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Abstract

:

For each partition τ of N, there are irreducible modules of the symmetric groups SN and of the corresponding Hecke algebra HNt whose bases consist of the reverse standard Young tableaux of shape τ. There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules. The Jack polynomials form a special case of the polynomials constructed by Griffeth for the infinite family Gn,p,N of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author. For each of the groups SN and the Hecke algebra HNt, there is a commutative set of Dunkl operators. The Jack and the Macdonald polynomials are parametrized by κ and q,t, respectively. For certain values of these parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. This paper analyzes the singular polynomials whose leading term is x1m⊗S, where S is an arbitrary reverse standard Young tableau of shape τ. The singular values depend on the properties of the edge of the Ferrers diagram of τ.
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1. Introduction


For each partition τ of N, there are irreducible modules of the symmetric groups SN and of the corresponding Hecke algebra HNt, whose bases consist of the reverse standard Young tableaux of shape τ. There are associated spaces of nonsymmetric Jack and Macdonald polynomials taking values in these modules (in what follows, the polynomials are always of the nonsymmetric type). The Jack polynomials are a special case of those constructed by Griffeth [1] for the infinite family Gn,p,N of complex reflection groups. The Macdonald polynomials were constructed by Luque and the author [2]. The polynomials are the simultaneous eigenfunctions of the Cherednik operators. The latter form a commutative set. For both the group SN and the Hecke algebra HNt, there is a commutative set of Dunkl operators, which lower the degree of a homogeneous polynomial by one. The definitions of the two types look quite different.



The Jack and the Macdonald polynomials are parametrized by κ and q,t, respectively. For certain values of the parameters (called singular values), there are polynomials annihilated by each Dunkl operator; these are called singular polynomials. The structure of the singular polynomials for the trivial module corresponding to the partition N, that is the scalar polynomials, is more or less well understood by now. For the modules of dimension ≥2, the singular polynomials are mostly a mystery. In [3,4], we constructed special singular polynomials, which correspond to the minimum parameter values. To be specific, denote the longest hook-length in the Ferrers diagram of τ by hτ, then any other singular value κ satisfies κ≥1hτ. If a pair q,t such that qmtn=1 provides a singular polynomial, then mn≥1hτ. The main topic of this paper is the determination of all the singular values for which the Jack or Macdonald polynomials with leading term x1m⊗S are singular, where S is an arbitrary reverse standard Young tableau of shape τ. The tensor product is in the context of the linear space of polynomials times the module. The singular values depend on the properties of the edge of the Ferrers diagram of τ.



There is a brief outline of the needed aspects of the representation theory of SN and HNt in Section 2, focusing on the action of the generators on the basis elements. The important operators on scalar and vector-valued polynomials are defined in Section 3. Section 3.1 deals with the Cherednik–Dunkl and Dunkl operators on the vector-valued polynomials and introduces the Jack polynomials and key formulas for the action of Dunkl operators, in particular, when specialized to the polynomials with leading term x1m⊗S. Section 3.2 contains the analogous results on Macdonald polynomials. Section 4 combines the previous results with analyses of the spectral vectors and a combinatorial analysis of the possible singular values, to prove our main results on Jack and Macdonald polynomials. Section 4.1 illustrates the representation-theoretic aspect of singular polynomials.




2. Representation Theory


The symmetric group SN is the group of permutations of 1,2,…,N. The transpositions w=i,j, defined by wi=j,wj=i and wk=k for k≠i,j are fundamental tools in this study. The simple reflections si:=i,i+1,1≤i<N, generate SN. The group is abstractly presented by si2=1:1≤i<N and the braid relations:


sisi+1si=si+1sisi+1,1≤i≤N−2,sisj=sjsi,1≤i<j−1≤N−2.











The group algebra CSN has the underlying linear space ∑w∈SNcww (with cw∈C) and is of dimension N!. The associated Hecke algebra HNt, where t is transcendental (formal parameter) or a complex number not a root of unity, is the associative algebra generated by T1,T2,…,TN−1 subject to the relations:


Ti+1Ti−t=0,TiTi+1Ti=Ti+1TiTi+1,1≤i≤N−2,TiTj=TjTi,1≤i<j−1≤N−2.











It can be shown that there is a linear isomorphism between CSN and HNt based on the map si→Ti. When t=1, they are identical. We require t≠1 because there are several formulas with 1−t in the denominator; however, it is generally possible to obtain meaningful limits as t→1.



The irreducible modules of these algebras correspond to partitions of N. They are constructed in terms of the Young tableaux. The descriptions will be given in terms of the actions of si or Ti on the basis elements (see [5]).



