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Abstract: Picture fuzzy model is a generalized structure of intuitionistic fuzzy model in the sense
that it not only assigns the membership and nonmembership values in the form of orthopair
(µ, ν) to an element, but it assigns a triplet (µ, η, ν), where η denotes the neutral degree and the
difference π = 1− (µ + η + ν) indicates the degree of refusal. The q-rung picture fuzzy set(q-RPFS)
provides a wide formal mathematical sketch in which uncertain and vague conceptual phenomenon
can be precisely and rigorously studied because of its distinctive quality of vast representation
space of acceptable triplets. This paper discusses some properties including edge regularity, total
edge regularity and perfect edge regularity of q-rung picture fuzzy graphs (q-RPFGs). The work
introduces and investigates these properties for square q-RPFGs and q-RPF line graphs. Furthermore,
this study characterizes how regularity and edge regularity of q-RPFGs structurally relate. In addition,
it presents the concept of ego-networks to extract knowledge from large social networks under q-rung
picture fuzzy environment with algorithm.

Keywords: q-rung picture fuzzy graphs; edge regular; perfect edge regular; square q-rung picture
fuzzy graphs; q-rung picture fuzzy line graphs; ego networks

1. Introduction

Fuzzy sets (FSs), coined by Zadeh [1], have become one of the emerging areas in contemporary
technologies of information processing. Recent studies spread across various areas from control, pattern
recognition, and knowledge-based systems to computer vision and artificial life. Fuzzy sets implicate
capturing, portraying and dealing with linguistic notions-items with indefinite boundaries and thus
it came forth as a new approach to incorporate uncertainty. Picture fuzzy sets (PFSs), created by
Cuong [2,3], a direct extension of Atanassov’s [4] intuitionistic fuzzy sets (IFSs), which itself extends
the Zadeh’s notion of fuzzy sets, are the sets characterized by not only membership µ : X → [0, 1],
and nonmembership ν : X → [0, 1] functions but also neutral function η : X → [0, 1], where the
difference π = 1 − (µ + η + ν) is called refusal function. Thus PFSs may be satisfactory in cases
whenever expert’s evaluations are of types: yes, abstain, no, refusal. Cuong suggested ‘voting’ as
a paradigm of his proposed concept. Since picture fuzzy sets are suitable for capturing imprecise,
uncertain and inconsistent information, therefore they can be applied to many decision-making
processes such as: solution choice, financial forecasting, estimating risks in business etc. Son [5]
introduced some clustering algorithms based on picture fuzzy sets with applications to time series and
weather forecasting. Thong [6] developed a hybrid model relating picture fuzzy clustering for medical
diagnosis. There have been significant attempts which explored this concept, one can see [7–13]. It is
noteworthy that the constraint µ + ν ≤ 1 in IFS limits the selection of orthopairs from a triangular region.
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In order to increase the adeptness of IFS, Yager and Abbasov [14] proposed the notion of Pythagorean
fuzzy sets (PyFSs) in 2013, which replace the constraint of IFS with µ2 + ν2 ≤ 1. This notion also limits
the selection of orthopairs from unit circular region in the first quadrant. In 2017, Yager [15] introduced
q-rung orthopair fuzzy sets (q-ROFSs) as a new generalization of orthopair fuzzy sets (i.e., IFS and
PyFS), which further relax the constraint of orthopair membership grades with µ(x)q + ν(x)q ≤ 1 (q ≥ 1).
Analogously, since picture fuzzy sets confine the selection of triplets only from a tetrahedron, as shown
in Figure 1, the spherical fuzzy sets (SFSs), proposed by Gündoğdu and Kahraman [16], have given
strength to the idea of picture fuzzy sets. Although both PFS and SFS can easily reflect the ambiguous
character of subjective assessments, they still have apparent variations. The membership functions
µ, η, and ν of PFSs are required to meet the condition µ + η + ν ≤ 1. However, these functions in SFSs
satisfy the constraint µ2 + η2 + ν2 ≤ 1. Which indicates that SFSs somehow expanded the space of
admissible triplets. In 2018, Li et al. [17] proposed the q-RPFS model which inherits the virtues of
both q-ROFS and PFS. Being a suitable model for capturing imprecise and inconsistent data, it not
only assigns three membership degrees to an element, but also alleviate the constraint of picture and
spherical fuzzy sets to a great extent with µ(u)q + η(u)q + ν(u)q ≤ 1 (q ≥ 1). Figure 1 shows that the
space of admissible triplets expands with increasing q. For example, if an expert provides the positive,
neutral and negative membership values to an object as 0.9, 0.7 and 0.5, respectively. It is immediately
seen that 0.9 + 0.7 + 0.5 ≥ 1, and 0.92 + 0.72 + 0.52 ≥ 1. Such a case can neither be explained by PFS
nor by SFS. However, it is appropriate to use q-RPFS because 0.9q + 0.7q + 0.5q ≤ 1 for sufficiently
large value of q. Thus immense number of triplets are qualified for q-RPF model due to its elastic
bounding constraint. It can be observed that the surface µ(u)q + η(u)q + ν(u)q ≤ 1 bounds a portion
of first octant, whose volume approaches to the unit cube’s volume as the parameter q approaches
to infinity. Of course the constraint condition of q-RPF model provides a sense of interdependence
of membership functions µ, η and ν. This fact makes this notion considerably more close to natural
world than that of prior notions. Some remarkable attempts can be seen in [18–21].

Graphs theory, a dynamic field in both theory and applications, allows graphs as the most
important abstract data structures in many fields. Graphs can not translate all the phenomenons of
real world scenarios adequately due to the uncertainty and vagueness of parameters. These positions
direct to define fuzziness in graph theoretic concepts. Zadeh [22] originated the idea of fuzzy relation.
Kaufmann [23] introduced fuzzy graph to state uncertainty in networks. Rosenfeld [24] presented
more concepts relating fuzzy graphs. Parvathi and Karunambigai introduced intuitionistic fuzzy
graphs(IFGs) [25]. Afterward, IFGs were examined by Akram and Davvaz [26]. Naz et al. [27]
discussed the notion of Pythagorean fuzzy graphs. Habib et al. [28] investigated q-ROFGs. The flexible
nature of these notions make them vast research area, so far in [29–34]. To manage the cases requiring
opinions of types: yes, abstain, no and refusal in graph-theocratic concepts in a broad manner, recently,
Akram and Habib [35] introduced the concept of q-RPFGs and defined their regularity. The concept
of regularity of fuzzy graphs has led to many developments in their structural theory as they play
important role in combinatorics and theoretical computer science. First, Gani and Radha [36] defined
degree, total degree and regularity of fuzzy graphs. Degree and total degree of an edge is introduced by
Radha and Kumaravel [37]. Cary [38] initiated the idea of perfectly regular and perfectly edge regular
fuzzy graphs. Several related works on regularity and edge regularity can be viewed in [35,39–46].
In this paper, we discuss some properties of q-RPFGs, namely edge regularity, total edge regularity and
perfect edge regularity. We introduce and investigate these properties for square q-RPFGs and q-RPF
line graphs. Furthermore, we provide a brief characterization on structural relationships between
regularity and edge regularity of several q-RPFGs. In addition, we present the idea of ego-networks to
extract knowledge from large social networks under q-rung picture fuzzy environment with algorithm,
as an application of the proposed concept.

We now review the concept of q-RPFS [17] which is necessary to proceed further.
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Definition 1. Let X be a universe of discourse. A q-rung picture fuzzy set(q-RPFS) P on X given by

P = {〈u, µP (u), ηP (u), νP (u)〉 | u ∈ X}

is characterized by a positive membership function µP : X → [0, 1], a neutral/abstinence membership function
ηP : X → [0, 1], and a negative membership function νP : X → [0, 1] such that 0 ≤ µ

q
P (u) + η

q
P (u) +

ν
q
P (u) ≤ 1 for all u ∈ X. Moreover, πP (u) = q

√
1− µ

q
P (u)− η

q
P (u)− ν

q
P (u) is called a q-rung picture

fuzzy index or degree of refusal membership of u to the set P , where q ≥ 1.

The q-rung picture fuzzy set based models may be satisfactory in conjunctures when human
opinions concerning responses: yes, abstain, no, and refusal are encountered. Voting can be considered
as a paradigm of such environments as human voters can be split into four classes of those who: vote
for, abstain, vote against, refusal of voting. The graphical structure of q-RPFS in Figure 1 provides a
gradual increase in spaces bounded by surfaces µ(x)q + η(x)q + ν(x)q = 1, obtained by varying q in the
first octant. For q = 1, the space bounded by surface x + y + z = 1 in the first octant is equivalent to the
volume occupied by a tetrahedron ABCD. For q = 2, the q-RPFS reduces to spherical fuzzy set which
covers more space of acceptable triplets than PFS as it is bounded by surface x2 + y2 + z2 = 1 in the first
octant, which is equivalent to the volume occupied by unit sphere in the first octant. It can be seen
that for q = 3, the q-RPFS can accept more triplets than picture and spherical fuzzy sets as it covers
up more space and for q = 4, the space of q-RPFS is vast than all preceding spaces. Since the volume
occupied by a surface covers the volume occupied by all prior surfaces; therefore, any element belongs
to a particular q-RPFS, must qualify for all picture fuzzy sets of higher rungs (i.e., greater than q).
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Figure 1. Comparison of Spaces of q-RPFS.

2. Edge Regular q-Rung Picture Fuzzy Graphs

In this section, we first provide some basic definitions relating regularity of q-RPFGs,
defined in [35], which will be used for further developments.

Definition 2. A q-rung picture fuzzy graph on a non-empty set X is a pair G = (P , Q) with P a q-rung
picture fuzzy set on X, and Q a q-rung picture fuzzy relation on X such that





µQ(uv) ≤ µP (u)∧ µP (v),
ηQ(uv) ≤ ηP (u)∧ ηP (v),
νQ(uv) ≤ νP (u)∨ νP (v),
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and 0 ≤ µ
q
Q(uv) + η

q
Q(uv) + ν

q
Q(uv) ≤ 1 for all u, v ∈ X, where µQ : X× X −→ [0, 1], ηQ : X× X −→

[0, 1] and νQ : X × X −→ [0, 1] represents the positive membership, neutral membership, and negative
membership functions of Q, respectively.

Example 1. Consider a graph G = (P, Q) such that P = {a, b, c, d, e} and Q = {ac, ad, bc, be, cd, ce} ⊆ P× P.
Let P be a 4-RPFS on P and Q be a 4-RPFR on P, defined by

P a b c d e
µP 0.8 0.7 0.55 0.7 0.9
ηP 0.7 0.85 0.8 0.9 0.4
νP 0.6 0.67 0.77 0.5 0.55

Q ac ad bc be cd ce
µQ 0.5 0.6 0.55 0.7 0.5 0.5
ηQ 0.7 0.7 0.8 0.3 0.8 0.25
νQ 0.65 0.6 0.56 0.65 0.66 0.75

Routine computations show that G = (P , Q), displayed in Figure 2, is a 4-RPFG.
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Figure 2.1: A 4-RPFG G

Routine computations show that G = (P,Q), displayed in Figure 2.1, is a 4-RPFG.

Definition 2.2. Let G = (P,Q) be a q-RPFG on underlying crisp graph G = (P,Q). If
µQ(uv) = µP(u) ∧ µP(v), ηQ(uv) = ηP(u) ∧ ηP(v) and νQ(uv) = νP(u) ∨ νP(v) for all uv ∈ Q, then
G = (P,Q) is called a strong q-rung picture fuzzy graph.

Definition 2.3. Let G = (P,Q) be a q-RPFG on underlying crisp graph G = (P,Q). If
µQ(uv) = µP(u) ∧ µP(v), ηQ(uv) = ηP(u) ∧ ηP(v) and νQ(uv) = νP(u) ∨ νP(v) for all u, v ∈ P , then
G = (P,Q) is called a complete q-rung picture fuzzy graph.

Definition 2.4. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). The order of G is denoted by O(G ),
and defined as

O(G ) =

( ∑

u∈P

µP(u),
∑

u∈P

ηP(u),
∑

u∈P

νP(u)

)
.

Definition 2.5. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). The size of G is denoted by S(G ), and
defined as

S(G ) =

( ∑

uv∈P

µQ(uv),
∑

uv∈P

ηQ(uv),
∑

uv∈P

νQ(uv)

)
.

Example 2.2. The order and size of q-rung picture fuzzy graph displayed in Figure 2.1 areO(G ) = (3.65, 3.65, 3.09)
and S(G ) = (3.35, 3.55, 3.12), respectively.

Definition 2.6. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). The degree of a vertex u of G is denoted
by dG (u) = (dµ(u), dη(u), dν(u)), and defined as

dG (u) =

( ∑

uv∈Q

µQ(uv),
∑

uv∈Q

ηQ(uv),
∑

uv∈Q

νQ(uv)

)
.

Definition 2.7. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). The total degree of a vertex u of G is
denoted by tdG (u) = (tdµ(u), tdη(u), tdν(u)), and defined as

tdG (u) =

( ∑

uv∈Q

µQ(uv) + µP(u),
∑

uv∈Q

ηQ(uv) + ηP(u),
∑

uv∈Q

νQ(uv) + νP(u)

)
.

Example 2.3. Consider a 4-RPFG G displayed in Figure 2.1. The degree, and total degree of vertex a in G is
given as dG (a) = (µQ(ac) + µQ(ad), ηQ(ac) + ηQ(ad), νQ(ac) + νQ(ad)) = (0.5 + 0.6, 0.7 + 0.7, 0.65+ 0.6) =
(1.1, 1.4, 1.25), and tdG (a) = (dµ(a)+µP(a), dη(a)+ηP(a), dν(a)+νP(a)) = (1.1+0.8, 1.4+0.7, 1.25+0.6) =
(1.9, 2.1, 1.85), respectively.

4

Figure 2. A 4-RPFG G .

Definition 3. Let G = (P , Q) be a q-RPFG on underlying crisp graph G = (P, Q). If µQ(uv) = µP (u) ∧
µP (v), ηQ(uv) = ηP (u)∧ ηP (v) and νQ(uv) = νP (u)∨ νP (v) for all uv ∈ Q, then G = (P , Q) is called a
strong q-rung picture fuzzy graph.

Definition 4. Let G = (P , Q) be a q-RPFG on underlying crisp graph G = (P, Q). If µQ(uv) = µP (u) ∧
µP (v), ηQ(uv) = ηP (u)∧ ηP (v) and νQ(uv) = νP (u)∨ νP (v) for all u, v ∈ P, then G = (P , Q) is called a
complete q-rung picture fuzzy graph.

Definition 5. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The order of G is denoted by O(G ),
and defined as

O(G ) =
(

∑
u∈P

µP (u), ∑
u∈P

ηP (u), ∑
u∈P

νP (u)
)

.

Definition 6. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The size of G is denoted by S(G ),
and defined as

S(G ) =
(

∑
uv∈P

µQ(uv), ∑
uv∈P

ηQ(uv), ∑
uv∈P

νQ(uv)
)

.

Example 2. The order and size of q-rung picture fuzzy graph displayed in Figure 2 are O(G ) = (3.65, 3.65, 3.09)
and S(G ) = (3.35, 3.55, 3.12), respectively.
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Definition 7. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The degree of a vertex u of G is denoted by
dG (u) = (dµ(u), dη(u), dν(u)), and defined as

dG (u) =
(

∑
uv∈Q

µQ(uv), ∑
uv∈Q

ηQ(uv), ∑
uv∈Q

νQ(uv)
)

.

Definition 8. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The total degree of a vertex u of G is
denoted by tdG (u) = (tdµ(u), tdη(u), tdν(u)), and defined as

tdG (u) =
(

∑
uv∈Q

µQ(uv) + µP (u), ∑
uv∈Q

ηQ(uv) + ηP (u), ∑
uv∈Q

νQ(uv) + νP (u)
)

.

Example 3. Consider a 4-RPFG G displayed in Figure 2. The degree, and total degree of vertex a in G is
given as dG (a) = (µQ(ac) + µQ(ad), ηQ(ac) + ηQ(ad), νQ(ac) + νQ(ad)) = (0.5 + 0.6, 0.7 + 0.7, 0.65 + 0.6) =
(1.1, 1.4, 1.25), and tdG (a) = (dµ(a) + µP (a), dη(a) + ηP (a), dν(a) + νP (a)) = (1.1 + 0.8, 1.4 + 0.7, 1.25 +
0.6) = (1.9, 2.1, 1.85), respectively.

Definition 9. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). If each vertex of G has same degree, that is,
dG (u) = (k1, k2, k3) for all u ∈ P, then G is called (k1, k2, k3)-regular q-RPFG.

Example 4. Consider a 3-RPFG G = (P , Q) as displayed in Figure 3.

Definition 2.8. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each vertex of G has same degree,
that is, dG (u) = (k1, k2, k3) for all u ∈ P, then G is called (k1, k2, k3)-regular q-RPFG.

Example 2.4. Consider a 3-RPFG G = (P,Q) as displayed in Figure 2.2.
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Figure 2.2: A regular 3-RPFG G

We see that the degree of each vertex in G is dG (a) = dG (b) = dG (c) = (0.4, 0.2.1.2). Hence G is (0.2, 0.1.0.6)-
regular.

Definition 2.9. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each vertex of G has same total
degree, that is, tdG (u) = (l1, l2, l3) for all u ∈ P, then G is called (l1, l2, l3)-totally regular q-RPFG.

Example 2.5. Consider a 2-RPFG G = (P,Q) as displayed in Figure 2.3.
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G is (1.1, 0.8.1.1)-totally regular 2-RPFG since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.1, 0.8.1.1).

Definition 2.10. A perfectly regular q-RPFG is a q-RPFG that is both regular and totally regular.

Example 2.6. Consider a 3-rung picture fuzzy graph G = (P,Q) as shown in Figure 2.4.
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Figure 2.4: Perfectly Regular 3-RPFG

5

Figure 3. A regular 3-RPFG G .

