ(x, y) =
1
5

, dθ(x, z) = 1, dθ(y, z) =
3
4

,

dθ(a, a) = 0, and dθ(a, b) = dθ(b, a) for every a, b ∈ X.

Then, for θ(s, t) = s + t + st, (X, dθ) is a complete θ-metric space but not a metric space.
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Let T : X → CB(X) be such that

T(a) =



{x}, if a = x,

{x, y}, if a = y,

{x, z}, if a = z.

First, we verify that H+
θ (Ta, Tb) ≤ Lmθ(a, b) = max{dθ(a, b), dθ(a, Ta), dθ(b, Tb)} holds for some

L ∈ (0, 1). Consider the following three cases:

• If a = x, b = y, then mθ(a, b) = 1
5 and H+

θ (Ta, Tb) = 1
10 . Thus, H+

θ (Ta, Tb) ≤ Lmθ(a, b) is satisfied
for L ≥ 1

2 ,
• If a = x, b = z, then mθ(a, b) = 1 andH+

θ (Ta, Tb) = 1
2 . Thus,H+

θ (Ta, Tb) ≤ Lmθ(a, b) is satisfied for
L ≥ 1

2
• If a = y, b = z, then mθ(a, b) = 3

4 and H+
θ (Ta, Tb) = 19

40 . Thus, H+
θ (Ta, Tb) ≤ Lmθ(a, b) is satisfied

for L ≥ 19
30 .

Now, we verify that, for every a ∈ X, b ∈ Ta and k > 0, there exists c ∈ Tb such that dθ(b, c) ≤
H+

θ (Ta, Tb) + k.

• If a = x, b = x ∈ T(a) = {x}, k > 0, there exists c = x ∈ T(b) = a such that 0 = dθ(b, c) ≤
H+

θ (Ta, Tb) + k.
• If a = y, b ∈ Ta = T(y) = {x, y},

(i)let b = x, k > 0, there exists c = x ∈ Tb = x such that 0 = dθ(b, c) < H+
θ (Ta, Tb) + k,

(ii) let b = y, k > 0, there exists c ∈ Tb = {x, y} say c = x such that 0 = dθ(b, c) < H+
θ (Ta, Tb) + k.

• If a = z, b ∈ Ta = T(z) = {x, z},
(i)let b = x, k > 0, there exists c = x ∈ Tb = {x} such that 0 = dθ(b, c) < H+

θ (Ta, Tb) + k,
(ii) let b = z, k > 0, there exists c ∈ Tb = {x, z} say c = z such that 0 = dθ(b, c) < H+

θ (Ta, Tb) + k.

Thus, T is a generalizedH+
θ -contraction for L ∈ [ 19

30 , 1). Therefore, all the requirements of Theorem 7 are
fulfilled. Hence, T has at least one fixed point. Evidently, T has fixed points x, y and z here.

6. Conclusions

Khojasteh et al. [16] introduced θ-metric and generalized the notion of metric by replacing triangle
inequality with a weaker form. They proved a Caristi type fixed point theorem by assigning partial
order on the domain of operator and made use of Zorn’s lemma. In this manuscript, we proved that
the Caristi type fixed point Theorem 1 in an alternative, comparatively new and simple way.

The study of fixed points of multivalued mappings is of immense interest. For that,
we investigated two θ-metrics (namely Hθ and H+

θ ) on CB(X) that are equivalent. In Theorem 6,
we usedHθ metric and established a Lim–Nadler type fixed point theorem in the setting of θ-metric,
whereas Theorems 7 and 8 are Pathak–Sahzad type fixed point results proved with the aid of H+

θ

metric. Clearly, these results generalize that of Nadler [8], Lim [6], Pathak and Sahzad [9], etc. New
illustrative examples are provided for better understanding of the results.
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