Let N0:=0,1,2,3,…, and denote the set of partitions with N parts by N0N,+:=λ∈N0N:λ1≥λ2≥⋯≥λN. By a partition τ of N, we mean τ∈N0N,+ and ∑i=1Nτi=N. Thus, τ=τ1,τ2,… (often, the trailing zero entries are dropped when writing τ). The length of τ is ℓτ:=maxi:τi>0. The Ferrers diagram of shape τ (given the same label) is the union of the boxes at points i,j with 1≤i≤ℓτ and 1≤j≤τi. A tableau of shape τ is a filling of the boxes with numbers. A reverse standard Young tableau (RSYT) is a filling with the numbers 1,2,…,N so that the entries decrease in each row and each column. Denote the set of RSYT’s of shape τ by Y(τ). Let Vτ=spanFS:S∈Yτ with orthogonal basis Yτ, where F is some extension field of Q containing the parameters κ or q,t. The dimension of Vτ, that is #Yτ, is given by a hook-length product formula (for more information about the tableaux, see Stanley [6]). For 1≤i≤N and S∈Yτ, the entry i is at coordinates rowi,S,coli,S, and the content of the entry is ci,S=coli,S−rowi,S. Each S∈Yτ is uniquely determined by its content vector ci,Si=1N. For example, let τ=4,3 and S=7652431, then the content vector is 1,3,0,−1,2,1,0. There are representations of SN and HNt on Vτ; each will be denoted by τ. For each i and S (with 1≤i<N and S∈Yτ), there are four different possibilities:



(1) rowi,S=rowi+1,S (implying coli,S=coli+1,S+1 and ci,S−ci+1,S=1) then:


Sτsi=S,SτTi=tS;











(2) coli,S=coli+1,S (implying rowi,S=rowi+1,S+1 and ci,S−ci+1,S=−1) then:


Sτsi=−S,SτTi=−S;











(3) rowi,S<rowi+1,S and coli,S>coli+1,S. In this case:


ci,S−ci+1,S=coli,S−coli+1,S+rowi+1,S−rowi,S≥2,








then Si, denoting the tableau obtained from S by exchanging i and i+1, is an element of Yτ and:


Sτsi=Si+1ci,S−ci+1,SS,SτTi=Si+t−11−tci+1,S−ci,SS;











(4) ci,S−ci+1,S≤−2; thus, rowi,S>rowi+1,S and coli,S<coli+1,S, then with b=ci,S−ci+1,S,


Sτsi=1−1b2Si+1bS,SτTi=ttb+1−1tb−1−1tb−12Si+tbt−1tb−1S.











The formulas in (4) are consequences of those in (3) by interchanging S and Si and applying the relations τsi2=I and τTi+IτTi−tI=0 (where I denotes the identity operator on Vτ).



There is a commutative set of Jucys–Murphy elements in both ZSN and HNt. They are diagonalized with respect to the basis Yτ (with 1≤i≤N and S∈Yτ):


ωi:=∑j=i+1Ni,j,Sτωi=ci,SS,










ϕN=1,ϕi=1tTiϕi+1Ti,Sτϕi=tci,SS.



(1)







The representation τ of SN is unitary (orthogonal) when Vτ is furnished with the inner product (S,S′∈Yτ):


⟨S,S′⟩0:=δS,S′×∏1≤i<j≤N,cj,S−ci,S≥21−1ci,S−cj,S2.











The analogue for HNt is (S,S′∈Yτ):


⟨S,S′⟩0:=δS,S′×∏1≤i<j≤N,cj,S−ci,S≥2utci,S−cj,S








where:


uz:=t−z1−tz1−z2.



(2)







This form satisfies ⟨fτTi,g⟩0=⟨f,gτTi⟩0 for f,g∈Vτ and 1≤i<N.




3. Representations and Operators on Polynomials


For N≥2, setx=x1,…,xN∈RN. The cardinality of a set E is denoted by #E. For α∈N0N (a composition or N-tuple), let α:=∑i=1Nαi, xα:=∏i=1Nxiαi, a monomial of degree α. The spaces of polynomials, respectively homogeneous polynomials (in N variables over F), are:


P:=spanFxα:α∈N0N,Pn:=spanFxα:α∈N0N,α=n,n∈N0.











For α∈N0N, let α+ denote the nonincreasing rearrangement of α. We use partial orders on N0N: for α,β∈N0N, α≻β (α dominates β) means that α≠β and ∑i=1jαi≥∑i=1jβi for 1≤j≤N; and α▹β means that α=β and either α+≻β+, or α+=β+ and α≻β. Furthermore, there is the rank function (1≤i≤N):


rαi:=#j:1≤j≤i,αj≥αi+#j:i<j≤N,αj>αi.











Then, rα∈SN and rαi=i for all i if and only if α=α+.



The (right) action of the symmetric group on polynomials is defined by:


xsi=x1…,xii+1,xii+1,…,xN,pxsi=pxsi,1≤i<N.











For arbitrary transpositions xi,j=…,xij,…,xji,… and pxi,j=pxi,j. There is a subtlety (implicit inverse) involved due to acting on the right: for example, p(x)s1s2=pxs1s2=pxs2s1, that is px1,x2,x3s1s2=px2,x1,x3s2=px3,x1,x2.