We see that the degree of each vertex in G is dG (a) = dG (b) = dG (c) = (0.4, 0.2, 1.2). Hence, G is
(0.2, 0.1, 0.6)-regular.

Definition 10. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). If each vertex of G has same total degree,
that is, tdG (u) = (l1, l2, l3) for all u ∈ P, then G is called (l1, l2, l3)-totally regular q-RPFG.

Example 5. Consider a 2-RPFG G = (P , Q) as displayed in Figure 4.
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Definition 2.8. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each vertex of G has same degree,
that is, dG (u) = (k1, k2, k3) for all u ∈ P, then G is called (k1, k2, k3)-regular q-RPFG.

Example 2.4. Consider a 3-RPFG G = (P,Q) as displayed in Figure 2.2.
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Figure 2.2: A regular 3-RPFG G

We see that the degree of each vertex in G is dG (a) = dG (b) = dG (c) = (0.4, 0.2.1.2). Hence G is (0.2, 0.1.0.6)-
regular.

Definition 2.9. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each vertex of G has same total
degree, that is, tdG (u) = (l1, l2, l3) for all u ∈ P, then G is called (l1, l2, l3)-totally regular q-RPFG.

Example 2.5. Consider a 2-RPFG G = (P,Q) as displayed in Figure 2.3.
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Figure 2.3: A totally regular 2-RPFG G

G is (1.1, 0.8.1.1)-totally regular 2-RPFG since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.1, 0.8.1.1).

Definition 2.10. A perfectly regular q-RPFG is a q-RPFG that is both regular and totally regular.

Example 2.6. Consider a 3-rung picture fuzzy graph G = (P,Q) as shown in Figure 2.4.
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Figure 4. A totally regular 2-RPFG G .

G is (1.1, 0.8.1.1)-totally regular 2-RPFG since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.1, 0.8, 1.1).

Definition 11. A perfectly regular q-RPFG is a q-RPFG that is both regular and totally regular.

Example 6. Consider a 3-rung picture fuzzy graph G = (P , Q) as shown in Figure 5.

Definition 2.8. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each vertex of G has same degree,
that is, dG (u) = (k1, k2, k3) for all u ∈ P, then G is called (k1, k2, k3)-regular q-RPFG.

Example 2.4. Consider a 3-RPFG G = (P,Q) as displayed in Figure 2.2.
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Figure 2.2: A regular 3-RPFG G

We see that the degree of each vertex in G is dG (a) = dG (b) = dG (c) = (0.4, 0.2.1.2). Hence G is (0.2, 0.1.0.6)-
regular.

Definition 2.9. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each vertex of G has same total
degree, that is, tdG (u) = (l1, l2, l3) for all u ∈ P, then G is called (l1, l2, l3)-totally regular q-RPFG.

Example 2.5. Consider a 2-RPFG G = (P,Q) as displayed in Figure 2.3.
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Figure 2.3: A totally regular 2-RPFG G

G is (1.1, 0.8.1.1)-totally regular 2-RPFG since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.1, 0.8.1.1).

Definition 2.10. A perfectly regular q-RPFG is a q-RPFG that is both regular and totally regular.

Example 2.6. Consider a 3-rung picture fuzzy graph G = (P,Q) as shown in Figure 2.4.
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5

Figure 5. Perfectly Regular 3-RPFG.

Clearly, 3-RPFG G is regular since dG (a) = dG (b) = dG (c) = dG (d) = (0.9, 1.6, 2.0), and is totally regular
since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.4, 2.2, 2.8). Hence, G is perfectly regular 3-RPFG.

Definition 12. A q-RPFG G = (P , Q) defined on G = (P, Q) is said to be partially regular if the underlying
graph G = (P, Q) is regular.

Definition 13. A q-RPFG G = (P , Q) defined on G = (P, Q), is said to be full regular if G is both regular,
and partially regular.

The concept of edge regularity has been explored by many researchers on fuzzy graphs, and
several of its generalizations. We now give a description on edge regular q-RPFGs. First, we state some
definitions in this context.

Definition 14. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The edge degree of uv in G is denoted by
dG (uv) = (dµ(uv), dη(uv), dν(uv)), and defined as

dG (uv) = dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv)).
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This is equivalent to

dG (uv) =
(

∑
uw∈Q

µQ(uw), ∑
uw∈Q

ηQ(uw), ∑
uw∈Q

νQ(uw)
)

+
(

∑
vw∈Q

µQ(vw), ∑
vw∈Q

ηQ(vw), ∑
vw∈Q

νQ(vw)
)

− 2(µQ(uv), ηQ(uv), νQ(uv))

=
(

∑
w 6=v

µQ(uw), ∑
w 6=v

ηQ(uw), ∑
w 6=v

νQ(uw)
)

+
(

∑
w 6=u

µQ(vw), ∑
w 6=u

ηQ(vw), ∑
w 6=u

νQ(vw)
)

.

Example 7. Consider a 4-RPFG G displayed in Figure 6.

Clearly, 3-RPFG G is regular since dG (a) = dG (b) = dG (c) = dG (d) = (0.9, 1.6, 2.0), and is totally regular
since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.4, 2.2, 2.8). Hence G is perfectly regular 3-RPFG.

Definition 2.11. A q-RPFG G = (P,Q) defined on G = (P,Q), is said to be partially regular if the underlying
graph G = (P,Q) is regular.

Definition 2.12. A q-RPFG G = (P,Q) defined on G = (P,Q), is said to be full regular if G is both regular,
and partially regular.

The concept of edge regularity has been explored by many researchers on fuzzy graphs, and several of its
generalizations. We now give a description on edge regular q-RPFGs. First we state some definitions in this
context.

Definition 2.13. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). The edge degree of uv in G is denoted
by dG (uv) = (dµ(uv), dη(uv), dν(uv)), and defined as

dG (uv) = dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv)).

This is equivalent to

dG (uv) =

( ∑

uw∈Q

µQ(uw),
∑

uw∈Q

ηQ(uw),
∑

uw∈Q

νQ(uw)

)
+

( ∑

vw∈Q

µQ(vw),
∑

vw∈Q

ηQ(vw),
∑

vw∈Q

νQ(vw)

)

− 2(µQ(uv), ηQ(uv), νQ(uv))

=

( ∑

w 6=v

µQ(uw),
∑

w 6=v

ηQ(uw),
∑

w 6=v

νQ(uw)

)
+

( ∑

w 6=u

µQ(vw),
∑

w 6=u

ηQ(vw),
∑

w 6=u

νQ(vw)

)
.

Example 2.7. Consider a 4-RPFG G displayed in Figure 2.5.
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Figure 2.5: A 4-RPFG G

The degree of edge ad in G can be computed as

dG (ad) = dG (a) + dG (d)− 2(µQ(ad), ηQ(ad), νQ(ad))

= (1.9, 1.7, 1.85)+ (1.26, 1.1, 1.12)− 2(0.6, 0.7, 0.6) = (1.96, 1.4, 1.77).

Theorem 2.1. [2] For any q-RPFG G = (P,Q) defined on P = {v1, v2, . . . , vn}, the following relation for
degrees of vertices of G must holds:

n∑

j=1

dG (vj) = 2

( n−1∑

j=1
i>j

µQ(vjvi),

n−1∑

j=1
i>j

ηQ(vjvi),

n−1∑

j=1
i>j

νQ(vjvi)

)

for all 1 ≤ i ≤ n.

The following theorem is developed to define a comprehensive relationship between the degrees of edges,
and the degrees of vertices of q-RPFGs.

6

Figure 6. A 4-RPFG G .

The degree of edge ad in G can be computed as

dG (ad) = dG (a) + dG (d)− 2(µQ(ad), ηQ(ad), νQ(ad))

= (1.9, 1.7, 1.85) + (1.26, 1.1, 1.12)− 2(0.6, 0.7, 0.6) = (1.96, 1.4, 1.77).

Theorem 1. [35] For any q-RPFG G = (P , Q) defined on P = {v1, v2, . . . , vn}, the following relation for
degrees of vertices of G must hold:

n

∑
j=1

dG (vj) = 2
( n−1

∑
j=1
i>j

µQ(vjvi),
n−1

∑
j=1
i>j

ηQ(vjvi),
n−1

∑
j=1
i>j

νQ(vjvi)
)

for all 1 ≤ i ≤ n.

The following theorem is developed to define a comprehensive relationship between the degrees
of edges, and the degrees of vertices of q-RPFGs.

Theorem 2. For any q-RPFG G = (P , Q) defined on P = {v1, v2, . . . , vn}, if
(µQ(vivj), ηQ(vivj), νQ(vivj)) 6= (0, 0, 0) for all vi , vj ∈ P (i 6= j), then the following relation for degrees of
edges of G must hold:

n−1

∑
i=1
j>i

dG (vivj) = (n− 2)
n

∑
i=1

dG (vi)

for all 1 ≤ j ≤ n. That is, the sum of degrees of all edges is equal to (n− 2) times the sum of degrees of all
vertices of G .



Symmetry 2019, 11, 489 8 of 37

Proof. Let P = {v1, v2, . . . , vn}, and G = (P , Q) be a q-RPFG defined on G = (P, Q). The degree of an
edge vivj of q-RPFG G can be defined as

dG (vivj) = dG (vi) + dG (vj)− 2(µQ(vivj), ηQ(vivj), νQ(vivj)),
n

∑
i,j=1
i 6=j

dG (vivj) =
n

∑
i,j=1
i 6=j

dG (vi) +
n

∑
i,j=1
i 6=j

dG (vj)− 2
n

∑
i,j=1
i 6=j

(µQ(vivj), ηQ(vivj), νQ(vivj)).

For all 1 ≤ j ≤ n, we have

2
n−1

∑
i=1
j>i

dG (vivj) = (n− 1)
n

∑
i=1

dG (vi) + (n− 1)
n

∑
j=1

dG (vj)− 2
(

2
n−1

∑
i=1
j>i

(µQ(vivj), ηQ(vivj), νQ(vivj))
)

,

2
n−1

∑
i=1
j>i

dG (vivj) = 2(n− 1)
n

∑
i=1

dG (vi)− 2
[

2
( n−1

∑
i=1
j>i

µQ(vivj),
n−1

∑
i=1
j>i

ηQ(vivj),
n−1

∑
i=1
j>i

νQ(vivj)
)]

,

2
n−1

∑
i=1
j>i

dG (vivj) = 2(n− 1)
n

∑
i=1

dG (vi)− 2
n

∑
i=1

dG (vi), using Theorem 1,

n−1

∑
i=1
j>i

dG (vivj) = (n− 2)
n

∑
i=1

dG (vi).

This completes the proof.

Next, we state some well known results regarding degrees of edges in q-RPFGs.

Theorem 3. Let G = (P , Q) be a q-RPFG on a cycle G = (P, Q). Then,

∑
vi∈P

dG (vi) = ∑
vivj∈Q

dG (vivj).

Theorem 4. Let G = (P , Q) be a q-RPFG on G = (P, Q). Then,

∑
vivj∈Q

dG (vivj) = ∑
vivj∈Q

dG(vivj) (µQ(vivj), ηQ(vivj), νQ(vivj)),

where dG(vivj) = dG(vi) + dG(vj)− 2 for all vi , vj ∈ P.

Theorem 5. Let G = (P , Q) be a q-RPFG on a k-regular graph G = (P, Q). Then,

∑
vivj∈Q

dG (vivj) = 2(k− 1) S(G ).

For proofs of above theorems, readers are referred to [37,41,44].

Definition 15. The minimum edge degree of q-RPFG G is defined as δQ(G ) = (δQµ(G ), δQη(G ), δQν(G )),
where δQµ(G ) = min{dµ(uv) : uv ∈ Q} is minimum µ-edge degree of G , δQη(G ) = min{dη(uv) : uv ∈ Q}
is minimum η-edge degree of G , and δQν(G ) = min{dν(uv) : uv ∈ Q} is minimum ν-edge degree of G .

Definition 16. The maximum edge degree of q-RPFG G is defined as ∆Q(G ) = (∆Qµ(G ), ∆Qη(G ), ∆Qν(G )),
where ∆Qµ(G ) = max{dµ(uv) : uv ∈ Q} is maximum µ-edge degree of G , ∆Qη(G ) = max{dη(uv) : uv ∈ Q}
is maximum η-edge degree of G , and ∆Qν(G ) = max{dν(uv) : uv ∈ Q} is maximum ν-edge degree of G .
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Example 8. Consider a q-rung picture fuzzy graph G = (P , Q) as shown in Figure 6. By routine computations,
it is easy to see that the minimum, and maximum edge degree of G are δQ(G ) = (1.55, 1.25, 1.87) and ∆Q(G ) =
(3.01, 3.1, 3.95).

Definition 17. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The total edge degree of uv in G is denoted
by tdG (uv) = (tdµ(uv), tdη(uv), tdν(uv)), and defined as

tdG (uv) = dG (uv) + (µQ(uv), ηQ(uv), νQ(uv)) = dG (u) + dG (v)− (µQ(uv), ηQ(uv), νQ(uv)).

This is equivalent to

tdG (uv) =
(

∑
w 6=v

µQ(uw), ∑
w 6=v

ηQ(uw), ∑
w 6=v

νQ(uw)
)

+
(

∑
w 6=u

µQ(vw), ∑
w 6=u

ηQ(vw), ∑
w 6=u

νQ(vw)
)

+ (µQ(uv), ηQ(uv), νQ(uv)).

Example 9. Consider a 4-RPFG G displayed in Figure 6. The total degree of edge ad in G can be computed as

tdG (ad) = dG (ad) + (µQ(ad), ηQ(ad), νQ(ad))

= (1.96, 1.4, 1.77) + (0.6, 0.7, 0.6) = (2.56, 2.1, 2.37).

Theorem 6. For any q-RPFG G = (P , Q) defined on P = {v1, v2, . . . , vn}, if (µQ(vivj), ηQ(vivj),
νQ(vivj)) 6= (0, 0, 0) for all vi , vj ∈ P (i 6= j), then the following relation for total degrees of edges of G

must hold:

n−1

∑
i=1
j>i

tdG (vivj) =
(

n− 3
2

) n

∑
i=1

tdG (vi)

for all 1 ≤ j ≤ n.

Proof. The proof directly follows from Theorem 2 and Definition 17.

Theorem 7. Let G = (P , Q) be a q-RPFG on G = (P, Q). Then,

∑
vivj∈Q

tdG (vivj) = ∑
vivj∈Q

dG(vivj) (µQ(vivj), ηQ(vivj), νQ(vivj)) + S(G ),

where dG(vivj) = dG(vi) + dG(vj)− 2 for all vi , vj ∈ P.

Proof. The total degree of an edge vivj in a q-RPFG is

tdG (vivj) = dG (vivj) + (µQ(vivj), ηQ(vivj), νQ(vivj)).

Therefore,

∑
vivj∈Q

tdG (vivj) = ∑
vivj∈Q

(dG (vivj) + (µQ(vivj), ηQ(vivj), νQ(vivj)))

= ∑
vivj∈Q

dG (vivj) + ∑
vivj∈Q

(µQ(vivj), ηQ(vivj), νQ(vivj))

= ∑
vivj∈Q

dG(vivj) (µQ(vivj), ηQ(vivj), νQ(vivj)) + S(G ),

where dG(vivj) = dG(vi) + dG(vj)− 2 for all vi , vj ∈ P. This completes the proof.
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The concept of edge degree leads to defining edge regularity of q-RPFGs. Formally, we have the
following definition:

Definition 18. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). If each edge of G has same degree, which is

dG (uv) = (p1, p2, p3) for all uv ∈ Q,

then G is called (p1, p2, p3)-edge regular q-RPFG.

Example 10. Consider a 3-RPFG G = (P , Q) defined on G = (P, Q), where P be a 3-rung picture fuzzy set
on P, and Q be a 3-rung picture fuzzy relation on P, defined by

P a b c
µP 0.4 0.2 0.9
ηP 0.5 0.3 0.1
νP 0.6 0.4 0.6

Q ab bc ac
µQ 0.2 0.2 0.2
ηQ 0.1 0.1 0.1
νQ 0.6 0.6 0.6

We see that dG (ab) = dG (bc) = dG (ac) = (0.4, 0.2, 1.2). Hence, the 3-RPFG G , displayed in Figure 7,
is (0.4, 0.2, 1.2)-edge regular.

The concept of edge degree leads to define edge regularity of q-RPFGs. Formally, we have the following
definition:

Definition 2.17. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each edge of G has same degree,
that is

dG (uv) = (p1, p2, p3) for all uv ∈ Q,

then G is called (p1, p2, p3)-edge regular q-RPFG.

Example 2.10. Consider a 3-RPFG G = (P,Q) defined on G = (P,Q), where P be a 3-rung picture fuzzy
set on P, and Q be a 3-rung picture fuzzy relation on P, defined by

P a b c
µP 0.4 0.2 0.9
ηP 0.5 0.3 0.1
νP 0.6 0.4 0.6

Q ab bc ac
µQ 0.2 0.2 0.2
ηQ 0.1 0.1 0.1
νQ 0.6 0.6 0.6

b b
cb

(0.2, 0.1, 0.6)

(0.9, 0.1, 0.6)(0.2, 0.3, 0.4)

b
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0
.6
)(0
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0
.6

)

(0.4, 0.5, 0.6)

Figure 2.6: An edge regular 3-RPFG G

We see that dG (ab) = dG (bc) = dG (ac) = (0.4, 0.2, 1.2). Hence the 3-RPFG G , displayed in Figure 2.6, is
(0.4, 0.2, 1.2)-edge regular.

Definition 2.18. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each edge of G has same total edge
degree, that is

tdG (uv) = (q1, q2, q3) for all uv ∈ Q,

then G is called (q1, q2, q3)-totally edge regular q-RPFG.

Example 2.11. Consider a 3-RPFG G = (P,Q) as displayed in Figure 2.7.

b b
cb
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Figure 2.7: A totally edge regular 3-RPFG G

We see that G is (1.3, 1.2.0.9)-totally edge regular 3-RPFG since tdG (ab) = tdG (bc) = tdG (ac) = (1.3, 1.2.0.9).