In general pxw=pxw−1 where xwi=xw−1i for all i.



The action of the Hecke algebra on polynomials is defined by:


pxTi=1−txi+1px−pxsixi−xi+1+tpxsi.











The defining relations can be verified straightforwardly. There are special values: xiTi=xi+1, xi+xi+1Ti=txi+xi+1, and txi−xi+1Ti=−txi−xi+1. Furthermore, pTi=tp if and only if psi=p, because tp−pTi=txi−xi+1xi−xi+1p−psi.



For a partition τ of N, let Pτ:=P⊗Vτ (tensor product of two linear spaces over F). The set xα⊗S:α∈N0N,S∈Yτ is a basis of Pτ. The representations of SN and HNt on Pτ are respectively defined by linear extension from the action on generators by:


si:px⊗S→pxsi⊗Sτsi,










Ti:px⊗S→1−txi+1px−pxsixi−xi+1⊗S+pxsi⊗SτTi,



(3)




for p∈P,S∈Yτ and 1≤i<N (for details and background for the vector-valued Macdonald polynomials, see [2]).



3.1. Jack Polynomials


The Dunkl Di and Cherednik–Dunkl Ui operators on Pτ for p∈P,S∈Yτ and 1≤i≤N, with parameter κ, are defined by:


px⊗SDi=∂∂xipx⊗S+κ∑j≠i,j=1Npx−pxi,jxi−xj⊗Sτi,j,px⊗SUi=xipx⊗SDi−κ∑j<ipxi,j⊗Sτi,j.











Each of the sets Di and Ui consists of pairwise commuting elements. There is a basis of Pτ consisting of homogeneous polynomials each of which is a simultaneous eigenfunction of Ui; these are the nonsymmetric Jack polynomials. For each α,S∈N0N×Yτ, there is the polynomial:


Jα,S=xα⊗Sτrα+∑β◃αxβ⊗vα,β,Sκ,



(4)




where vα,β,Sκ∈Vτ; these coefficients are rational functions of κ. These polynomials satisfy:


Jα,SUi=ζα,SiJα,S,ζα,Si:=αi+1+κcrαi,S,1≤i≤N.











The spectral vector is ζα,Sii=1N. For detailed proofs, see [7].



We are concerned with the special case α=m,0,…,0∈N0N. We apply formulas from [3] to analyze Jα,SDi.



Proposition 1

([3], Cor. 6.2). Suppose β,S∈N0N×Yτ and βj=0 for j≥k with some fixed k>1, then Jβ,SDj=0 for all j≥k.





The next result, uses the inner product on Jack polynomials for partition labels β. The Pochhammer symbol is an=∏i=1na+i−1.



Proposition 2.

Suppose β∈N0N,+ and S∈Yτ, then:


Jβ,S2=⟨S,S⟩0∏i=1N1+κci,Sβi×∏1≤i<j≤N∏ℓ=1βi−βj1−κℓ+κci,S−cj,S2.













Corollary 1.

Suppose α=m,0,…,0, then:


Jα,S2=⟨S,S⟩01+κc1,Sm∏j=2N∏ℓ=1m1−κℓ+κc1,S−cj,S2.













These norm formulas are the results of Griffeth [1] specialized to the symmetric groups. The final ingredient for the formula is a special case of [3], Theorem 6.3.



Proposition 3.

Suppose α=m,0,…,0 and α^=m−1,0,…,0, then:


Jα,SD1=Jα,S2Jα^,S2Jα^,S=m+κc1,S∏j=2N1−κm+κc1,S−cj,S2Jα^,S.



(5)









Proof. 

The first line comes from [3], Theorem 6.3. Then, the norm ratios are computed, which involves much cancellation. □





Denote the prefactor of Jα^,S in Equation (5) by CS,mκ. Our interest is in the zeros of CS,mκ as a function of κ. We will see that CS,mκ depends only on τ and the location of the entry 1 in S. The idea is to group entries of S by row and use telescoping properties. There is a simple formula (proven inductively):


∏i=abgi+1gi−1gi2=ga−1gb+1gagb








where g is a function on Z and a≤b. For the present application, set gi=m+κc1,S−i.



Definition 1.

The partition τ^∈N0N,+ is obtained from τ by removing the box row1,S,col1,S: for 1≤i≤ℓτ, set τ^i=τi−1 if row1,S=i, otherwise set τ^i=τi.





The part of the product in CS,mκ coming from row #i has cj,S ranging from 1−i–τ^i−i, so the corresponding subproduct is:


∏j=1−iτ^i−igj+1gj−1gj2=g−igτ^i−i+1g1−igτ^i−i.











Multiply these factors for i=1,2,…ℓτ; note that:


∏i=1ℓτg−ig1−i=g−ℓτg0=m+κc1,S+ℓτm+κc1,S,








and thus:


CS,mκ=m+κc1,S+ℓτ∏i=1ℓτm+κc1,S−τ^i+i−1m+κc1,S−τ^i+i.



(6)







As stated before, the formula depends only on τ and the location of the entry 1 S. More simplification is possible due to telescoping if some τ^i’s are equal. Next, we formalize the set of indices of the parts of a partition, which can be increased by one while maintaining the partition (nonincreasing) property.



Definition 2.

For τ^ as in Definition 1, define the increasing sequence Iτ^=i1,i2,…,ik such that i1=1, and 2≤s≤k implies τ^is<τ^is−1 and τ^j=τ^is−1 for is−1≤j<is. The last element ik=ℓτ+1. Let Zτ^=τ^is+1−is:1≤s≤k−1∪−ℓτ:τ^ℓτ≥1 (the latter set is omitted when τ^ℓτ=0).





Example 1.

Suppose τ^=5,5,4,4,4,3,3,2,1, then Iτ^=1,3,6,8,9,10 and Zτ^=5,2,−2,−5,−7,−9. If τ^=5,5,4,4,4,3,3,3,0, then Iτ^=1,3,6,9 and Zτ^=5,2,−2,−8.





Let S^ denote the tableau formed by deleting the box row1,S,col1,S from S. The key property of Iτ^ is that it controls the possible locations where a box containing 1 could be adjoined to S^ to form an RSYT. These locations are 1,τ^1+1,…,is,τ^is+1,…. If τ^ℓτ=0, then the last location is ℓτ,1, otherwise it is ℓτ+1,1. Thus, Zτ^ is the set of contents of locations in the list. Evaluate the part of the product in Formula (6) for the range is≤j<is+1 to obtain:


∏j=isis+1−1m+κc1,S−τ^is+j−1m+κc1,S−τ^is+j=m+κc1,S−τ^is+1−ism+κc1,S−τ^is+1−is+1.











This completes the proof of the following:



Proposition 4.

For τ^ and Iτ^ as in Definitions 1 and 2:


CS,mκ=m+κc1,S+ℓτ∏s=1k−1m+κc1,S−τ^is+1−ism+κc1,S−τ^is+1−is+1,








where ik=ℓτ+1.





If τ^ℓτ=0, then the entry at ℓτ,1 is 1, c1,S=1−ℓτ, ik−1=ℓτ, and the last factor in the product (for s=k−1) equals mm+κ, thus canceling out the leading factor m+κc1,S+ℓτ=m+κ.



Lemma 1.

Suppose 1≤a,b≤k−1, then τ^ia−ia≠τ^ib−ib+1.





Proof. 

By construction, the sequence τ^iaa≥1 is strictly decreasing, and the sequence iaa≥1 is strictly increasing. Suppose for some a,b, the equation τ^ia−ia=τ^ib−ib+1 holds, that is ia−ib+1=τ^ia−τ^ib. Clearly, a=b or a=b+1 is impossible. Suppose, ia−ib+1>0, then b<b+1<a, implying τ^ia−τ^ib<0, a contradiction. Similarly, suppose ia−ib+1<0, then a<b+1; furthermore, that a<b since a=b is impossible, thus τ^ia−τ^ib>0, again a contradiction. This completes the proof. □





Proposition 5.

The set of zeros of Cm,Sκ is:


−mc1,S−z:z∈Zτ^,z≠c1,S.













Proof. 

None of the numerator factors in the product are canceled out due to Lemma 1. The only possible cancellation occurs for τ^ℓτ=0 when c1,S is the last entry in the list Zτ^. □





Example 2.

Let N=7,τ=5,5,5,4,4,2,2 and row1,S,col1,S=3,5, then τ^=5,5,4,4,4,2,2. The possible locations where the box containing 1 could be adjoined to τ^ are 1,6,3,5,6,3,8,1, so that Zτ^=5,2,−3,−7 and:


CS,mκ=mm−3κm+5κm+9κm−κm+3κm+7κ.











Here is a sketch of τ^ marked by □ and the possible cells for the entry 1:


□□□□□1□□□□□□□□□1□□□□□□□□□□1□□1













In a later section, we examine the relation to singular polynomials of the form Jα,S.




3.2. Macdonald Polynomials


Adjoin the parameter q. To say that q,t is generic means that q≠1,qatb≠1 for a,b∈Z and −N≤b≤N. Besides the operators Ti defined in (3), we introduce (for p∈P,S∈Yτ):


ω:=T1T2⋯TN−1,px⊗Sw:=pqxN,x1,…,xN−1⊗Sτω.











Thus, ω is an element of HNt analogous to the cyclic shift, and w is an operator on Pτ. The Cherednik ξi and Dunkl Di operators, for 1≤i≤N, are defined by:


ξi:=ti−NTi−1−1⋯T1−1wTN−1⋯Ti,DN:=1−ξN/xN,Di:=1tTiDi+1Ti.