Remark 2.1.

1. Any connected q-RPFG with two vertices is edge regular.

9

Figure 7. An edge regular 3-RPFG G .

Definition 19. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). If each edge of G has same total edge
degree, that is

tdG (uv) = (q1, q2, q3) for all uv ∈ Q,

then G is called (q1, q2, q3)-total edge regular q-RPFG.

Example 11. Consider a 3-RPFG G = (P , Q) as displayed in Figure 8.
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The concept of edge degree leads to define edge regularity of q-RPFGs. Formally, we have the following
definition:

Definition 2.17. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each edge of G has same degree,
that is

dG (uv) = (p1, p2, p3) for all uv ∈ Q,

then G is called (p1, p2, p3)-edge regular q-RPFG.

Example 2.10. Consider a 3-RPFG G = (P,Q) defined on G = (P,Q), where P be a 3-rung picture fuzzy
set on P, and Q be a 3-rung picture fuzzy relation on P, defined by

P a b c
µP 0.4 0.2 0.9
ηP 0.5 0.3 0.1
νP 0.6 0.4 0.6

Q ab bc ac
µQ 0.2 0.2 0.2
ηQ 0.1 0.1 0.1
νQ 0.6 0.6 0.6

b b
cb

(0.2, 0.1, 0.6)

(0.9, 0.1, 0.6)(0.2, 0.3, 0.4)

b
a

(0
.2
,
0
.1
,
0
.6
)(0

.2
,
0
.1

,
0
.6

)

(0.4, 0.5, 0.6)

Figure 2.6: An edge regular 3-RPFG G

We see that dG (ab) = dG (bc) = dG (ac) = (0.4, 0.2, 1.2). Hence the 3-RPFG G , displayed in Figure 2.6, is
(0.4, 0.2, 1.2)-edge regular.

Definition 2.18. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). If each edge of G has same total edge
degree, that is

tdG (uv) = (q1, q2, q3) for all uv ∈ Q,

then G is called (q1, q2, q3)-totally edge regular q-RPFG.

Example 2.11. Consider a 3-RPFG G = (P,Q) as displayed in Figure 2.7.

b b
cb

(0.5, 0.4, 0.2)

(0.8, 0.7, 0.3)(0.5, 0.5, 0.6)

b
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,
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)

(0.4, 0.4, 0.5)

Figure 2.7: A totally edge regular 3-RPFG G

We see that G is (1.3, 1.2.0.9)-totally edge regular 3-RPFG since tdG (ab) = tdG (bc) = tdG (ac) = (1.3, 1.2.0.9).

Remark 2.1.

1. Any connected q-RPFG with two vertices is edge regular.
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Figure 8. A total edge regular 3-RPFG G .

We see that G is (1.3, 1.2.0.9)-total edge regular 3-RPFG since tdG (ab) = tdG (bc) = tdG (ac) =
(1.3, 1.2, 0.9).

Remark 1.

1. Any connected q-RPFG with two vertices is edge regular.
2. A q-RPFG is edge regular if and only if δQ(G ) = ∆Q(G ).

Remark 2. A complete q-rung picture fuzzy graph need not be edge regular.
For example, consider a 4-RPFG G as displayed in Figure 9.

2. A q-RPFG is edge regular if and only if δQ(G ) = ∆Q(G ).

Remark 2.2. A complete q-rung picture fuzzy graph need not be edge regular.
For example, consider a 4-RPFG G as displayed in Figure 2.8.
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Figure 2.8: 4-RPFG G

It is clear that G is a complete 4-RPFG. But G is not edge regular since dG (ab) = (2.8, 1.9, 2.4) 6=
(2.8, 1.8, 2.5) = dG (ad).

Next we present a necessary condition for a complete q-RPFG to be edge regular.

Theorem 2.8. Let G = (P,Q) be a complete q-rung picture fuzzy graph on G = (P,Q), and µQ, ηQ, and νQ

are constant functions, then G is an edge regular q-RPFG.

Proof. Let G = (P,Q) be a complete q-rung picture fuzzy graph defined on G = (P,Q), where P =
{u1, u2, . . . , un}. Then for all u, v ∈ P, µQ(uv) = µP(u) ∧ µP(v), ηQ(uv) = ηP(u) ∧ ηP(v), and νQ(uv) =
νP(u)∨ νP(v). Let µQ(uv) = c1, ηQ(uv) = c2 and νQ(uv) = c3, for all uv ∈ Q. The completeness of G implies
that each vertex u of G is connected with n−1 vertices by edges, with membership values (µQ(uv), ηQ(uv), νQ(uv)) =
(c1, c2, c3). Thus degree of each vertex u ∈ P can be written as dG (u) = (n− 1)(c1, c2, c3). By definition of edge
degree, we have

dG (uv) = dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv)).

= (n− 1)(c1, c2, c3) + (n− 1)(c1, c2, c3)− 2(c1, c2, c3),

= 2(n− 1)(c1, c2, c3)− 2(c1, c2, c3),

= 2((n− 2)c1, (n− 2)c2, (n− 2)c3),

for all uv ∈ Q. Hence G is an edge regular q-RPFG. This completes the proof.

Remark 2.3. An edge regular q-rung picture fuzzy graph may not be totally edge regular.
For example, consider a 6-RPFG G = (P,Q) as displayed in Figure 2.9.
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Figure 2.9: 6-RPFG G

We see that G is edge regular as dG (ab) = dG (ac) = dG (bc) = dG (bd) = dG (cd) = (1.4, 1.8, 1.6). But G is
not totally edge regular 6-RPFG since tdG (ab) = (1.8, 2.3, 1.9) 6= (1.7, 2.2, 2.1) = tdG (cd).
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Figure 9. 4-RPFG G .

It is clear that G is a complete 4-RPFG. However, G is not edge regular since dG (ab) = (2.8, 1.9, 2.4) 6=
(2.8, 1.8, 2.5) = dG (ad).

Next, we present a necessary condition for a complete q-RPFG to be edge regular.

Theorem 8. Let G = (P , Q) be a complete q-rung picture fuzzy graph on G = (P, Q), and µQ , ηQ , and νQ

are constant functions; then, G is an edge regular q-RPFG.
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Proof. Let G = (P , Q) be a complete q-rung picture fuzzy graph defined on G = (P, Q),
where P = {u1, u2, . . . , un}. Then, for all u, v ∈ P, µQ(uv) = µP (u)∧ µP (v), ηQ(uv) = ηP (u)∧ ηP (v),
and νQ(uv) = νP (u) ∨ νP (v). Let µQ(uv) = c1, ηQ(uv) = c2 and νQ(uv) = c3, for all uv ∈ Q.
The completeness of G implies that each vertex u of G is connected with n − 1 vertices by edges,
with membership values (µQ(uv), ηQ(uv), νQ(uv)) = (c1, c2, c3). Thus, degree of each vertex u ∈ P can
be written as dG (u) = (n− 1)(c1, c2, c3). By definition of edge degree, we have

dG (uv) = dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv))

= (n− 1)(c1, c2, c3) + (n− 1)(c1, c2, c3)− 2(c1, c2, c3)

= 2(n− 1)(c1, c2, c3)− 2(c1, c2, c3)

= 2((n− 2)c1, (n− 2)c2, (n− 2)c3)

for all uv ∈ Q. Hence, G is an edge regular q-RPFG. This completes the proof.

Remark 3. An edge regular q-rung picture fuzzy graph may not be total edge regular.
For example, consider a 6-RPFG G = (P , Q) as displayed in Figure 10.

2. A q-RPFG is edge regular if and only if δQ(G ) = ∆Q(G ).

Remark 2.2. A complete q-rung picture fuzzy graph need not be edge regular.
For example, consider a 4-RPFG G as displayed in Figure 2.8.
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Figure 2.8: 4-RPFG G

It is clear that G is a complete 4-RPFG. But G is not edge regular since dG (ab) = (2.8, 1.9, 2.4) 6=
(2.8, 1.8, 2.5) = dG (ad).

Next we present a necessary condition for a complete q-RPFG to be edge regular.

Theorem 2.8. Let G = (P,Q) be a complete q-rung picture fuzzy graph on G = (P,Q), and µQ, ηQ, and νQ

are constant functions, then G is an edge regular q-RPFG.

Proof. Let G = (P,Q) be a complete q-rung picture fuzzy graph defined on G = (P,Q), where P =
{u1, u2, . . . , un}. Then for all u, v ∈ P, µQ(uv) = µP(u) ∧ µP(v), ηQ(uv) = ηP(u) ∧ ηP(v), and νQ(uv) =
νP(u)∨ νP(v). Let µQ(uv) = c1, ηQ(uv) = c2 and νQ(uv) = c3, for all uv ∈ Q. The completeness of G implies
that each vertex u of G is connected with n−1 vertices by edges, with membership values (µQ(uv), ηQ(uv), νQ(uv)) =
(c1, c2, c3). Thus degree of each vertex u ∈ P can be written as dG (u) = (n− 1)(c1, c2, c3). By definition of edge
degree, we have

dG (uv) = dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv)).

= (n− 1)(c1, c2, c3) + (n− 1)(c1, c2, c3)− 2(c1, c2, c3),

= 2(n− 1)(c1, c2, c3)− 2(c1, c2, c3),

= 2((n− 2)c1, (n− 2)c2, (n− 2)c3),

for all uv ∈ Q. Hence G is an edge regular q-RPFG. This completes the proof.

Remark 2.3. An edge regular q-rung picture fuzzy graph may not be totally edge regular.
For example, consider a 6-RPFG G = (P,Q) as displayed in Figure 2.9.
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Figure 2.9: 6-RPFG G

We see that G is edge regular as dG (ab) = dG (ac) = dG (bc) = dG (bd) = dG (cd) = (1.4, 1.8, 1.6). But G is
not totally edge regular 6-RPFG since tdG (ab) = (1.8, 2.3, 1.9) 6= (1.7, 2.2, 2.1) = tdG (cd).

10

Figure 10. 6-RPFG G .

We see that G is edge regular as dG (ab) = dG (ac) = dG (bc) = dG (bd) = dG (cd) = (1.4, 1.8, 1.6). However,
G is not total edge regular 6-RPFG since tdG (ab) = (1.8, 2.3, 1.9) 6= (1.7, 2.2, 2.1) = tdG (cd).

Remark 4. A total edge regular q-rung picture fuzzy graph may not be edge regular.
For example, consider a 3-rung picture fuzzy graph G = (P , Q) as displayed in Figure 8. We see that G is
(1.3, 1.2, 0.9)-total edge regular. However, G is not an edge regular 3-RPFG since dG (ab) = (0.9, 0.8, 0.4) 6=
(0.9, 0.8, 0.7) = dG (ac).

Moreover, it is easy to observe that there may exist such q-RPFGs which are both edge regular,
and total edge regular—neither edge regular nor total edge regular. Thus, there does not exist any
relationship between edge regular q-RPFGs, and total edge regular q-RPFGs. Next, we illustrate a
theorem providing characterization for edge regularity of q-rung picture fuzzy graphs.

Theorem 9. Let G = (P , Q) be a q-rung picture fuzzy graph on G = (P, Q), and µQ , ηQ , and νQ are constant
functions; then, the following are equivalent:

(a) G is an edge regular q-RPFG.
(b) G is a total edge regular q-RPFG.
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Proof. Let G = (P , Q) be a q-RPFG on G = (P, Q). Suppose that, for all uv ∈ Q, µQ(uv) = c1, ηQ(uv) =
c2 and νQ(uv) = c3. Assume that G is a (p1, p2, p3)-edge regular q-RPFG. Then, for all uv ∈ Q, dG (uv) =
(p1, p2, p3). By definition of total edge degree,

tdG (uv) = dG (uv) + (µQ(uv), ηQ(uv), νQ(uv))

= (p1, p2, p3) + (c1, c2, c3)

= (p1 + c1, p2 + c2, p3 + c3)

for all uv ∈ Q. Hence, G is total edge regular q-RPFG.
Conversely, suppose that G is a (q1, q2, q3)-total edge regular q-RPFG. Then, by definition of total

edge regular

tdG (uv) = dG (uv) + (µQ(uv), ηQ(uv), νQ(uv))

(q1, q2, q3) = dG (uv) + (c1, c2, c3)

dG (uv) = (q1, q2, q3)− (c1, c2, c3)

= (q1 − c1, q2 − c2, q3 − c3)

for all uv ∈ Q. Hence, G is edge regular q-RPFG. This proves that (a) and (b) are equivalent.
On the other hand, assume that (a), and (b) are equivalent. Suppose, on the contrary,

that µQ , ηQ , and νQ are not constant functions. Then, there exist at least one edge xy in Q such
that (µQ(uv), ηQ(uv), νQ(uv)) 6= (µQ(xy), ηQ(xy), andνQ(xy)). Let G be a (p1, p2, p3)-edge regular
q-RPFG. Then, dG (uv) = dG (xy) = (p1, p2, p3). Therefore,

tdG (uv) = dG (uv) + (µQ(uv), ηQ(uv), νQ(uv))

= (p1, p2, p3) + (µQ(uv), ηQ(uv), νQ(uv)),

tdG (xy) = dG (xy) + (µQ(xy), ηQ(xy), νQ(xy))

= (p1, p2, p3) + (µQ(xy), ηQ(xy), νQ(xy)).

Since (µQ(uv), ηQ(uv), νQ(uv)) 6= (µQ(xy), ηQ(xy), νQ(xy)), therefore, tdG (uv) 6= tdG (xy). Hence,
G is not total edge regular, which gives a contradiction to our assumption.

Now, let G be a total edge regular q-RPFG. Then, by definition of total edge regular,

tdG (uv) = tdG (xy),

dG (uv) + (µQ(uv), ηQ(uv), νQ(uv)) = dG (xy) + (µQ(xy), ηQ(xy), νQ(xy)),

dG (uv)− dG (xy) = (µQ(xy), ηQ(xy), νQ(xy))− (µQ(uv), ηQ(uv), νQ(uv)) 6= 0,

dG (uv) 6= dG (xy).

The fact that G is not edge regular leads a contradiction to our assumption. Hence, µQ , ηQ , and νQ

are constant functions. This completes the proof.

Definition 20. A q-RPFG G = (P , Q) defined on G = (P, Q) is said to be partially edge regular if the
underlying graph G = (P, Q) is edge regular.

Example 12. Consider a 5-RPFG G = (P , Q) displayed in Figure 11a, and its underlying crisp graph
G = (P, Q) displayed in Figure 11b.



Symmetry 2019, 11, 489 14 of 37

Definition 2.19. A q-RPFG G = (P,Q) defined on G = (P,Q), is said to be partially edge regular if the
underlying graph G = (P,Q) is edge regular.

Example 2.12. Consider a 5-RPFG G = (P,Q) displayed in Figure 2.10 (a), and its underlying crisp graph
G = (P,Q) displayed in Figure 2.10 (b).
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Figure 2.10: A partially edge regular 5-RPFG G

We see that G is 2-edge regular graph. Thus G is partially edge regular 5-RPFG.

Definition 2.20. A q-RPFG G = (P,Q) defined on G = (P,Q), is said to be full edge regular if G is both
edge regular, and partially edge regular.

Example 2.13. Figure 2.6 can be considered as an example of full edge regular 3-RPFG. Since G as well as
its underlying crisp graph G are edge regular.

Remark 2.5. An edge regular q-rung picture fuzzy graph may not be partially edge regular (or full edge
regular).
For example, consider the 6-RPFG G = (P,Q), displayed in Figure 2.11(a), and its underlying crisp graph
G = (P,Q) displayed in Figure 2.11(b).
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Figure 2.11: An edge regular but not partially edge regular 6-RPFG G

We see that G is edge regular as dG (a) = dG (b) = dG (c) = dG (d) = dG (e) = (1.2, 1.2, 1.6). But G is not
partially edge regular 6-RPFG since its underlying graph G = (P,Q) is not edge regular.

Remark 2.6. A partially edge regular q-rung picture fuzzy graph may not be edge regular (or full edge regular).
For example, consider a 5-RPFG G = (P,Q) displayed in Figure 2.10. We see that G is partially edge regular
as its underlying graph G is edge regular. But G is not edge regular 5-RPFG since dG (ab) = (1.0, 1.0, 1.75) 6=
(1.0, 0.9, 1.84) = dG (ac).

Above remarks show that there does not exist any relationship between edge regular, and partially edge
regular (or full edge regular) q-RPFGs. In the following theorem we develop a relationship between edge
regular, and partially edge regular q-RPFGs.

Theorem 2.10. Let G = (P,Q) be a q-rung picture fuzzy graph on G = (P,Q). If µQ, ηQ, and νQ are constant
functions, then G is edge regular if and only if G is partially edge regular.
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Figure 11. A partially edge regular 5-RPFG G .

We see that G is 2-edge regular graph. Thus, G is partially edge regular 5-RPFG.

Definition 21. A q-RPFG G = (P , Q) defined on G = (P, Q) is said to be full edge regular if G is both edge
regular, and partially edge regular.

Example 13. Figure 7 can be considered as an example of full edge regular 3-RPFG. Since G as well as its
underlying crisp graph G are edge regular.

Remark 5. An edge regular q-rung picture fuzzy graph may not be partially edge regular (or full edge regular).
For example, consider the 6-RPFG G = (P , Q), displayed in Figure 12a, and its underlying crisp graph
G = (P, Q) displayed in Figure 12b.

Definition 2.19. A q-RPFG G = (P,Q) defined on G = (P,Q), is said to be partially edge regular if the
underlying graph G = (P,Q) is edge regular.

Example 2.12. Consider a 5-RPFG G = (P,Q) displayed in Figure 2.10 (a), and its underlying crisp graph
G = (P,Q) displayed in Figure 2.10 (b).
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Figure 2.10: A partially edge regular 5-RPFG G

We see that G is 2-edge regular graph. Thus G is partially edge regular 5-RPFG.