These definitions were given for the scalar case by Baker and Forrester [8] and extended to vector-valued polynomials by Luque and the author [2]. The operators ξi:1≤i≤N commute pairwise, while the operators Di:1≤i≤N commute pairwise and map Pn⊗Vτ to Pn−1⊗Vτ for n≥0. A polynomial p∈Pτ is singular for some particular value of q,t if pDi=0, evaluated at q,t, for all i. There is a basis of Pτ consisting of homogeneous polynomials each of which is a simultaneous eigenfunction of ξi; these are the nonsymmetric Macdonald polynomials. For each α,S∈N0N×Yτ, there is the polynomial:


Mα,S=qqtbxα⊗SτRα+∑β⊲αxβ⊗vα,β,Sq,t;








here, vα,β,Sq,t∈Vτ and Rα:=TiiTi2⋯Tim−1 where α.si1si2⋯sim=α+, and there is no shorter product sj1sj2⋯ having this property (that is, m=#i,j:i<j,αi<αj), a,b∈Z (see [4], p. 19, for the values of a,b, which are not needed here). The eigenvector property is:


Mα,Sξi=ζ˜α,SiMα,S,ζ˜α,Si=qαitcrαi,S,1≤i≤N.











As before, ζ˜α,Sii=1N is called the spectral vector (the tilde indicates the q,t-version). We consider the special case α=m,0,…,0.



Proposition 6

([4], Prop.12). Suppose β,S∈N0N×Yτ and βj=0 for j≥k with some fixed k>1, then Mβ,SDj=0 for all j≥k.





Adapting to the proof of [4], Lemma 5, we show (recall (2) uz=t−z1−tz1−z2):



Proposition 7.

Let α=m,0,…, α′=0,0,…,m and S∈Yτ, then:


Mα,SD1=t1−N∏j=1N−1uqmtc1,S−cj+1,SMα′,SDNTN−1⋯T1.













The other ingredient is the affine step (from the Yang–Baxter graph; see [4], 3.14 [2]): for β∈N0N, set βΦ:=β2,β3,…,βN,β1+1, then MβΦ,S=xNMβ,Sw. The spectral vector of βΦ is ζ˜β,S2,…,ζ˜β,SN,qζ˜β,S1. Observe that α^Φ=α′ for α^=m−1,0,…. By definition:


Mα′,SDN=1xNMα′,S1−ξN=1xN1−ζ˜α′,SNMα′,S=1−ζ˜α′,SNMα^,Sw=1−qζ˜α^,S1Mα^,Sw.











Furthermore, 1−qζ˜α^,S1=1−qmtc1,S and wTN−1⋯T1=tN−1ξ1, so that Mα^,Sξ1=qm−1tc1,SMα^,S.



Proposition 8.

Let α=m,0,…, α^=m−1,0,…,0 and S∈Yτ, then:


Mα,SD1=qm−1tc1,S1−qmtc1,S∏j=2Nuqmtc1,S−cj,SMα^,S.



(7)









This is very similar to the Jack case (5), and the same telescoping argument will be used. Denote the factor of Mα^,S in (7) by CS,mq,t. Set gi=1−qmtc1,S−i for i∈Z, then:


uqmtc1,S−cj,S=tgcj,S−1gcj,S+1gcj,S2.











With the same notation for τ^ as in Definition 1:


CS,mq,t=qm−1tc1,S+N−11−qmtc1,S∏i=1ℓτg−ig1−igτ^i−i+1gτ^i−i=qm−1tc1,S+N−11−qmtc1,Sg−ℓτg0∏i=1ℓτgτ^i−i+1gτ^i−i=qm−1tc1,S+N−11−qmtc1,S+ℓτ∏i=1ℓτgτ^i−i+1gτ^i−i.











The same computational scheme as in Proposition 4 proves the following:



Proposition 9.

For τ^ and Iτ^ as in Definitions 1 and 2:


CS,mq,t=qm−1tc1,S+N−11−qmtc1,S+ℓτ∏s=1k−11−qmtc1,S−τ^is+1−is1−qmtc1,S−τ^is+1−is+1,








where ik=ℓτ+1.





If τ^ℓτ=0, then the entry at ℓτ,1 is 1, c1,S=1−ℓτ, ik−1=ℓτ, and the last factor in the product (for s=k−1) equals 1−qm1−qmt, thus canceling out the leading factor 1−qmtc1,S+ℓτ=1−qmt.



Proposition 10.

The set of zeros of Cm,Sq,t is:


qmtc1,S−z=1:z∈Zτ^,z≠c1,S.



(8)









Proof. 

None of the numerator factors in the product are canceled out due to Lemma 1. The only possible cancellation occurs for τ^ℓτ=0 when c1,S is the last entry in the list Zτ^. □





Example 3.

Let N=7,τ=5,5,4,4,4,3,2 and row1,S,col1,S=6,3, then τ^=5,5,4,4,4,2,2. This is the same τ^ as in Example 2, and Zτ^=5,2,−3,−7. The same diagram applies here. Then:


CS,mq,t=qm−1t41−qm1−qmt−81−qmt−51−qmt41−qmt−61−qmt−21−qmt2.













In the next section, we will see under what conditions Mα,S is singular.





4. Singular Polynomials


For α=m,0,…∈N0N,+,α^=m−1,0,… and S∈Yτ, we have shown:


Jα,SDi=0,Mα,SDi=0,2≤i≤N;Jα,SD1=CS,mκJα^,S,Mα,SD1=CS,mq,tMα^,S,








and we determined the zeros of CS,mκ and CS,mq,t. However, not all zeros lead to singular polynomials because, in general, the coefficients of Jβ,S (with respect to the monomial basis xγ⊗S′) have denominators of the form a+bκ and the coefficients of Mβ,S have denominators of the form 1−qatb where a,b∈Z and b≤N. Thus, to be able to substitute κ=κ0, a zero of CS,mκ, or q,t=q0,t0, a zero of CS,mq,t, in Equations (5) and (7) to conclude that Jα,S or Mα,S are singular, it is necessary to show that neither Jα,S nor Jα^,S have a pole at κ=κ0; the analogous requirement applies to Mα,S and Mα^,S. From the triangularity of Jβ,S and Mβ,S with respect to the monomial basis, we can deduce that:


xλ⊗S=Jλ,S+∑γ⊲λ,S′∈Yτbλ,γ,S,S′κJγ,S′,xλ⊗S=cMλ,S+∑γ⊲λ,S′∈Yτbλ,γ,S,S′q,tMγ,S′,








where λ∈N0N,+, the coefficients bλ,γ,S,S′κ,bλ,γ,S,S′q,t are rational functions of κ,q,t, respectively, and c=qatb for some integers a,b. If one can show that for each γ,S′ with γ⊲λ that the spectral vector is distinct from that of λ,S, that is ζγ,S′ii=1N≠ζλ,Sii=1N when evaluated at the specific values of κ or q,t (with ζ˜), then Jλ,S, respectively Mλ,S, does not have a pole there. The following is a device for analyzing possibly coincident spectral vectors.



Definition 3.

Let β,S,γ,S′∈N0N×Yτ such that β⊳γ, and let m,n∈Z with m≥1,n≠0. Then, β,S,γ,S′ is an m,n-critical pair if there is v∈ZN such that βi−γi=mvi and crβi,S−crγi,S′=nvi for 1≤i≤N.





Lemma 2.

Let β,S,γ,S′∈N0N×Yτ such that β⊳γ and ζβ,Si=ζγ,S′i for all i when κ=−mn, with gcdm,n=1, then β,S,γ,S′ is an m,n-critical pair.





Proof. 

By hypothesis 1+βi−mncrβi,S=1+γi−mncrγi,S′ for 1≤i≤N; thus:


βi−γi=mnrβi,S−crγi,S′,nβi−γi=mrβi,S−crγi,S′.











From gcdm,n=1, it follows that βi−γi=mvi for some vi∈Z, and thus, rβi,S−crγi,S′=nvi. □





Now, we specialize to α=m,0,… as in Section 3.1 and n satisfying CS,m−mn=0. By Proposition 5, this is equivalent to n=c1,S−z with z∈Zτ^.



Proposition 11.

There are no m,n-critical pairs α,S,γ,S′.





Proof. 

Suppose that γ⊴α and αi−γi=mvi,ci,S−crγi,S′=nvi with vi∈Z, and 1≤i≤N. From γ=α=m and αj=m or =0, it follows that γk=m for some k and γi=0 for i≠k. If k=1, then zi=0 for all i and ci,S=crγi,S′=ci,S′, because γ∈N0N,+. The content vector determines S′ uniquely, and thus, S′=S and γ=α. Now, suppose k>1, then v1=1,vk=−1, and vi=0 otherwise. The respective content vectors are:


ci,Si=1N=c1,S,c2,S,…,ck,S,ck+1,S,…,cN,S,crγi,S′i=1N=c2,S′,c3,S′,…,c1,S′,ck+1,S′,…,cN,S′.











The hypothesis on γ implies ci,S′=ci−1,S for i=3≤i≤k, ci,S′=ci,S for k+1≤i≤N, and c2,S′=c1,S−n, c1,S′=ck,S+n. Since S and S′ are both of shape τ, the two content vectors are permutations of each other. The list of values c3,S′,…,cN,S′ agrees with c2,S,…,ck−1,S,ck+1,S…,cN,S; thus, c1,S,ck,S and c1,S′,c2,S′ contain the same two numbers. Since c2,S′=c1,S−n≠c1,S, the equation c1,S=c1,S′ must hold. The possible locations of the entry 1 in a RSYT must have different contents (else they would be on the same diagonal i,j:j−i=c1,S). Thus, row1,S′,col1,S′=row(1,S,col1,S), and S and S′ lead to the same τ^ (the partition formed by removing the cell of 1 from τ). By construction n=z, for some z∈Zτ^, and z determines a cell is,τ^is+1 where 1 can be attached to the part of S′ containing 2,3,…,N to form a new RSYT S′′. By construction, c1,S′′=z=c1,S−n=c2,S′=c2,S′′. It is impossible for c1,S′′=c2,S′′ for any RSYT; thus, γ≠α cannot occur. □





The same problem for α^=m−1,0,… is almost trivial.