Definition 2.20. A q-RPFG G = (P,Q) defined on G = (P,Q), is said to be full edge regular if G is both
edge regular, and partially edge regular.

Example 2.13. Figure 2.6 can be considered as an example of full edge regular 3-RPFG. Since G as well as
its underlying crisp graph G are edge regular.

Remark 2.5. An edge regular q-rung picture fuzzy graph may not be partially edge regular (or full edge
regular).
For example, consider the 6-RPFG G = (P,Q), displayed in Figure 2.11(a), and its underlying crisp graph
G = (P,Q) displayed in Figure 2.11(b).
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Figure 2.11: An edge regular but not partially edge regular 6-RPFG G

We see that G is edge regular as dG (a) = dG (b) = dG (c) = dG (d) = dG (e) = (1.2, 1.2, 1.6). But G is not
partially edge regular 6-RPFG since its underlying graph G = (P,Q) is not edge regular.

Remark 2.6. A partially edge regular q-rung picture fuzzy graph may not be edge regular (or full edge regular).
For example, consider a 5-RPFG G = (P,Q) displayed in Figure 2.10. We see that G is partially edge regular
as its underlying graph G is edge regular. But G is not edge regular 5-RPFG since dG (ab) = (1.0, 1.0, 1.75) 6=
(1.0, 0.9, 1.84) = dG (ac).

Above remarks show that there does not exist any relationship between edge regular, and partially edge
regular (or full edge regular) q-RPFGs. In the following theorem we develop a relationship between edge
regular, and partially edge regular q-RPFGs.

Theorem 2.10. Let G = (P,Q) be a q-rung picture fuzzy graph on G = (P,Q). If µQ, ηQ, and νQ are constant
functions, then G is edge regular if and only if G is partially edge regular.
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Figure 12. An edge regular but not partially edge regular 6-RPFG G .

We see that G is edge regular as dG (a) = dG (b) = dG (c) = dG (d) = dG (e) = (1.2, 1.2, 1.6). However, G is
not partially edge regular 6-RPFG since its underlying graph G = (P, Q) is not edge regular.

Remark 6. A partially edge regular q-rung picture fuzzy graph may not be edge regular (or full edge regular).
For example, consider a 5-RPFG G = (P , Q) displayed in Figure 11. We see that G is partially edge regular as
its underlying graph G is edge regular. However, G is not edge regular 5-RPFG since dG (ab) = (1.0, 1.0, 1.75) 6=
(1.0, 0.9, 1.84) = dG (ac).

The above remarks show that there does not exist any relationship between edge regular,
and partially edge regular (or full edge regular) q-RPFGs. In the following theorem, we develop
a relationship between edge regular, and partially edge regular q-RPFGs.
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Theorem 10. Let G = (P , Q) be a q-rung picture fuzzy graph on G = (P, Q). If µQ , ηQ , and νQ are constant
functions, then G is edge regular if and only if G is partially edge regular.

Proof. Let G = (P , Q) be a q-RPFG such that for all uv ∈ Q, µQ(uv) = c1, ηQ(uv) = c2 and νQ(uv) = c3.
Then, by definition of edge degree

dG (uv) =
(

∑
uw∈Q
w 6=v

µQ(uw), ∑
uw∈Q
w 6=v

ηQ(uw), ∑
uw∈Q
w 6=v

νQ(uw)
)

+
(

∑
vw∈Q
w 6=u

µQ(vw), ∑
vw∈Q
w 6=u

ηQ(vw), ∑
vw∈Q
w 6=u

νQ(vw)
)

= ∑
uw∈Q
w 6=v

(c1, c2, c3) + ∑
vw∈Q
w 6=u

(c1, c2, c3)

= (c1, c2, c3)(dG(u)− 1) + (c1, c2, c3)(dG(u)− 1)

= (c1, c2, c3)(dG(u) + dG(v)− 2)

= (c1, c2, c3) dG(uv)

for all uv ∈ Q. Hence, G is edge regular. Assume that G = (P , Q) is a (p1, p2, p3)-edge regular q-RPFG.
Then, for all uv ∈ Q,

(p1, p2, p3) = (c1, c2, c3) dG(uv),

dG(uv) =
(p1, p2, p3)
(c1, c2, c3)

.

This shows that G is an edge regular q-RPFG. Hence, G is partially edge regular q-RPFG.
Conversely, assume that G is partially edge regular q-RPFG. Let G be a p-edge regular graph.

Then, for all uv ∈ Q, dG (uv) = p (c1, c2, c3). Consequently, G is edge regular q-RPFG. This completes
the proof.

Corollary 1. Let G = (P , Q) be a q-RPFG such that µQ , ηQ , and νQ are constant functions. If G is an edge
regular q-RPFG or a partially edge regular q-RPFG, then G is a full edge regular q-RPFG.

Theorem 11. Let G = (P , Q) be a strong q-RPFG such that µP , ηP , and νP are constant functions. Then,
G is an edge regular q-RPFG if and only if G is partially edge regular q-RPFG.

Proof. Let G = (P , Q) be a strong q-RPFG defined on G = (P, Q). Then, for all uv ∈ Q, µQ(uv) =
µP (u) ∧ µP (v), ηQ(uv) = ηP (u) ∧ ηP (v), and νQ(uv) = νP (u) ∨ νP (v). Let µP , ηP , and νP be
constant functions. Then, for all u ∈ P, µP (u) = c1, ηP (u) = c2, and νP (u) = c3. Combining both facts,
we have

µQ(uv) = µP (u)∧ µP (v) = c1 ∧ c1 = c1,

ηQ(uv) = ηP (u)∧ ηP (v) = c2 ∧ c2 = c2,

νQ(uv) = νP (u)∨ νP (v) = c3 ∨ c3 = c3.

Thus, µQ , ηQ , and νQ are constant functions. Consequently, the result follows from Theorem 10.

Corollary 2. Let G = (P , Q) be a strong q-RPFG such that µP , ηP , and νP are constant functions. If G is
an edge regular q-RPFG or a partially edge regular q-RPFG, then G is a full edge regular q-RPFG.

Next, we state some results regarding order, and size of edge regular q-RPFG.

Theorem 12. The size of (p1, p2, p3)-edge regular q-RPFG G = (P , Q) on a p-edge regular graph G = (P, Q)
is q(p1 ,p2 ,p3)

p , where q = |Q|.
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Theorem 13. If G = (P , Q) is (q1, q2, q3)-total edge regular, and (r1, r2, r3)-partially edge regular q-RPFG,
then S(G ) = q(q1 ,q2 ,q3)

(r1 ,r2 ,r3)+1 , where q = |Q|.

Theorem 14. If G = (P , Q) is (p1, p2, p3)-edge regular, and (q1, q2, q3)-total edge regular q-RPFG,
then S(G ) = q (q1 − p1, q2 − p2, q3 − p3), where q = |Q|.

For proofs of above results, readers are referred to [37,41].

2.1. Perfectly Edge Regular q-RPFGs

In this section, we introduce perfect edge regular q-RPFGs taking as a point of departure the
respective definition of perfect edge regular fuzzy graphs by Cary [38].

Definition 22. A perfect edge regular q-RPFG is a q-RPFG that is both edge regular, and total edge regular.

Example 14. Consider a 5-rung picture fuzzy graph G = (P , Q) as shown in Figure 13.

2.1 Perfectly Edge Regular q-RPFGs

In this section, we introduce perfectly edge regular q-RPFGs taking as a point of departure the respective
definition of perfectly edge regular fuzzy graphs by Cary [13].

Definition 2.21. A perfectly edge regular q-RPFG is a q-RPFG that is both edge regular, and totally edge
regular.

Example 2.14. Consider a 5-rung picture fuzzy graph G = (P,Q) as shown in Figure 2.12.
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Figure 2.12: Perfectly Edge Regular 5-RPFG

Clearly, G is (2.0, 2.4, 2.8)-edge regular, and (2.5, 3.0, 3.5)-totally edge regular. Hence G is perfectly edge
regular 5-RPFG.

Theorem 2.15. If G = (P,Q) is perfectly edge regular q-RPFG, then µQ, ηQ, and νQ are constant functions.

Proof. Let G = (P,Q) be a perfectly edge regular q-RPFG defined on G = (P,Q). Then G must be edge
regular and totally edge regular, i.e., for all uv ∈ Q, dG (uv) = (p1, p2, p3), and tdG (uv) = (q1, q2, q3). By
definition of total edge degree

dG (uv) + (µQ(uv), ηQ(uv), νQ(uv)) = (q1, q2, q3)

(p1, p2, p3) + (µQ(uv), ηQ(uv), νQ(uv)) = (q1, q2, q3)

(µQ(uv), ηQ(uv), νQ(uv)) = (q1 − p1, q2 − p2, q3 − p3).

Since µQ(uv) = q1 − p1, ηQ(uv) = q2 − p2, and νQ(uv) = q3 − p3, for all uv ∈ Q, therefore, µQ, ηQ, and νQ are
constant functions. This completes the proof.

Perfectly edge regular q-RPFGs can be classified by the following theorem.

Theorem 2.16. A q-RPFG G = (P,Q) is perfectly edge regular if and only if it satisfies the following
conditions:

1.
∑

uw∈Q

(
µQ(uw), ηQ(uw), νQ(uw)

)
+
∑

vw∈Q

(
µQ(vw), ηQ(vw), νQ(vw)

)
−2(µQ(uv), ηQ(uv), νQ(uv)) =

∑
xz∈Q

(
µQ(xz), ηQ(xz), νQ(xz)

)
+
∑

yz∈Q

(
µQ(yz), ηQ(yz), νQ(yz)

)
− 2(µQ(xy), ηQ(xy), νQ(xy)),

2. (µQ(uv), ηQ(uv), νQ(uv)) = (µQ(xy), ηQ(xy), νQ(xy)),

for all uv, xy ∈ Q.

Proof. Suppose that G = (P,Q) is perfectly edge regular q-RPFG. Then it must be regular as well as totally
edge regular. The fact that G is edge regular implies Condition 1 so that each edge has same degree. Condition
2 is followed directly by Theorem 2.15.

14

Figure 13. Perfectly edge regular 5-RPFG.

Clearly, G is (2.0, 2.4, 2.8)-edge regular, and (2.5, 3.0, 3.5)-total edge regular. Hence, G is perfect edge
regular 5-RPFG.

Theorem 15. If G = (P , Q) is perfect edge regular q-RPFG, then µQ , ηQ , and νQ are constant functions.

Proof. Let G = (P , Q) be a perfect edge regular q-RPFG defined on G = (P, Q). Then, G must be edge
regular and total edge regular, i.e., for all uv ∈ Q, dG (uv) = (p1, p2, p3), and tdG (uv) = (q1, q2, q3).
By definition of total edge degree,

dG (uv) + (µQ(uv), ηQ(uv), νQ(uv)) = (q1, q2, q3),

(p1, p2, p3) + (µQ(uv), ηQ(uv), νQ(uv)) = (q1, q2, q3),

(µQ(uv), ηQ(uv), νQ(uv)) = (q1 − p1, q2 − p2, q3 − p3).

Since µQ(uv) = q1 − p1, ηQ(uv) = q2 − p2, and νQ(uv) = q3 − p3, for all uv ∈ Q, therefore, µQ , ηQ ,
and νQ are constant functions. This completes the proof.

Perfectly edge regular q-RPFGs can be classified by the following theorem.

Theorem 16. A q-RPFG G = (P , Q) is perfect edge regular if and only if it satisfies the following conditions:
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1. ∑uw∈Q

(
µQ(uw), ηQ(uw), νQ(uw)

)
+ ∑vw∈Q

(
µQ(vw), ηQ(vw), νQ(vw)

)
−

2(µQ(uv), ηQ(uv), νQ(uv)) = ∑xz∈Q

(
µQ(xz), ηQ(xz), νQ(xz)

)
+

∑yz∈Q

(
µQ(yz), ηQ(yz), νQ(yz)

)
− 2(µQ(xy), ηQ(xy), νQ(xy)),

2. (µQ(uv), ηQ(uv), νQ(uv)) = (µQ(xy), ηQ(xy), νQ(xy)),

for all uv, xy ∈ Q.

Proof. Suppose that G = (P , Q) is perfect edge regular q-RPFG. Then, it must be regular as well as
total edge regular. The fact that G is edge regular implies Condition 1 so that each edge has the same
degree. Condition 2 is followed directly by Theorem 15.

Conversely, suppose that Condition 1 and 2 hold. It is straightforward to see that Condition 1
guarantees the edge regularity of G . Let for any two edges uv and xy, dG (uv) = dG (xy). By definition
of total edge degree,

tdG (uv) = dG (uv) + (µQ(uv), ηQ(uv), νQ(uv))

= dG (xy) + (µQ(xy), ηQ(xy), νQ(xy)) = tdG (xy).

Thus, G is total edge regular, as uv and xy are arbitrary edges. Consequently, G is perfect edge regular.
This completes the proof.

Remark 7. The above theorem does not constitute a sufficient condition for a q-RPFG to be perfect edge regular.
For example, consider a 4-RPFG G as displayed in Figure 14.

Conversely, suppose that Condition 1 and 2 holds. It is straight forward to see that Condition 1 guarantees the
edge regularity of G . Let for any two edges uv and xy, dG (uv) = dG (xy). By definition of total edge degree

tdG (uv) = dG (uv) + (µQ(uv), ηQ(uv), νQ(uv))

= dG (xy) + (µQ(xy), ηQ(xy), νQ(xy)) = tdG (xy).

Thus G is totally edge regular, as uv and xy are arbitrary edges. Consequently, G is perfectly edge regular.
This completes the proof.

Remark 2.7. The above theorem does not constitute a sufficient condition for a q-RPFG to be perfectly edge
regular.
Foe example, consider a 4-RPFG G as displayed in Figure 2.13.
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Figure 2.13: A 4-RPFG G

We see that (µQ(uv), ηQ(uv), νQ(uv)) = (0.5, 0.6, 0.7), for all uv ∈ Q. But since dG (ab) = (0.5, 0.6, 0.7) 6=
(1.0, 1.2, 1.4) = dG (bc), and tdG (ab) = (1.0, 1.2, 1.4) 6= (1.5, 1.8, 2.1) = tdG (bc), therefore, G is neither edge
regular nor totally egde regular. Hence G is not a perfectly edge regular 4-RPFG.

The following theorem provides a necessary condition for converse of above theorem to be hold.

Theorem 2.17. If G = (P,Q) is edge regular q-RPFG, and µQ, ηQ, and νQ are constant functions, then G
is perfectly edge regular q-RPFG.

Proof. The proof is directly followed from Theorem 2.9, which proves that G is totally edge regular q-RPFG.
Moreover, by our assumption, G is edge regular. Hence G is perfectly edge regular. This completes the proof.

We next illustrate some results relating order, and size of perfectly edge regular q-RPFG.

Theorem 2.18. If G = (P,Q) is perfectly edge regular q-RPFG, and µQ, ηQ, and νQ are constant functions,
then the size of G is S(G ) = (c1, c2, c3)|Q|.

Proof. Obvious.

Unlike the order of perfectly regular q-RPFG, we can no longer give an explicit formula for the order of
perfectly edge regular q-RPFG. However, we can bound its order.

Theorem 2.19. If G = (P,Q) is perfectly edge regular q-RPFG, then the order of G is bounded as:
∑

u∈P

max
u6=v

{µQ(uv), ηQ(uv), νQ(uv)} ≤ O(G ) ≤ |P |.

Proof. Upper bound of O(G ) is obvious. We now prove its lower bound. By definition of q-RPFG, µQ(uv) ≤
µP(u)∧µP(v), ηQ(uv) ≤ ηP(u)∧ηP(v), and νQ(uv) ≤ νP(u)∨νP(v). Thus we have µP(u) ≥ maxu6=v µQ(uv),
ηP(u) ≥ maxu6=v ηQ(uv), and νP(u) ≥ maxu6=v νQ(uv). For each u ∈ P, we obtain

∑

u∈P

max
u6=v

{µQ(uv), ηQ(uv), νQ(uv)} ≤
∑

u∈P

(µP(u), ηP(u), µP(u)) = O(G ).

This completes the proof.

15

Figure 14. A 4-RPFG G .

We see that (µQ(uv), ηQ(uv), νQ(uv)) = (0.5, 0.6, 0.7), for all uv ∈ Q. However, since dG (ab) =
(0.5, 0.6, 0.7) 6= (1.0, 1.2, 1.4) = dG (bc), and tdG (ab) = (1.0, 1.2, 1.4) 6= (1.5, 1.8, 2.1) = tdG (bc), therefore,
G is neither edge regular nor totally egde regular. Hence, G is not a perfect edge regular 4-RPFG.

The following theorem provides a necessary condition for the converse of the above theorem
to hold.

Theorem 17. If G = (P , Q) is edge regular q-RPFG, and µQ , ηQ , and νQ are constant functions, then G is
perfect edge regular q-RPFG.

Proof. The proof is directly followed from Theorem 9, which proves that G is total edge regular q-RPFG.
Moreover, by our assumption, G is edge regular. Hence, G is perfect edge regular. This completes the
proof.

We next illustrate some results relating order and size of perfect edge regular q-RPFG.
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Theorem 18. If G = (P , Q) is perfect edge regular q-RPFG, and µQ , ηQ , and νQ are constant functions, then
the size of G is S(G ) = (c1, c2, c3)|Q|.

Proof. Obvious.

Unlike the order of perfectly regular q-RPFG, we can no longer give an explicit formula for the
order of perfect edge regular q-RPFG. However, we can bound its order.

Theorem 19. If G = (P , Q) is perfect edge regular q-RPFG, then the order of G is bounded as:

∑
u∈P

max
u 6=v
{µQ(uv), ηQ(uv), νQ(uv)} ≤ O(G ) ≤ |P|.

Proof. Upper bound of O(G ) is obvious. We now prove its lower bound. By definition of q-RPFG,
µQ(uv) ≤ µP (u) ∧ µP (v), ηQ(uv) ≤ ηP (u) ∧ ηP (v), and νQ(uv) ≤ νP (u) ∨ νP (v). Thus, we have
µP (u) ≥ maxu 6=v µQ(uv), ηP (u) ≥ maxu 6=v ηQ(uv), and νP (u) ≥ maxu 6=v νQ(uv). For each u ∈ P,
we obtain

∑
u∈P

max
u 6=v
{µQ(uv), ηQ(uv), νQ(uv)} ≤ ∑

u∈P
(µP (u), ηP (u), µP (u)) = O(G ).

This completes the proof.

2.2. Edge Regular Square q-RPFGs

Following [47], we define square q-RPFGs. In this section, we concentrate on edge regularity of
square q-RPFGs.

Definition 23. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The square q-RPFG of G is denoted by
S2(G ) = (P , Qsq), and defined as:

1. If uv ∈ Q, then µQsq (uv) = µQ(uv), ηQsq (uv) = ηQ(uv), and νQsq (uv) = νQ(uv).
2. If uv ∈ Q, and u, v are joined by a path of length less than or equal to 2 in G, then

µQsq (uv) ≤ µP (u)∧ µP (v),

ηQsq (uv) ≤ ηP (u)∧ ηP (v),

νQsq (uv) ≤ νP (u)∨ νP (v).

Example 15. Consider a 6-RPFG G = (P , Q) defined on G = (P, Q), where P is a 6-rung picture fuzzy set
on P, and Q is a 6-rung picture fuzzy relation on P, defined by

P a b c d e
µP 0.8 0.82 0.9 0.8 0.6
ηP 0.75 0.93 0.85 0.7 0.85
νP 0.85 0.55 0.59 0.9 0.9

Q ab ac ae cd be
µQ 0.8 0.6 0.5 0.8 0.6
ηQ 0.7 0.6 0.7 0.7 0.8
νQ 0.7 0.6 0.9 0.5 0.6

By routine computations, it is easy to see that S2(G ) = (P , Qsq) in Figure 15b is a square 6-rung picture
fuzzy graph of G , where the 6-rung picture fuzzy relation Qsq can be defined as follows:
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Qsq ab ac ae cd be ce ad bc
µQ 0.8 0.6 0.5 0.8 0.6 0.6 0.8 0.82
ηQ 0.7 0.6 0.7 0.7 0.8 0.5 0.7 0.85
νQ 0.7 0.6 0.9 0.5 0.6 0.9 0.9 0.59

The following theorem defines the degree of an edge in square q-RPFG.

2.2 Edge Regular Square q-RPFGs

Following [37], we define square q-RPFGs. In this section, we concentrate on edge regularity of square q-RPFGs.

Definition 2.22. Let G = (P,Q) be a q-RPFG defined on G = (P,Q). The square q-RPFG of G is denoted
by S2(G ) = (P,Qsq), and defined as:

1. If uv ∈ Q, then µQsq (uv) = µQ(uv), ηQsq (uv) = ηQ(uv), and νQsq (uv) = νQ(uv).

2. If uv ∈ Q, and u, v are joined by a path of length less than or equal to 2 in G, then

µQsq (uv) ≤ µP(u) ∧ µP(v),

ηQsq (uv) ≤ ηP(u) ∧ ηP(v),

νQsq (uv) ≤ νP(u) ∨ νP(v).

Example 2.15. Consider a 6-RPFG G = (P,Q) defined on G = (P,Q), where P is a 6-rung picture fuzzy
set on P, and Q is a 6-rung picture fuzzy relation on P, defined by

P a b c d e
µP 0.8 0.82 0.9 0.8 0.6
ηP 0.75 0.93 0.85 0.7 0.85
νP 0.85 0.55 0.59 0.9 0.9

Q ab ac ae cd be
µQ 0.8 0.6 0.5 0.8 0.6
ηQ 0.7 0.6 0.7 0.7 0.8
νQ 0.7 0.6 0.9 0.5 0.6

b b
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(b) S2(G )

Figure 2.14: A 6-RPFG G , and its square graph S2(G )

By routine computations it is easy to see that S2(G ) = (P,Qsq)in Figure 2.14(b), is a square 6-rung picture
fuzzy graph of G , where the 6-rung picture fuzzy relation Qsq can be defined as follows:

Qsq ab ac ae cd be ce ad bc
µQ 0.8 0.6 0.5 0.8 0.6 0.6 0.8 0.82
ηQ 0.7 0.6 0.7 0.7 0.8 0.5 0.7 0.85
νQ 0.7 0.6 0.9 0.5 0.6 0.9 0.9 0.59

The following theorem defines the degree of an edge in square q-RPFG.

Theorem 2.20. For any q-RPFG G = (P,Q), the degree of an edge in its square q-RPFG S2(G ) = (P,Qsq)
is given by

1. For uv ∈ Q

dS2(G )(uv) = dG (uv) +
∑

ux 6∈Q
ux∈Qsq

(µP(u) ∧ µP(x), ηP(u) ∧ ηP(x), νP(u) ∨ νP(x))+

∑

vy 6∈Q
vy∈Qsq

(µP(v) ∧ µP(y), ηP(v) ∧ ηP(y), νP(v) ∨ νP(y)).

16

Figure 15. A 6-RPFG G and its square graph S2(G ).

Theorem 20. For any q-RPFG G = (P , Q), the degree of an edge in its square q-RPFG S2(G ) = (P , Qsq) is
given by

1. For uv ∈ Q,

dS2(G )(uv) = dG (uv) + ∑
ux 6∈Q

ux∈Qsq

(µP (u)∧ µP (x), ηP (u)∧ ηP (x), νP (u)∨ νP (x))+

∑
vy 6∈Q

vy∈Qsq

(µP (v)∧ µP (y), ηP (v)∧ ηP (y), νP (v)∨ νP (y)).

2. For uv ∈ Qsq such that uv 6∈ Q,

dS2(G )(uv) = dG (u) + dG (v) + ∑
ux 6∈Q

ux∈Qsq

(µP (u)∧ µP (x), ηP (u)∧ ηP (x), νP (u)∨ νP (x))+

∑
vy 6∈Q

vy∈Qsq

(µP (v)∧ µP (y), ηP (v)∧ ηP (y), νP (v)∨ νP (y))− 2(µQsq (uv), ηQsq (uv), νQsq (uv)).

Proof. Assume that S2(G ) = (P , Qsq) is a square q-RPFG of G = (P , Q).
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1. If uv ∈ Q, then by definition of square q-RPFG uv ∈ Qsq. The degree of edge uv in S2(G ) is

dS2(G )(uv) = dS2(G )(u) + dS2(G )(v)− 2(µQsq (uv), ηQsq (uv), νQsq (uv))

= dG (u) + ∑
ux 6∈Q

ux∈Qsq

(µQsq (ux), ηQsq (ux), νQsq (ux)) + dG (v) + ∑
vy 6∈Q

vy∈Qsq

(µQsq (vy), ηQsq (vy),

νQsq (vy))− 2(µQsq (uv), ηQsq (uv), νQsq (uv))

= dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv))) + ∑
ux 6∈Q

ux∈Qsq

(µP (u)∧ µP (x), ηP (u)∧ ηP (x),

νP (u)∨ νP (x)) + ∑
vy 6∈Q

vy∈Qsq

(µP (v)∧ µP (y), ηP (v)∧ ηP (y), νP (v)∨ νP (y))

= dG (uv) + ∑
ux 6∈Q

ux∈Qsq

(µP (u)∧ µP (x), ηP (u)∧ ηP (x), νP (u)∨ νP (x))+

∑
vy 6∈Q

vy∈Qsq

(µP (v)∧ µP (y), ηP (v)∧ ηP (y), νP (v)∨ νP (y)).

2. If uv ∈ Qsq such that uv 6∈ Q, then degree of edge uv in S2(G ) is

dS2(G )(uv) = dS2(G )(u) + dS2(G )(v)− 2(µQsq (uv), ηQsq (uv), νQsq (uv))

= dG (u) + ∑
ux 6∈Q

ux∈Qsq

(µQsq (ux), ηQsq (ux), νQsq (ux)) + dG (v) + ∑
vy 6∈Q

vy∈Qsq

(µQsq (vy), ηQsq (vy),

νQsq (vy))− 2(µQsq (uv), ηQsq (uv), νQsq (uv))

= dG (u) + dG (v) + ∑
ux 6∈Q

ux∈Qsq

(µP (u)∧ µP (x), ηP (u)∧ ηP (x), νP (u)∨ νP (x))+

∑
vy 6∈Q

vy∈Qsq

(µP (v)∧ µP (y), ηP (v)∧ ηP (y), νP (v)∨ νP (y))− 2(µQsq (uv), ηQsq (uv), νQsq (uv)).

This completes the proof.

Remark 8. If G = (P , Q) is edge regular q-RPFG, then S2(G ) = (P , Qsq) may not be edge regular.
For example, consider a 3-RPFG G , and its square graph S2(G ) as shown in Figure 16.
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Figure 2.15: A 3-RPFG G , and its square graph S2(G )

We see that G is (1.0, 0.6, 1.2)-edge regular 3-RPFG. But since dS2(G )(ab) = (2.3, 1.4, 2.7) 6= (2.0, 1.2, 2.4) =
dS2(G )(ad). Hence S2(G ) is not edge regular.

Remark 2.9. If S2(G ) = (P,Qsq) is edge regular q-RPFG, then G = (P,Q) may not be edge regular.
For example, consider a 5-RPFG G , and its square graph S2(G ) as shown in Figure 2.16.
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Figure 2.16: A 5-RPFG G , and its square graph S2(G )

We see that S2(G ) is (2.0, 2.4, 2.8)-edge regular 5-RPFG. But since dG (ab) = (1.5, 1.8, 2.1) 6= (2.0, 2.4, 2.8) =
dG (ad). Hence G is not edge regular.

Lemma 2.1. The square q-RPFG S2(G ) of a complete q-RPFG G is the q-RPFG G itself.

Proof. The proof is obvious.

Theorem 2.21. If G = (P,Q) be complete q-RPFG. Then G is an edge regular q-RPFG if and only if
S2(G ) = (P,Qsq) is an edge regular q-RPFG.

Proof. Let G = (P,Q) be complete q-RPFG. By Lemma 2.1, G , and S2(G ) are same. It follows that G is an
edge regular q-RPFG if and only if S2(G ) = (P,Qsq) is an edge regular q-RPFG.

Lemma 2.2. The square q-RPFG S2(G ) of a complete bipartite q-RPFG G is complete.

Proof. Let G = (P,Q) be a q-RPFG defined on a complete bipartite graph G = (P,Q). Then µQ(uivj) =
µP(ui) ∧ µP(vj), ηQ(uivj) = ηP(ui) ∧ ηP(vj), and νQ(uivj) = νP(ui) ∧ νP(vj) for all ui ∈ P1, and vj ∈ P2,
where P = P1 ∪ P2. Let S

2(G ) = (P,Qsq) be the square q-RPFG of G . Then we have the followings:

1. If uivj ∈ Q, then µQsq (uivj) = µQ(uivj), ηQsq (uivj) = ηQ(uivj), and νQsq (uivj) = νQ(uivj).

2. If uivj 6∈ Q, and u, v are joined by a path of length less then or equal to 2 in G, then µQsq (uivj) ≤
µP(ui) ∧ µP(vj), ηQsq (uivj) ≤ ηP(ui) ∧ ηP(vj), and νQsq (uivj) ≤ νP(ui) ∨ νP(vj).

18

Figure 16. A 3-RPFG G and its square graph S2(G ).
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We see that G is (1.0, 0.6, 1.2)-edge regular 3-RPFG. However, since dS2(G )(ab) = (2.3, 1.4, 2.7) 6=
(2.0, 1.2, 2.4) = dS2(G )(ad). Hence, S2(G ) is not edge regular.

Remark 9. If S2(G ) = (P , Qsq) is edge regular q-RPFG, then G = (P , Q) may not be edge regular.
For example, consider a 5-RPFG G , and its square graph S2(G ) as shown in Figure 17.
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Figure 2.15: A 3-RPFG G , and its square graph S2(G )

We see that G is (1.0, 0.6, 1.2)-edge regular 3-RPFG. But since dS2(G )(ab) = (2.3, 1.4, 2.7) 6= (2.0, 1.2, 2.4) =
dS2(G )(ad). Hence S2(G ) is not edge regular.

Remark 2.9. If S2(G ) = (P,Qsq) is edge regular q-RPFG, then G = (P,Q) may not be edge regular.
For example, consider a 5-RPFG G , and its square graph S2(G ) as shown in Figure 2.16.
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Figure 2.16: A 5-RPFG G , and its square graph S2(G )

We see that S2(G ) is (2.0, 2.4, 2.8)-edge regular 5-RPFG. But since dG (ab) = (1.5, 1.8, 2.1) 6= (2.0, 2.4, 2.8) =
dG (ad). Hence G is not edge regular.

Lemma 2.1. The square q-RPFG S2(G ) of a complete q-RPFG G is the q-RPFG G itself.

Proof. The proof is obvious.

Theorem 2.21. If G = (P,Q) be complete q-RPFG. Then G is an edge regular q-RPFG if and only if
S2(G ) = (P,Qsq) is an edge regular q-RPFG.

Proof. Let G = (P,Q) be complete q-RPFG. By Lemma 2.1, G , and S2(G ) are same. It follows that G is an
edge regular q-RPFG if and only if S2(G ) = (P,Qsq) is an edge regular q-RPFG.

Lemma 2.2. The square q-RPFG S2(G ) of a complete bipartite q-RPFG G is complete.

Proof. Let G = (P,Q) be a q-RPFG defined on a complete bipartite graph G = (P,Q). Then µQ(uivj) =
µP(ui) ∧ µP(vj), ηQ(uivj) = ηP(ui) ∧ ηP(vj), and νQ(uivj) = νP(ui) ∧ νP(vj) for all ui ∈ P1, and vj ∈ P2,
where P = P1 ∪ P2. Let S

2(G ) = (P,Qsq) be the square q-RPFG of G . Then we have the followings:

1. If uivj ∈ Q, then µQsq (uivj) = µQ(uivj), ηQsq (uivj) = ηQ(uivj), and νQsq (uivj) = νQ(uivj).

2. If uivj 6∈ Q, and u, v are joined by a path of length less then or equal to 2 in G, then µQsq (uivj) ≤
µP(ui) ∧ µP(vj), ηQsq (uivj) ≤ ηP(ui) ∧ ηP(vj), and νQsq (uivj) ≤ νP(ui) ∨ νP(vj).

18

Figure 17. A 5-RPFG G and its square graph S2(G ).

We see that S2(G ) is (2.0, 2.4, 2.8)-edge regular 5-RPFG. However, since dG (ab) = (1.5, 1.8, 2.1) 6=
(2.0, 2.4, 2.8) = dG (ad). Hence, G is not edge regular.

Lemma 1. The square q-RPFG S2(G ) of a complete q-RPFG G is the q-RPFG G itself.

Proof. The proof is obvious.

Theorem 21. If G = (P , Q) be complete q-RPFG. Then, G is an edge regular q-RPFG if and only if S2(G ) =
(P , Qsq) is an edge regular q-RPFG.

Proof. Let G = (P , Q) be complete q-RPFG. By Lemma 1, G , and S2(G ) are same. It follows that G is
an edge regular q-RPFG if and only if S2(G ) = (P , Qsq) is an edge regular q-RPFG.

Lemma 2. The square q-RPFG S2(G ) of a complete bipartite q-RPFG G is complete.

Proof. Let G = (P , Q) be a q-RPFG defined on a complete bipartite graph G = (P, Q). Then, µQ(uivj) =
µP (ui)∧ µP (vj), ηQ(uivj) = ηP (ui)∧ ηP (vj), and νQ(uivj) = νP (ui)∧ νP (vj) for all ui ∈ P1, and vj ∈
P2, where P = P1 ∪ P2. Let S2(G ) = (P , Qsq) be the square q-RPFG of G . Then, we have the following:

1. If uivj ∈ Q, then µQsq (uivj) = µQ(uivj), ηQsq (uivj) = ηQ(uivj), and νQsq (uivj) = νQ(uivj).
2. If uivj 6∈ Q, and u, v are joined by a path of length less then or equal to 2 in G, then µQsq (uivj) ≤

µP (ui)∧ µP (vj), ηQsq (uivj) ≤ ηP (ui)∧ ηP (vj), and νQsq (uivj) ≤ νP (ui)∨ νP (vj).

Since each pair of vertices in a complete bipartite graph must connected by a path of length less then
or equal to 2 (see Figure 18), therefore, above axioms imply that for all ui , vj ∈ P

µQsq (uivj) ≤ µP (ui)∧ µP (vj),

ηQsq (uivj) ≤ ηP (ui)∧ ηP (vj),

νQsq (uivj) ≤ νP (ui)∨ νP (vj).

Hence, the square q-RPFG S2(G ) is complete. This completes the proof.
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Since each pair of vertices in a complete bipartite graph must connected by a path of length less then or equal
to 2 (see Figure 2.17), therefore, above axioms imply that for all ui, vj ∈ P

µQsq (uivj) ≤ µP(ui) ∧ µP(vj),

ηQsq (uivj) ≤ ηP(ui) ∧ ηP(vj),

νQsq (uivj) ≤ νP(ui) ∨ νP(vj).

Hence the square q-RPFG S2(G ) is complete. This completes the proof.

b b b bb

b b b b bbbb

bbb
u1

v1

unun−1
u3u2

v3v2 vm−1 vm

Figure 2.17: Role of a vertex u1 in square graph of complete bipartite graph

Theorem 2.22. If G = (P,Q) be a complete bipartite q-RPFG such that µP , ηP , and νP are constant
functions, then its square graph S2(G ) is edge regular.