Lemma 3.

Suppose S′∈Yτ, γ=m−1 and α^i−γi=mvi,ci,S−crγi,S′=nvi with vi∈Z, and 1≤i≤N. Then, α^,S=γ,S′.





Proof. 

The hypothesis γ=m−1 implies γi≤m−1, and thus, α^i−γi≤m−1 for all i. This implies vi=0 for all i implying γ=α^ and cj,S=cj,S′ for all j; thus, S=S′. □





Proposition 12.

Suppose β,S∈N0N×Yτ, gcdm,n=1 and there are no m,n-critical pairs β,S,γ,S′, then Jβ,S has no poles at κ=−mn.





Proof. 

By the triangularity of Formula (4), there is an expansion:


xβ⊗Sτrβ=Jβ,S+∑γ⊲β,S′∈Yτbβ,γ,S,S′κJγ,S′.











By Lemma 2, for each γ⊲β,S′∈Yτ, there is at least one i=iγ,S′ such that ζβ,Si−ζγ,S′i≠0 when κ=−mn. Define an operator:


T:=∏γ⊲β,S′∈YτUiγ,S′−ζγ,S′iγ,S′ζβ,Siγ,S′−ζγ,S′iγ,S′.











Then, Jβ,ST=Jβ,S, and each Jγ,S′ (with γ⊲β) is annihilated by at least one factor of T. Thus, Jβ,S=xβ⊗SτrβT, a polynomial whose coefficients have denominators that are factors of ∏γ⊲β,S′∈Yτζβ,Siγ,S′−ζγ,S′iγ,S′. By construction of iγ,S′, this product does not vanish at κ=−mn. □





We are ready for the main result on Jack polynomials.



Theorem 1.

Suppose α=m,0,…,S∈Yτ and Zτ^ is as in Definition 2. Further, suppose z∈Zτ^, n:=c1,S−z≠0, and gcdm,n=1, then Jα,S is a singular polynomial for κ=−mn.





Proof. 

From Proposition 1, Jα,SDj=0 for 2≤j≤N and Jα,SD1=CS,mκJα^,S, where α^=m−1,0,…. By Propositions 11 and 12 and Lemma 3, Jα,S and Jα^,S do not have poles at κ=−mn. Furthermore, CS,m−mn=0, and thus, Jα,SD1=0 at κ=−mn. □





To set up the analogous results for Macdonald polynomials, consider the differences between two spectral vectors: ζ˜β,Si−ζ˜γ,S′i=qβitcrβi,S−qγitcrγi,S′=qγitcrγi,S′qβi−γitcrγi,S′−crγi,S′−1. To relate this to m,n-critical pairs, we specify a condition on q,t, which implies a=mv and b=nv for some v∈Z when qatb=1.



Definition 4.

Suppose m,n are integers such that m≥1,n≠0 and gcdm,n=g≥1. Let u∈C∖0 such that u is not a root of unity and ω=exp2πikm with gcdk,g=1. Define ϖ=q,t=ωu−n/g,um/g.





Lemma 4.

Suppose a,b are integers such that qatb=1 at q,t=ϖ, then a=mv,b=nv for some v∈Z.





Proof. 

By the hypothesis:


1=ωu−n/gaum/gb=ωau−na+mb/g.











Since u is not a root of unity, it follows that −ang+bmg=0, but gcdng,mg=1; thus, mg divides a. Write a=mgc for some integer c, then 1=ωa=exp2πikmmcg=exp2πikcg. This implies c=vg with v∈Z because exp2πikg is a primitive gth root of unity. Thus, a=mgvg=mv and b=nma=nv. □





Remark 1.

All the possible values of ϖ are included when (1) g>1 and ω=exp2πikm with gcdk,g=1 and 1≤k<g (2) g=1 and ω=1. To prove this, let u=ϕv with ϕ=exp2πiglm and l∈Z so that um/g=vm/g. Then, q=ωϕ−n/gv−n/g=exp2πik−nlmv−n/g. Since gcdm,n=g, there are integers s,s′ such that s′m+sn=g. Set l=s′′s (with s′′∈Z), then k−nl=k−s′′g+s′′s′m; thus, ωϕ−n/g=exp2πik−s′′gm. If g>1, then let s′′=kg+1, implying 1≤k−s′′g<g, while if g=1, set s′′=k.





Example 4.

Suppose m=8 and n=−12, then g=4, and the possible values of ϖ are expπi4u3,u2 and exp3πi4u3,u2, where u is not a root of unity.