Proof. Let G = (P,Q) be a be a complete bipartite q-RPFG such that µP , ηP , and νP are constant functions.
Assume that S2(G ) = (P,Qsq) be the square q-RPFG of G . Then by Lemma 2.2, S2(G ) is a complete q-RPFG.
Let µP(u) = c1, ηP(u) = c2, and νP(u) = c3 for all u ∈ P. By definition of square q-RPFG, we have

µQsq (uv) ≤ µP(u) ∧ µP(v) = c1 ∧ c1 = c1,

ηQsq (uv) ≤ ηP(u) ∧ ηP(v) = c2 ∧ c2 = c2,

νQsq (uv) ≤ νP(u) ∨ νP(v) = c3 ∨ c3 = c3.

Hence µQsq , ηQsq , and νQsq are constant functions. Thus by Theorem 2.8, S2(G ) is edge regular. This completes
the proof.

Theorem 2.23. If G is a q-RPFG on a cycle of length n such that µQ, ηQ, and νQ are constant functions,
then its square q-RPFG S2(G ) is edge regular.

Proof. Let G = (P,Q) be a q-RPFG defined on a cycle u1u2u3 . . . un−1unu1 (see Figure 2.18). Assume that
µQ, ηQ, and νQ are constant functions, and µQ(uiui+1) = c1, ηQ(uiui+1) = c2, and νQ(uiui+1) = c3 for all
i = 1, 2, . . . , n, where n+ 1 = 1. The degree of edge uiui+1 can be computed as:

dG (uiui+1) = dG (ui) + dG (ui+1)− 2(µQ(uiui+1), ηQ(uiui+1), νQ(uiui+1))

= (µQ(ui−1ui), ηQ(ui−1ui), νQ(ui−1ui)) + 2(µQ(uiui+1), ηQ(uiui+1), νQ(uiui+1))+

(µQ(ui+1ui+2), ηQ(ui+1ui+2), νQ(ui+1ui+2))− 2(µQ(uiui+1), ηQ(uiui+1), νQ(uiui+1))

= (µQ(ui−1ui), ηQ(ui−1ui), νQ(ui−1ui)) + (µQ(ui+1ui+2), ηQ(ui+1ui+2), νQ(ui+1ui+2))

= (c1, c2, c3) + (c1, c2, c3) = 2(c1, c2, c3).

Hence G is edge regular. Let S2(G ) be the square q-RPFG of G . To prove that S2(G ) is edge regular, there
arises three cases:
Case-I When n = 3, we have a complete q-RPFG G . By Lemma 2.1 S2(G ) is G itself.
Case-II When n = 4, each pair of non-adjacent vertices is connected by two distinct paths of length 2. Thus
its square graph S2(G ) will be a complete q-RPFG with µQ, ηQ, and νQ are constant functions. In this case,

19

Figure 18. Role of a vertex u1 in square graph of a complete bipartite graph.

Theorem 22. If G = (P , Q) is a complete bipartite q-RPFG such that µP , ηP , and νP are constant functions,
then its square graph S2(G ) is edge regular.

Proof. Let G = (P , Q) be a complete bipartite q-RPFG such that µP , ηP , and νP are constant
functions. Assume that S2(G ) = (P , Qsq) is the square q-RPFG of G . Then, by Lemma 2, S2(G ) is a
complete q-RPFG.

Let µP (u) = c1, ηP (u) = c2, and νP (u) = c3 for all u ∈ P. By definition of square q-RPFG, we have

µQsq (uv) ≤ µP (u)∧ µP (v) = c1 ∧ c1 = c1,

ηQsq (uv) ≤ ηP (u)∧ ηP (v) = c2 ∧ c2 = c2,

νQsq (uv) ≤ νP (u)∨ νP (v) = c3 ∨ c3 = c3.

Hence, µQsq , ηQsq , and νQsq are constant functions. Thus, by Theorem 8, S2(G ) is edge regular.
This completes the proof.

Theorem 23. If G is a q-RPFG on a cycle of length n such that µQ , ηQ , and νQ are constant functions, then its
square q-RPFG S2(G ) is edge regular.

Proof. Let G = (P , Q) be a q-RPFG defined on a cycle u1u2u3 . . . un−1unu1 (see Figure 19). Assume that
µQ , ηQ , and νQ are constant functions, and µQ(uiui+1) = c1, ηQ(uiui+1) = c2, and νQ(uiui+1) = c3 for
all i = 1, 2, . . . , n, where n + 1 = 1. The degree of edge uiui+1 can be computed as:

dG (uiui+1) = dG (ui) + dG (ui+1)− 2(µQ(uiui+1), ηQ(uiui+1), νQ(uiui+1))

= (µQ(ui−1ui), ηQ(ui−1ui), νQ(ui−1ui)) + 2(µQ(uiui+1), ηQ(uiui+1), νQ(uiui+1))+

(µQ(ui+1ui+2), ηQ(ui+1ui+2), νQ(ui+1ui+2))− 2(µQ(uiui+1), ηQ(uiui+1), νQ(uiui+1))

= (µQ(ui−1ui), ηQ(ui−1ui), νQ(ui−1ui)) + (µQ(ui+1ui+2), ηQ(ui+1ui+2), νQ(ui+1ui+2))

= (c1, c2, c3) + (c1, c2, c3) = 2(c1, c2, c3).

Hence, G is edge regular. Let S2(G ) be the square q-RPFG of G . To prove that S2(G ) is edge regular,
there arise three cases:

Case-I When n = 3, we have a complete q-RPFG G . By Lemma 1, S2(G ) is G itself.
Case-II When n = 4, each pair of non-adjacent vertices is connected by two distinct paths of length 2.
Thus, its square graph S2(G ) will be a complete q-RPFG with µQ , ηQ , and νQ are constant functions.
In this case, S2(G ) is edge regular by Theorem 8.
Case-III Let n ≥ 5. Consider a vertex u in S2(G ). There are exactly two vertices which are at distance 2
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from u. Therefore, u is adjacent to exactly two more vertices in S2(G ). Hence, S2(G ) is 4-regular. Then,
for each uv in S2(G ), we have

dS2(G )(uv) = dS2(G )(u) + dS2(G )(v)− 2(µQsq (uv), ηQsq (uv), νQsq (uv))

= 4(c1, c2, c3) + 4(c1, c2, c3)− 2(c1, c2, c3) = 6(c1, c2, c3).

Hence, S2(G ) is 6(c1, c2, c3)-edge regular. This completes the proof.

S2(G ) is edge regular by Theorem 2.8.
Case-III Let n ≥ 5. Consider a vertex u in S2(G ). There are exactly two vertices which are at distance 2 from
u. Therefore u is adjacent to exactly two more vertices in S2(G ). Hence S2(G ) is 4-regular. Then for each uv
in S2(G ), we have

dS2(G )(uv) = dS2(G )(u) + dS2(G )(v)− 2(µQsq (uv), ηQsq (uv), νQsq (uv))

= 4(c1, c2, c3) + 4(c1, c2, c3)− 2(c1, c2, c3) = 6(c1, c2, c3).

Hence S2(G ) is 6(c1, c2, c3)-edge regular. This completes the proof.
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Figure 2.18: Square graph S2(Cn) of cycle Cn

2.3 Edge Regular q-RPF Line Graphs

Following [32], this section gives a brief discussion on edge regular q-rung picture fuzzy line graphs.

Definition 2.23. [2] Let G = (P,Q) be a q-RPFG defined on G = (P,Q). The q-rung picture fuzzy line
graph L(G ) = (A ,B) with underlying graph L(G) = (A,B) where A = {Sx = {x} ∪ {uxvx}|x ∈ Q, x =
uxvx, ux, vx ∈ P} and B = {SxSy|Sx ∩ Sy 6= φ, x, y ∈ Q, x 6= y} can be defined as

(i) For each vertex Sx in A,

µA (Sx) = µQ(x), ηA (Sx) = ηQ(x), νA (Sx) = νQ(x),

(ii) For each edge SxSy in B,

µB(SxSy) = min{µA (Sx), µA (Sy)},
ηB(SxSy) = min{ηA (Sx), ηA (Sy)},
νB(SxSy) = max{νA (Sx), νA (Sy)}.

Theorem 2.24. Let G = (P,Q) be a q-RPFG such that µQ, ηQ, and νQ are constant functions. Then
dL(G )(SxSy) = (c1, c2, c3)[dL(G)(Sx) + dL(G)(Sy)− 2] for all SxSy ∈ B.

Proof. Let L(G ) = (A ,B) be a q-rung picture fuzzy line graph of a q-RPFG G = (P,Q). For any SxSy ∈ B,

dL(G )(SxSy) = dL(G )(Sx) + dL(G )(Sy)− 2(µB(SxSy), ηB(SxSy), νB(SxSy))

=
∑

SxSz∈B

(µQ(SxSz), ηQ(SxSz), νQ(SxSz)) +
∑

SySz∈B

(µQ(SySz), ηQ(SySz), νQ(SySz))

− 2(µQ(SxSy), ηQ(SxSy), νQ(SxSy))

= (c1, c2, c3)dL(G)(Sx) + (c1, c2, c3)dL(G)(Sy)− 2(c1, c2, c3)

= (c1, c2, c3)[dL(G)(Sx) + dL(G)(Sy)− 2].

20

Figure 19. Square graph S2(Cn) of cycle Cn.

2.3. Edge Regular q-RPF Line Graphs

Following [45], this section gives a brief discussion on edge regular q-rung picture fuzzy line
graphs (q-RPFLGs). Akram and Habib [35] defined the q-RPFLGs as follows:

Definition 24. Let G = (P , Q) be a q-RPFG defined on G = (P, Q). The q-rung picture fuzzy line graph
L(G ) = (A , B) with underlying graph L(G) = (A, B) where A = {Sx = {x} ∪ {uxvx}|x ∈ Q, x =
uxvx , ux , vx ∈ P} and B = {SxSy|Sx ∩ Sy 6= φ, x, y ∈ Q, x 6= y} can be defined as

(i) For each vertex Sx in A,

µA (Sx) = µQ(x), ηA (Sx) = ηQ(x), νA (Sx) = νQ(x).

(ii) For each edge SxSy in B,

µB(SxSy) = min{µA (Sx), µA (Sy)},
ηB(SxSy) = min{ηA (Sx), ηA (Sy)},
νB(SxSy) = max{νA (Sx), νA (Sy)}.

Theorem 24. Let G = (P , Q) be a q-RPFG such that µQ , ηQ , and νQ are constant functions. Then,
dL(G )(SxSy) = (c1, c2, c3)[dL(G)(Sx) + dL(G)(Sy)− 2] for all SxSy ∈ B.
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Proof. Let L(G ) = (A , B) be a q-rung picture fuzzy line graph of a q-RPFG G = (P , Q). For any
SxSy ∈ B,

dL(G )(SxSy) = dL(G )(Sx) + dL(G )(Sy)− 2(µB(SxSy), ηB(SxSy), νB(SxSy))

= ∑
SxSz∈B

(µQ(SxSz), ηQ(SxSz), νQ(SxSz)) + ∑
SySz∈B

(µQ(SySz), ηQ(SySz), νQ(SySz))

− 2(µQ(SxSy), ηQ(SxSy), νQ(SxSy))

= (c1, c2, c3)dL(G)(Sx) + (c1, c2, c3)dL(G)(Sy)− 2(c1, c2, c3)

= (c1, c2, c3)[dL(G)(Sx) + dL(G)(Sy)− 2].

This completes the proof.

Remark 10. Consider a 6-RPFG G = (P , Q) as displayed in Figure 20a. Its corresponding line graph
L(G ) = (A , B) is displayed in Figure 20b.

This completes the proof.

Remark 2.10. Consider a 6-RPFG G = (P,Q) as displayed in Figure 2.19 (a). Its corresponding line graph
L(G ) = (A ,B) is displayed in Figure 2.19 (b).
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Figure 2.19

We see that G is (1.8, 1.8, 1.4)-edge regular 6-RPFG. But since dL(G )(Sx1Sx5) = (2.2, 2.7, 3.5) 6= (1.8, 2.2, 2.4) =
dL(G )(Sx1Sx2), therefore, L(G ) is not an edge regular 6-RPFG.

We now develop a necessary condition for q-rung picture fuzzy line graphs to be perfectly edge regular.

Theorem 2.25. Every q-rung picture fuzzy line graph L(G ) = (A ,B) of an edge regular q-RPFG G = (P,Q)
is perfectly edge regular only if µQ, ηQ, and νQ are constant functions in G .

Proof. Let G = (P,Q) be an edge regular q-RPFG defined on G = (P,Q). Then for each edge uv in Q, d(uv) =
(p1, p2, p3). Let µQ, ηQ, and νQ be constant functions. Then for each edge uv in Q, µQ(uv) = c1, ηQ(uv) =
c2 and νQ(uv) = c3. Consider L(G ) = (A ,B) as a q-RPFG as a q-rung picture fuzzy line graph of G . Then by
definition of q-rung picture fuzzy line graph, each vertex Sx of L(G ) corresponding to an edge uv = x of G has
membership value (µA (Sx), ηA (Sx), νA (Sx)) = (µQ(uv), ηQ(uv), νQ(uv)) = (c1, c2, c3), and each edge of L(G )
has membership value

(µB(SxSy), ηB(SxSy), νB(SxSy)) = (µA (Sx) ∧ µA (Sy), ηA (Sx) ∧ ηA (Sy), ηA (Sx) ∨ ηA (Sy))

= (c1 ∧ c1, c2 ∧ c2, c3 ∨ c3)

= (c1, c2, c3).

Let u(x), and v(x) be the end points of an edge uv = x in G . Since G is edge regular with constant functions
µQ, ηQ, and νQ, therefore, each vertex u of G is common vertex of α (say) edges in G (see Figure 2.20).

Let Sx be the vertex of L(G ) corresponding to an edge x in G . The edge x has a vertex vx in common with
α − 1 edges v1, v2, . . . , vα−1. Similarly ux is common with α− 1 edges u1, u2, . . . , uα−1 in G . Thus each vertex
Sx in L(G ) is common vertex of α− 1 + α− 1 = 2α− 2 edges. Hence for all Sx in L(G)

dL(G)(Sx) = 2α− 2. (2.1)

By Theorem 2.24, we have dL(G )(SxSy) = (c1, c2, c3)[dL(G)(Sx) + dL(G)(Sy) − 2]. Then by Equation 2.1,
dL(G )(SxSy) = (c1, c2, c3)[2α−2+2α−2−2] = 2(2α−3)(c1, c2, c3). Which implies that L(G ) is an edge regular
q-RPFG. Moreover, tdL(G )(SxSy) = dL(G )(SxSy) + (µB(SxSy), ηB(SxSy), νB(SxSy)) = 2(2α − 3)(c1, c2, c3) +
(c1, c2, c3) = (4α− 5)(c1, c2, c3). Which shows that L(G ) is totally edge regular q-RPFG. Consequently, L(G ) is
perfectly edge regular q-RPFG. This completes the proof.

21

Figure 20. A 6-RPFLG of G

We see that G is (1.8, 1.8, 1.4)-edge regular 6-RPFG. However, since dL(G )(Sx1 Sx5) = (2.2, 2.7, 3.5) 6=
(1.8, 2.2, 2.4) = dL(G )(Sx1 Sx2 ); therefore, L(G ) is not an edge regular 6-RPFG.

We now develop a necessary condition for q-RPFLG to be perfect edge regular.

Theorem 25. Every q-rung picture fuzzy line graph L(G ) = (A , B) of an edge regular q-RPFG G = (P , Q)
is perfect edge regular only if µQ , ηQ , and νQ are constant functions in G .

Proof. Let G = (P , Q) be an edge regular q-RPFG defined on G = (P, Q). Then, for each edge uv
in Q, d(uv) = (p1, p2, p3). Let µQ , ηQ , and νQ be constant functions. Then, for each edge uv in
Q, µQ(uv) = c1, ηQ(uv) = c2 and νQ(uv) = c3. Consider L(G ) = (A , B) as a q-RPFG as a q-rung
picture fuzzy line graph of G . Then, by definition of q-rung picture fuzzy line graph, each vertex
Sx of L(G ) corresponding to an edge uv = x of G has membership value (µA (Sx), ηA (Sx), νA (Sx)) =
(µQ(uv), ηQ(uv), νQ(uv)) = (c1, c2, c3), and each edge of L(G ) has membership value

(µB(SxSy), ηB(SxSy), νB(SxSy)) = (µA (Sx)∧ µA (Sy), ηA (Sx)∧ ηA (Sy), ηA (Sx)∨ ηA (Sy))

= (c1 ∧ c1, c2 ∧ c2, c3 ∨ c3)

= (c1, c2, c3).

Let u(x) and v(x) be the end points of an edge uv = x in G . Since G is edge regular with constant
functions µQ , ηQ , and νQ , therefore, each vertex u of G is common vertex of α (say) edges in G

(see Figure 21).
Let Sx be the vertex of L(G ) corresponding to an edge x in G . The edge x has a vertex vx in

common with α− 1 edges v1, v2, . . . , vα−1. Similarly, ux is common with α− 1 edges u1, u2, . . . , uα−1
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in G . Thus, each vertex Sx in L(G ) is common vertex of α− 1 + α− 1 = 2α− 2 edges. Hence, for all Sx

in L(G)
dL(G)(Sx) = 2α− 2. (1)

By Theorem 24, we have dL(G )(SxSy) = (c1, c2, c3)[dL(G)(Sx) + dL(G)(Sy)− 2]. Then, by Equation (1),
dL(G )(SxSy) = (c1, c2, c3)[2α − 2 + 2α − 2 − 2] = 2(2α − 3)(c1, c2, c3), which implies that L(G ) is an
edge regular q-RPFG. Moreover, tdL(G )(SxSy) = dL(G )(SxSy) + (µB(SxSy), ηB(SxSy), νB(SxSy)) = 2(2α−
3)(c1, c2, c3) + (c1, c2, c3) = (4α − 5)(c1, c2, c3), which shows that L(G ) is total edge regular q-RPFG.
Consequently, L(G ) is perfect edge regular q-RPFG. This completes the proof.
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Figure 2.20: View of a graph towards its line graph

Remark 2.11. Consider a 4-RPFG G = (P,Q) as displayed in Figure 2.21 (a), and its line graph L(G ) =
(A ,B) 2.21 (b).
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Figure 2.21

We see that L(G ) is (0.7, 0.8, 1.4)-edge regular 4-RPFLG. But since dG (ab) = (0.7, 0.7, 1.1) 6= (1.2, 0.8, 1.2) =
dG (bc), therefore, G is not an edge regular 4-RPFG.