We will use this result to produce singular polynomials Mα,S for q,t=ϖ.



Lemma 5.

Let β,S,γ,S′∈N0N×Yτ such that β⊳γ and ζ˜β,Si=ζ˜γ,S′i for all i when q,t=ϖ, then β,S,γ,S′ is an m,n-critical pair.





Proof. 

The equation ζ˜β,Si=ζ˜γ,S′i is qβitcrβi,S=qγitcrγi,S′, that is qβi−γitcrβi,S−crγi,S′=1 at q,t=ϖ. By Lemma 4, there is an integer vi such that βi−γi=mvi and crβi,S−crγi,S′=nvi. This argument applies to all i. □





Proposition 13.

Suppose β,S∈N0N×Yτ and there are no m,n-critical pairs β,S,γ,S′, then Mβ,S has no poles at q,t=ϖ.





Proof. 

The proof is essentially identical to that of Proposition 12. There, replace xβ⊗Sτrα by qatbxβ⊗SτRβ (with the appropriate prefactor qatb), J by M, ζ by ζ˜, and Ui by ξi. The formula shows that Mβ,S is a polynomial, the denominators of the coefficients of which are products of factors with the form qβitb−qγitb′, and none of these vanish at q,t=ϖ. □





This is our main result for the Macdonald polynomials.



Theorem 2.

Suppose α=m,0,…,S∈Yτ and Zτ^ is as in Definition 2. Further, suppose z∈Zτ^, n:=c1,S−z≠0, then Mα,S is a singular polynomial for q,t=ϖ.





Proof. 

From Proposition 6 Mα,SDj=0 for 2≤j≤N and Mα,SD1=CS,mq,tMα^,S, where α^=m−1,0,…. By Propositions 11 and 13 and Lemma 3, Mα,S and Mα^,S do not have poles at q,t=ϖ. Furthermore, CS,mωu−n/g,um/g=0 (due to the factor 1−qmtc1,S−z, Proposition 10), and thus, Mα,SD1=0 at q,t=ϖ. □





4.1. Isotype of Singular Polynomials


The following discussion is in terms of Macdonald polynomials. It is straightforward to deduce the analogous results for Jack polynomials. Suppose σ is a partition of N. A basis pS:S∈Yσ of an HNt-invariant subspace of Pτ is called a basis of isotype σ if each pS transforms under the action of Ti defined in Section 2 with σTi replaced by Ti. For example, if rowi,S=rowi+1,S, then pSxsi=pSx; equivalently, pSTi=tpS, or if coli,S=coli+1,S, then pSTi=−pS. There is a strong relation to singular polynomials.



Proposition 14.

A polynomial p∈Pτ is singular for a specific value of q,t=ψ if and only if pξi=pϕi for 1≤i≤N, evaluated at ψ.





Proof. 

Recall the Jucys–Murphy elements ϕi from (1). By definition, pDN=0 if and only if pξN=p=pϕN. Proceeding by induction, suppose that pDj=0 for i<j≤N if and only if pξj=pϕj for i<j≤N. Suppose:


0=pDi=1tpTiDi+1Ti⟺pTiDi+1=0⟺pTiξi+1=pTiϕi+1⟺pTiξi+1Ti=pTiϕi+1Ti⟺tpξi=tpϕi.











This completes the proof. □





With Mα,S and n as in Theorem 2, the spectral vector ζ˜α,Sii=1N=qmtc1,S,tc2,S,…,tcN,S. Specialized to q,t=ϖ, the polynomial Mα,S is singular and qmtc1,S=t−n+c1,S. Recall n=z for some z∈Zτ^, and z determines a cell is,τ^is+1. In terms of Ferrers diagrams, let σ=τ^∪is,τ^is+1, that is σis=τis+1. Let S′ denote the RSYT formed from the cells of τ containing the numbers 2,…,N and the cell is,τ^is+1 containing 1. Then, ci,S′=ci,S for 2≤i≤N and c1,S′=c1,S−n. Thus, the spectral vector of Mα,S evaluated at q,t=ϖ is tci,S′i=1N. This implies that Mα,S is (a basis element) of isotype σ. The other elements of the basis corresponding to Yσ are obtained from Mα,S by appropriate transformations using Ti.





5. Concluding Remarks


We have shown the existence of singular vector-valued Jack and Macdonald polynomials for the easiest possible values of the label α, that is m,0,…,0. The proofs required some differentiation formulas and combinatorial arguments involving Young tableaux. The singular values were found to have an elegant interpretation in terms of where another cell can be attached to an RSYT. It may occur that a larger set of parameter values, say gcdm,n>1 or even mn∉Z, still leads to singular Jack polynomials, but our proof techniques do not seem to cover these. One hopes that eventually, a larger class of examples (more general labels in N0N) will be found, with a target of a complete listing as is already known for the trivial representation τ=N. It is suggestive that the isotype σ of the singular polynomial Mα,S is obtained by a reasonably natural transformation of the partition τ.
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