Theorem 2.26. If L(G ) = (A ,B) is an edge regular q-rung picture fuzzy line graph of G = (P,Q), and
µQ, ηQ, and νQ are constant functions, then G is edge regular q-RPFG.

Proof. The proof is similar to the proof of Theorem 2.25.

Theorem 2.27. Let G = (P,Q) be a strong q-rung picture fuzzy graph such that µP , ηP , and νP are constant
functions. If G is an edge regular q-RPFG, then its line graph L(G ) = (A ,B) is an edge regular q-rung picture
fuzzy graph.

Proof. Let G = (P,Q) be a strong edge regular q-rung picture fuzzy graph such that µP , ηP , and νP are
constant functions. Then the functions µQ, ηQ, and νQ must be constants. Consequently, the result follows
from Theorem 2.25.

3 Relations Between Regular and Edge-Regular q-RPFGs

The fact that edge regularity property is a strong analog of regularity in fuzzy graphs, is shown by many
researchers. This section provides some additional properties relating regularity and edge regularity of q-RPFGs.

Remark 3.1. Every regular q-RPFG need not be edge regular.
For example, consider a 5-RPFG G = (P,Q) displayed in Figure 3.1.

22

Figure 21. View of a graph towards its line graph.

Remark 11. Consider a 4-RPFG G = (P , Q) as displayed in Figure 22a, and its line graph L(G ) = (A , B)
Figure 22b.
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Figure 2.20: View of a graph towards its line graph

Remark 2.11. Consider a 4-RPFG G = (P,Q) as displayed in Figure 2.21 (a), and its line graph L(G ) =
(A ,B) 2.21 (b).
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Figure 2.21

We see that L(G ) is (0.7, 0.8, 1.4)-edge regular 4-RPFLG. But since dG (ab) = (0.7, 0.7, 1.1) 6= (1.2, 0.8, 1.2) =
dG (bc), therefore, G is not an edge regular 4-RPFG.

Theorem 2.26. If L(G ) = (A ,B) is an edge regular q-rung picture fuzzy line graph of G = (P,Q), and
µQ, ηQ, and νQ are constant functions, then G is edge regular q-RPFG.

Proof. The proof is similar to the proof of Theorem 2.25.

Theorem 2.27. Let G = (P,Q) be a strong q-rung picture fuzzy graph such that µP , ηP , and νP are constant
functions. If G is an edge regular q-RPFG, then its line graph L(G ) = (A ,B) is an edge regular q-rung picture
fuzzy graph.

Proof. Let G = (P,Q) be a strong edge regular q-rung picture fuzzy graph such that µP , ηP , and νP are
constant functions. Then the functions µQ, ηQ, and νQ must be constants. Consequently, the result follows
from Theorem 2.25.

3 Relations Between Regular and Edge-Regular q-RPFGs

The fact that edge regularity property is a strong analog of regularity in fuzzy graphs, is shown by many
researchers. This section provides some additional properties relating regularity and edge regularity of q-RPFGs.

Remark 3.1. Every regular q-RPFG need not be edge regular.
For example, consider a 5-RPFG G = (P,Q) displayed in Figure 3.1.

22

Figure 22. A 4-RPFLG of G

We see that L(G ) is (0.7, 0.8, 1.4)-edge regular 4-RPFLG. However, since dG (ab) = (0.7, 0.7, 1.1) 6=
(1.2, 0.8, 1.2) = dG (bc); therefore, G is not an edge regular 4-RPFG.

Theorem 26. If L(G ) = (A , B) is an edge regular q-rung picture fuzzy line graph of G = (P , Q), and µQ , ηQ ,
and νQ are constant functions, then G is edge regular q-RPFG.

Proof. The proof is similar to the proof of Theorem 25.

Theorem 27. Let G = (P , Q) be a strong q-rung picture fuzzy graph such that µP , ηP , and νP are constant
functions. If G is an edge regular q-RPFG, then its line graph L(G ) = (A , B) is an edge regular q-rung picture
fuzzy graph.

Proof. Let G = (P , Q) be a strong edge regular q-rung picture fuzzy graph such that µP , ηP , and νP

are constant functions. Then, the functions µQ , ηQ , and νQ must be constants. Consequently, the result
follows from Theorem 25.



Symmetry 2019, 11, 489 26 of 37

3. Relations between Regular and Edge-Regular q-RPFGs

The fact that edge regularity property is a strong analog of regularity in fuzzy graphs is shown
by many researchers. This section provides some additional properties relating regularity and edge
regularity of q-RPFGs.

Remark 12. Every regular q-RPFG need not be edge regular.
For example, consider a 5-RPFG G = (P , Q) displayed in Figure 23.
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Figure 3.1: A regular but not edge regular 5-RPFG G

It is clear that G is (1.75, 1.72, 2.2)-regular 5-RPFG but G is not edge regular as dG (ab) = (2.0, 2.2, 3.0) 6=
(2.5, 2.44, 2.8) = dG (bc).

Remark 3.2. Every edge regular q-RPFG need not be regular.
For example, consider a 6-RPFG G as shown in Figure 2.9. It is clear that G is (1.4, 1.8, 1.6)-edge regular
6-RPFG but G is not regular as dG (u) = (0.8, 1.0, 0.6) 6= (1.4, 1.8, 1.6) = dG (v).

Above remarks show that one form of regularity can not imply another form. We now develop some results
between regularity and edge regularity.

Theorem 3.1. Let G = (P,Q) be a regular q-RPFG on G = (P,Q). Then G is edge regular if and only if
µQ, ηQ, and νQ are constant functions.

Proof. Let G = (P,Q) be a (k1, k2, k3)-regular q-RPFG. Then dG (u) = (k1, k2, k3) for all u ∈ P. Assume
that µQ, ηQ, and νQ are constant functions, that is, µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3. By def-
inition of edge degree dG (uv) = dG (u) + dG (v) − 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3) − 2(c1, c2, c3) =
2(p1 − c1, p2 − c2, p3 − c3). for all uv ∈ Q. Hence G is edge regular.
Conversely, assume that G is (p1, p2, p3)-edge regular. Then dG (uv) = (p1, p2, p3), for all uv ∈ Q. By defini-
tion of edge degree (p1, p2, p3) = 2(k1, k2, k3) − 2(µQ(uv), ηQ(uv), νQ(uv)). Thus (µQ(uv), ηQ(uv), νQ(uv)) =
(2k1−p1,2k2−p2,2k3−p3)

2 , for all uv ∈ Q. Hence µQ, ηQ, and νQ are constant functions. This completes the
proof.

Theorem 3.2. Let G = (P,Q) be a q-RPFG on G = (P,Q) such that µQ, ηQ, and νQ are constant functions.
If G is full regular q-RPFG, then G is full edge regular q-RPFG.

Proof. Let G = (P,Q) be a q-RPFG on G = (P,Q), and µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3,
for all uv ∈ Q. Assume that G is full regular q-RPFG, that is, dG (u) = (k1, k2, k3), and dG(u) = k for
all u ∈ P. Then dG(uv) = dG(u) + dG(v) − 2 = 2r − 2. Hence G is edge regular graph. Now dG (uv) =
dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3)− 2(c1, c2, c3) = 2(k1 − c1, k2 − c2, k3 − c3). Hence G
is edge regular q-RPFG. Consequently, G is full edge regular q-RPFG.

Remark 3.3. The converse of above theorem need not be true.
For example, consider a 4-RPFG G as displayed in Figure 3.2.
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Figure 3.2: A 4-RPFG G

23

Figure 23. A regular but not edge regular 5-RPFG G .

It is clear that G is (1.75, 1.72, 2.2)-regular 5-RPFG, but G is not edge regular as dG (ab) = (2.0, 2.2, 3.0) 6=
(2.5, 2.44, 2.8) = dG (bc).

Remark 13. Every edge regular q-RPFG need not be regular.
For example, consider a 6-RPFG G as shown in Figure 10. It is clear that G is (1.4, 1.8, 1.6)-edge regular
6-RPFG but G is not regular as dG (u) = (0.8, 1.0, 0.6) 6= (1.4, 1.8, 1.6) = dG (v).

The above remarks show that one form of regularity can not imply another form. We now develop
some results between regularity and edge regularity.

Theorem 28. Let G = (P , Q) be a regular q-RPFG on G = (P, Q). Then, G is edge regular if and only if
µQ , ηQ , and νQ are constant functions.

Proof. Let G = (P , Q) be a (k1, k2, k3)-regular q-RPFG. Then, dG (u) = (k1, k2, k3) for all u ∈ P.
Assume that µQ , ηQ , and νQ are constant functions, that is, µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3.
By definition of edge degree dG (uv) = dG (u) + dG (v) − 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3) −
2(c1, c2, c3) = 2(p1 − c1, p2 − c2, p3 − c3) for all uv ∈ Q. Hence, G is edge regular.
Conversely, assume that G is (p1, p2, p3)-edge regular. Then, dG (uv) = (p1, p2, p3), for all
uv ∈ Q. By definition of edge degree (p1, p2, p3) = 2(k1, k2, k3) − 2(µQ(uv), ηQ(uv), νQ(uv)). Thus,
(µQ(uv), ηQ(uv), νQ(uv)) = (2k1−p1 ,2k2−p2 ,2k3−p3)

2 , for all uv ∈ Q. Hence, µQ , ηQ , and νQ are constant
functions. This completes the proof.

Theorem 29. Let G = (P , Q) be a q-RPFG on G = (P, Q) such that µQ , ηQ , and νQ are constant functions.
If G is full regular q-RPFG, then G is full edge regular q-RPFG.

Proof. Let G = (P , Q) be a q-RPFG on G = (P, Q), and µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3,
for all uv ∈ Q. Assume that G is full regular q-RPFG, that is, dG (u) = (k1, k2, k3), and dG(u) = k for
all u ∈ P. Then, dG(uv) = dG(u) + dG(v)− 2 = 2r− 2. Hence, G is edge regular graph. Now, dG (uv) =
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dG (u) + dG (v) − 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3) − 2(c1, c2, c3) = 2(k1 − c1, k2 − c2, k3 − c3).
Hence, G is edge regular q-RPFG. Consequently, G is full edge regular q-RPFG.

Remark 14. The converse of the above theorem need not be true.
For example, consider a 4-RPFG G as displayed in Figure 24.
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Figure 3.1: A regular but not edge regular 5-RPFG G

It is clear that G is (1.75, 1.72, 2.2)-regular 5-RPFG but G is not edge regular as dG (ab) = (2.0, 2.2, 3.0) 6=
(2.5, 2.44, 2.8) = dG (bc).

Remark 3.2. Every edge regular q-RPFG need not be regular.
For example, consider a 6-RPFG G as shown in Figure 2.9. It is clear that G is (1.4, 1.8, 1.6)-edge regular
6-RPFG but G is not regular as dG (u) = (0.8, 1.0, 0.6) 6= (1.4, 1.8, 1.6) = dG (v).

Above remarks show that one form of regularity can not imply another form. We now develop some results
between regularity and edge regularity.

Theorem 3.1. Let G = (P,Q) be a regular q-RPFG on G = (P,Q). Then G is edge regular if and only if
µQ, ηQ, and νQ are constant functions.

Proof. Let G = (P,Q) be a (k1, k2, k3)-regular q-RPFG. Then dG (u) = (k1, k2, k3) for all u ∈ P. Assume
that µQ, ηQ, and νQ are constant functions, that is, µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3. By def-
inition of edge degree dG (uv) = dG (u) + dG (v) − 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3) − 2(c1, c2, c3) =
2(p1 − c1, p2 − c2, p3 − c3). for all uv ∈ Q. Hence G is edge regular.
Conversely, assume that G is (p1, p2, p3)-edge regular. Then dG (uv) = (p1, p2, p3), for all uv ∈ Q. By defini-
tion of edge degree (p1, p2, p3) = 2(k1, k2, k3) − 2(µQ(uv), ηQ(uv), νQ(uv)). Thus (µQ(uv), ηQ(uv), νQ(uv)) =
(2k1−p1,2k2−p2,2k3−p3)

2 , for all uv ∈ Q. Hence µQ, ηQ, and νQ are constant functions. This completes the
proof.

Theorem 3.2. Let G = (P,Q) be a q-RPFG on G = (P,Q) such that µQ, ηQ, and νQ are constant functions.
If G is full regular q-RPFG, then G is full edge regular q-RPFG.

Proof. Let G = (P,Q) be a q-RPFG on G = (P,Q), and µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3,
for all uv ∈ Q. Assume that G is full regular q-RPFG, that is, dG (u) = (k1, k2, k3), and dG(u) = k for
all u ∈ P. Then dG(uv) = dG(u) + dG(v) − 2 = 2r − 2. Hence G is edge regular graph. Now dG (uv) =
dG (u) + dG (v)− 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3)− 2(c1, c2, c3) = 2(k1 − c1, k2 − c2, k3 − c3). Hence G
is edge regular q-RPFG. Consequently, G is full edge regular q-RPFG.

Remark 3.3. The converse of above theorem need not be true.
For example, consider a 4-RPFG G as displayed in Figure 3.2.
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Figure 3.2: A 4-RPFG G
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Figure 24. A 4-RPFG G .

We see that G is (0.5, 0.2, 0.6)-edge regular q-RPFG, and G is 1-edge regular graph. Thus, G is full edge
regular q-RPFG. However, since dG (a) = (0.5, 0.2, 0.6) 6= (1.0, 0.4, 1.2) = dG (c), therefore, G is not regular.
Moreover, G is not regular. Thus, G is not full regular.

Theorem 30. Let µQ , ηQ , and νQ are constant functions in a q-RPFG G = (P , Q). If G is regular, then G is
perfect edge regular.

Proof. Let G = (P , Q) be a q-RPFG on G = (P, Q) with µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3,
for all uv ∈ Q. Assume that G is (k1, k2, k3)-regular. Then, dG (u) = (k1, k2, k3), for all u ∈ P.
By definition of edge degree, dG (uv) = dG (u) + dG (u)− 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1 − c1, k2 −
c2, k3 − c3), for all uv ∈ Q. Moreover, by definition of total edge degree, tdG (uv) = dG (u) +
dG (u)− (µQ(uv), ηQ(uv), νQ(uv)) = (2k1 − c1, 2k2 − c2, 2k3 − c3), for all uv ∈ Q. Hence, G is perfect
edge regular.

Remark 15. The converse of above theorem need not be true.
For example, consider 11-RPFG G as shown in Figure 25.

We see that G is (0.5, 0.2, 0.6)-edge regular q-RPFG, and G is 1-edge regular graph. Thus G is full edge
regular q-RPFG. But since dG (a) = (0.5, 0.2, 0.6) 6= (1.0, 0.4, 1.2) = dG (c), therefore, G is not regular. Moreover,
G is not regular. Thus G is not full regular.

Theorem 3.3. Let µQ, ηQ, and νQ are constant functions in a q-RPFG G = (P,Q). If G is regular, then G
is perfectly edge regular.

Proof. Let G = (P,Q) be a q-RPFG on G = (P,Q) with µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3,
for all uv ∈ Q. Assume that G is (k1, k2, k3)-regular. Then dG (u) = (k1, k2, k3), for all u ∈ P. By definition
of edge degree, dG (uv) = dG (u) + dG (u) − 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1 − c1, k2 − c2, k3 − c3), for all
uv ∈ Q. Moreover, by definition of total edge degree, tdG (uv) = dG (u) + dG (u) − (µQ(uv), ηQ(uv), νQ(uv)) =
(2k1 − c1, 2k2 − c2, 2k3 − c3), for all uv ∈ Q. Hence G is perfectly edge regular.

Remark 3.4. The converse of above theorem need not be true.
For example, consider 11-RPFG G as shown in Figure 3.3.
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Figure 3.3: An 11-RPFG G

We see that G is (0.9, 0.9, 0.9)-edge regular, and (1.2, 1.2, 1.2)-totally edge regular 11-RPFG but G is not
regular 11-RPFG as dG (a) = (0.6, 0.6, 0.6) 6= (0.9, 0.9, 0.9) = dG (b).

Theorem 3.4. [2] Let G = (P,Q) be a q-RPFG such that µQ, ηQ, and νQ are constant functions. Then G
is regular q-RPFG if and only if G is partially regular q-RPFG.

Theorem 3.5. If a q-RPFG G = (P,Q) is perfectly edge regular, then G is regular if and only if G is partially
regular.

Proof. Let G = (P,Q) be perfectly edge regular. Then by Theorem 2.15, µQ, ηQ, and νQ are constant
functions. Thus Theorem 3.4 implies that G is regular if and only if G is partially regular.

Remark 3.5. The converse of above theorem need not be true.
For example, consider a 5-RPFG G as shown in Figure 3.4.
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Figure 3.4: A 5-RPFG G

We see that G is (1.0, 1.0, 1.3)-regular 5-RPFG. Moreover, G is partially regular. But it is easy to observe
that G is neither edge regular nor totally edge regular.

24

Figure 25. An 11-RPFG G .
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We see that G is (0.9, 0.9, 0.9)-edge regular, and (1.2, 1.2, 1.2)-total edge regular 11-RPFG, but G is not
regular 11-RPFG as dG (a) = (0.6, 0.6, 0.6) 6= (0.9, 0.9, 0.9) = dG (b).

Theorem 31. [35] Let G = (P , Q) be a q-RPFG such that µQ , ηQ , and νQ are constant functions. Then, G is
regular q-RPFG if and only if G is partially regular q-RPFG.

Theorem 32. If a q-RPFG G = (P , Q) is perfect edge regular, then G is regular if and only if G is partially
regular.

Proof. Let G = (P , Q) be perfect edge regular. Then, by Theorem 15, µQ , ηQ , and νQ are constant
functions. Thus, Theorem 31 implies that G is regular if and only if G is partially regular.

Remark 16. The converse of above theorem need not be true.
For example, consider a 5-RPFG G as shown in Figure 26.

We see that G is (0.5, 0.2, 0.6)-edge regular q-RPFG, and G is 1-edge regular graph. Thus G is full edge
regular q-RPFG. But since dG (a) = (0.5, 0.2, 0.6) 6= (1.0, 0.4, 1.2) = dG (c), therefore, G is not regular. Moreover,
G is not regular. Thus G is not full regular.

Theorem 3.3. Let µQ, ηQ, and νQ are constant functions in a q-RPFG G = (P,Q). If G is regular, then G
is perfectly edge regular.

Proof. Let G = (P,Q) be a q-RPFG on G = (P,Q) with µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3,
for all uv ∈ Q. Assume that G is (k1, k2, k3)-regular. Then dG (u) = (k1, k2, k3), for all u ∈ P. By definition
of edge degree, dG (uv) = dG (u) + dG (u) − 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1 − c1, k2 − c2, k3 − c3), for all
uv ∈ Q. Moreover, by definition of total edge degree, tdG (uv) = dG (u) + dG (u) − (µQ(uv), ηQ(uv), νQ(uv)) =
(2k1 − c1, 2k2 − c2, 2k3 − c3), for all uv ∈ Q. Hence G is perfectly edge regular.

Remark 3.4. The converse of above theorem need not be true.
For example, consider 11-RPFG G as shown in Figure 3.3.
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Figure 3.3: An 11-RPFG G

We see that G is (0.9, 0.9, 0.9)-edge regular, and (1.2, 1.2, 1.2)-totally edge regular 11-RPFG but G is not
regular 11-RPFG as dG (a) = (0.6, 0.6, 0.6) 6= (0.9, 0.9, 0.9) = dG (b).

Theorem 3.4. [2] Let G = (P,Q) be a q-RPFG such that µQ, ηQ, and νQ are constant functions. Then G
is regular q-RPFG if and only if G is partially regular q-RPFG.

Theorem 3.5. If a q-RPFG G = (P,Q) is perfectly edge regular, then G is regular if and only if G is partially
regular.

Proof. Let G = (P,Q) be perfectly edge regular. Then by Theorem 2.15, µQ, ηQ, and νQ are constant
functions. Thus Theorem 3.4 implies that G is regular if and only if G is partially regular.

Remark 3.5. The converse of above theorem need not be true.
For example, consider a 5-RPFG G as shown in Figure 3.4.
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Figure 3.4: A 5-RPFG G

We see that G is (1.0, 1.0, 1.3)-regular 5-RPFG. Moreover, G is partially regular. But it is easy to observe
that G is neither edge regular nor totally edge regular.

24

Figure 26. A 5-RPFG G .

We see that G is (1.0, 1.0, 1.3)-regular 5-RPFG. Moreover, G is partially regular. However, it is easy to
observe that G is neither edge regular nor total edge regular.

Theorem 33. Let G = (P , Q) be the k-partially regular q-RPFG. Then, µQ , ηQ , and νQ are constant functions
if and only if G both regular, and perfect edge regular.

Proof. Consider a q-RPFG G = (P , Q) defined on G = (P, Q) such that G is k-regular.
Assume that µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3, for all uv ∈ Q. Then, dG (u) =
∑uv∈Q(µQ(uv), ηQ(uv), νQ(uv)) = ∑uv∈Q(c1, c2, c3) = (c1, c2, c3)dG(u) = k(c1, c2, c3) for all u ∈ P. Hence,
G is regular q-RPFG. Thus, by Theorem 30, G is perfect edge regular.

Conversely, let G be both regular, and perfect edge regular. Then, suppose that dG (u) = (k1, k2, k3)
for all u ∈ P, dG (uv) = (p1, p2, p3), and tdG (uv) = (q1, q2, q3) for all uv ∈ Q. By definition of edge degree,

dG (uv) = dG (u) + dG (u)− 2(µQ(uv), ηQ(uv), νQ(uv)),

(p1, p2, p3) = 2(k1, k2, k3)− 2(µQ(uv), ηQ(uv), νQ(uv)),

(µQ(uv), ηQ(uv), νQ(uv)) =
(2k1 − p1, 2k2 − p2, 2k3 − p3)

2
.

Hence, µQ , ηQ , and νQ are constant functions. This completes the proof.

Lemma 3. If G = (P , Q) is perfectly regular (or regular) q-RPFG, and µQ , ηQ , and νQ are constant functions,
then G is perfect edge-regular.
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Proof. Let G = (P , Q) be a perfectly regular q-RPFG defined on G = (V, E), and µQ , ηQ , and νQ

be constant functions. Then, (µQ(uv), ηQ(uv), νQ(uv)) = (c1, c2, c3) for all uv ∈ Q. Since G is
regular q-RPFG, therefore, dG (u) = (k1, k2, k3) for all u ∈ V. Then, for any edge uv in G , dG (uv) =
dG (u) + dG (v) − 2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3) − 2(c1, c2, c3) = 2(k1 − c1, k2 − c2, k3 − c3).
Hence, G is edge regular q-RPFG. Now, the total degree of an edge in q-RPFG is tdG (uv) =
dG (uv) + (µQ(uv), ηQ(uv), νQ(uv)) = 2(k1− c1, k2− c2, k3− c3) + (c1, c2, c3) = (2k1− c1, 2k2− c2, 2k3− c3)
for all uv ∈ Q. Thus, G is total edge-regular q-RPFG. Consequently, G is perfect edge-regular q-RPFG.
This completes the proof.

Remark 17. If G = (P , Q) is totally regular q-RPFG, and µQ , ηQ , and νQ are constant functions, then G

may not perfect edge-regular.
For example, consider a 3-RPFG G as shown in Figure 27.

Theorem 3.6. Let G = (P,Q) be the k-partially regular q-RPFG. Then µQ, ηQ, and νQ are constant functions
if and only if G both regular, and perfectly edge regular.

Proof. Consider a q-RPFG G = (P,Q) defined on G = (P,Q) such that G is k-regular. Assume that
µQ(uv) = c1, ηQ(uv) = c2, and νQ(uv) = c3, for all uv ∈ Q. Then dG (u) =

∑
uv∈Q(µQ(uv), ηQ(uv), νQ(uv)) =∑

uv∈Q(c1, c2, c3) = (c1, c2, c3)dG(u) = k(c1, c2, c3) for all u ∈ P. Hence G is regular q-RPFG. Thus by Theorem
3.3, G is perfectly edge regular.
Conversely, let G be both regular, and perfectly edge regular. Then suppose that dG (u) = (k1, k2, k3) for all
u ∈ P, dG (uv) = (p1, p2, p3), and tdG (uv) = (q1, q2, q3) for all uv ∈ Q. By definition of edge degree

dG (uv) = dG (u) + dG (u)− 2(µQ(uv), ηQ(uv), νQ(uv))

(p1, p2, p3) = 2(k1, k2, k3)− 2(µQ(uv), ηQ(uv), νQ(uv))

(µQ(uv), ηQ(uv), νQ(uv)) =
(2k1 − p1, 2k2 − p2, 2k3 − p3)

2
.

Hence µQ, ηQ, and νQ are constant functions. This completes the proof.

Lemma 3.1. If G = (P,Q) is perfectly regular (or regular) q-RPFG, and µQ, ηQ, and νQ are constant
functions then G is perfectly edge-regular.

Proof. Let G = (P,Q) be a perfectly regular q-RPFG defined on G = (V,E), and µQ, ηQ, and νQ be con-
stant functions. Then (µQ(uv), ηQ(uv), νQ(uv)) = (c1, c2, c3) for all uv ∈ Q. Since G is regular q-RPFG,
therefore, dG (u) = (k1, k2, k3) for all u ∈ V. Then for any edge uv in G , dG (uv) = dG (u) + dG (v) −
2(µQ(uv), ηQ(uv), νQ(uv)) = 2(k1, k2, k3) − 2(c1, c2, c3) = 2(k1 − c1, k2 − c2, k3 − c3). Hence G is edge reg-
ular q-RPFG. Now the total degree of an edge in q-RPFG is tdG (uv) = dG (uv) + (µQ(uv), ηQ(uv), νQ(uv)) =
2(k1−c1, k2−c2, k3−c3)+(c1, c2, c3) = (2k1−c1, 2k2−c2, 2k3−c3) for all uv ∈ Q. Thus G is totally edge-regular
q-RPFG. Consequently, G is perfectly edge-regular q-RPFG. This completes the proof.

Remark 3.6. If G = (P,Q) is totally regular q-RPFG, and µQ, ηQ, and νQ are constant functions, then G
may not perfectly edge-regular.
For example, consider a 3-RPFG G as shown in Figure 3.5.
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Figure 3.5: A 3-RPFG G

We see that G is totally regular since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.6, 1.2, 0.8), and µQ(uv), ηQ(uv),
and νQ(uv) are constant functions as µQ(uv) = 0.4, ηQ(uv) = 0.3, and νQ(uv) = 0.2 for all uv ∈ Q. But
dG (ab) = (1.2, 0.9, 0.6) 6= (1.6, 1.2, 0.8) = dG (ac) leads G to be not edge-regular 3-RPFG. Thus G is not
perfectly edge-regular.

Theorem 3.7. If G = (P,Q) is complete perfectly regular q-RPFG, then G is perfectly edge-regular.

Proof. Let G = (P,Q) be a complete perfectly regular q-RPFG defined on G = (P,Q). Then for each ver-
tex u of G , (µP(u), ηP(u), νP(u)) = (k1, k2, k3). Also completeness of G implies that for every edge uv of
G , (µQ(uv), ηQ(uv), νQ(uv)) = (µP(u) ∧ µP(v), ηP(u) ∧ ηP(v), νP(u) ∧ νP(v)). Combining above two facts,
we obtain (µQ(uv), ηQ(uv), νQ(uv)) = (k1, k2, k3) for all uv ∈ Q. It shows that µQ, ηQ, and νQ are constant
functions. Hence by Lemma 3.1, G is perfectly edge-regular q-RPFG. This completes the proof.

25

Figure 27. A 3-RPFG G .

We see that G is totally regular since tdG (a) = tdG (b) = tdG (c) = tdG (d) = (1.6, 1.2, 0.8),
and µQ(uv), ηQ(uv), and νQ(uv) are constant functions as µQ(uv) = 0.4, ηQ(uv) = 0.3, and νQ(uv) = 0.2 for
all uv ∈ Q. However, dG (ab) = (1.2, 0.9, 0.6) 6= (1.6, 1.2, 0.8) = dG (ac) leads G to be not edge-regular 3-RPFG.
Thus, G is not perfect edge-regular.

Theorem 34. If G = (P , Q) is complete perfectly regular q-RPFG, then G is perfect edge-regular.

Proof. Let G = (P , Q) be a complete perfectly regular q-RPFG defined on G = (P, Q). Then, for each
vertex u of G , (µP (u), ηP (u), νP (u)) = (k1, k2, k3). In addition, completeness of G implies that, for every
edge uv of G , (µQ(uv), ηQ(uv), νQ(uv)) = (µP (u)∧ µP (v), ηP (u)∧ ηP (v), νP (u)∧ νP (v)). Combining
the two facts above, we obtain (µQ(uv), ηQ(uv), νQ(uv)) = (k1, k2, k3) for all uv ∈ Q. It shows that
µQ , ηQ , and νQ are constant functions. Hence, by Lemma 3, G is perfect edge-regular q-RPFG.
This completes the proof.

Next, we relate the concepts of regularity and edge regularity in q-RPF line graphs.

Observation 1. The total degree of an edge x in G is equal to the sum of the membership values of corresponding
vertex Sx , and its adjacent vertices in L(G ).

Theorem 35. Let G = (P , Q) be a q-RPFG such that µQ , ηQ , and νQ are constant functions. If G is a
regular q-RPFG, then its line graph L(G ) = (A , B) is an edge regular q-RPFG.
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Proof. Let G = (P , Q) be a regular q-RPFG such that µQ , ηQ , and νQ are constant functions. Then,
by Theorem 28, G is an edge regular q-RPFG. Consequently, by Theorem 25, the q-RPF line graph
L(G ) = (A , B) is edge regular.

Remark 18. The converse of the above theorem need not be true.
Consider a 4-rung picture fuzzy graph G = (P , Q), and its line graph L(G ) = (A , B) as shown in Figure 28.

Next we relate the concepts of regularity and edge regularity in q-RPF line graphs.

Observation 3.1. The total degree of an edge x in G is equal to the sum of the membership values of corre-
sponding vertex Sx, and its adjacent vertices in L(G ).

Theorem 3.8. Let G = (P,Q) be a q-RPFG such that µQ, ηQ, and νQ are constant functions. If G is a
regular q-RPFG, then its line graph L(G ) = (A ,B) is an edge regular q-RPFG.

Proof. Let G = (P,Q) be a regular q-RPFG such that µQ, ηQ, and νQ are constant functions. Then by
Theorem 3.1, G is an edge regular q-RPFG. Consequently, by Theorem 2.25, the q-RPF line graph L(G ) =
(A ,B) is edge regular.

Remark 3.7. The converse of above theorem need not be true.
Consider a 4-rung picture fuzzy graph G = (P,Q), and its line graph L(G ) = (A ,B) as shown in Figure 3.6.
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Figure 3.6: A not regular 4-RPFG G , and its edge regular line graph L(G )

We see that µQ, ηQ, and νQ are constant functions, that is, for each uv in Q, (µQ(uv), ηQ(uv), νQ(uv)) =
(0.4, 0.5, 0.7). Since each edge of L(G ) has degree (1.6, 2.0, 2.8), therefore, L(G ) is (1.6, 2.0, 2.8)-edge regular
4-rung picture fuzzy line graph of G . But dG (b) = (0.8, 1.0, 1.4) 6= (1.2, 1.5, 2.1) = dG (a) leads to the fact that
the 4-RPFG G is not regular.

4 Applications

Graph theory, graph-partitioning, and graph-based computing are characterized by detecting different network
structures. The unstoppable growth of social networks, and the huge number of connected users, has become
these networks as one of the most popular, and successful domains for a large number of research areas. The
different possibilities, volume, and variety that these social networks offer has become them essential tool for
everyday working, and social relationships. The number of users registered in different social networks, and the
volume of information generated by them in more explanatory manner are increasing day by day. The analysis
over the whole network becomes extremely difficult due to this fact. For instance, if every people has 5 close
friends, then in a town of 10, 000 people, there will be 50, 000 close friendship ties to study. In order to extract
the knowledge from such a large network, some relevant works have focused the attention to ‘ego-networks’. On
the other hand, if someone does not want to understand a whole community, but just what individual people
do, that is, one only finds some people in a community interesting (leaders, teenagers, artists etc), also lead to
study ego-networks, which tells us about social structure of entire population, and its sub-populations.

An Ego-network is a social network composed by one user centering the graph (called ego), all the users
connected to this ego (called alters), and all the relations between these alters (called ties). Ego can be considered
as an individual ‘focal’ node. It can be a person, a group, an organization, or a whole society. A network has
as many egos as it has nodes.

26

Figure 28. A not regular 4-RPFG G and its edge regular line graph L(G ).

We see that µQ , ηQ , and νQ are constant functions, that is, for each uv in Q, (µQ(uv), ηQ(uv), νQ(uv)) =
(0.4, 0.5, 0.7). Since each edge of L(G ) has degree (1.6, 2.0, 2.8), therefore, L(G ) is (1.6, 2.0, 2.8)-edge regular
4-rung picture fuzzy line graph of G . However, dG (b) = (0.8, 1.0, 1.4) 6= (1.2, 1.5, 2.1) = dG (a) leads to the fact
that the 4-RPFG G is not regular.

4. Applications

Graph theory, graph-partitioning, and graph-based computing are characterized by detecting
different network structures. The unstoppable growth of social networks, and the huge number of
connected users, has made these networks some of the most popular, and successful domains for a large
number of research areas. The different possibilities, volume, and variety that these social networks
offer has made them essential tools for everyday working, and social relationships. The number of
users registered in different social networks, and the volume of information generated by them in a
more explanatory manner are increasing day by day. The analysis over the whole network becomes
extremely difficult due to this fact. For instance, if every people has 5 close friends, then in a town
of 10,000 people, there will be 50,000 close friendship ties to study. In order to extract the knowledge
from such a large network, some relevant works have focused the attention on ‘ego-networks’. On the
other hand, if someone does not want to understand a whole community, but just what individual
people do, that is, one only finds some people in a community interesting (leaders, teenagers, artists,
etc.), also lead to study ego-networks, which tells us about social structure of entire population, and its
sub-populations.

An Ego-network is a social network composed of one user centering the graph (called ego), all the
users connected to this ego (called alters), and all the relations between these alters (called ties). Ego can
be considered as an individual ‘focal’ node. It can be a person, a group, an organization, or a whole
society. A network has as many egos as it has nodes.
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q-Rung Picture Fuzzy Social Network

An ordinary social network cannot represent the power of employees, and the degree of relations
among employees within an organization. As the powers, and relationships have no defined
boundaries, it is desired to represent them in the form of fuzzy set. The fuzzy social networks
are used to express interactions between different nodes. It is obvious that the fuzzy graph model is
not enough to fully illustrate any phenomenon represented by networks/graphs. Several extensions
of fuzzy set have been introduced in this context. Thus, to deal with the situations where opinions are
not only yes or no, but there are some abstinence, and refusal too; recently, the q-rung picture fuzzy
graph model was introduced, providing a vast depiction space of triplets. We now discuss the concept
of ego-networks under q-rung picture fuzzy environment.

Algorithm 1 illustrates the extraction of q-rung picture fuzzy ego-networks from a q-rung picture
fuzzy social network G = (P , Q). The complexity of algorithm is O(n2), where n = |P|.

Algorithm 1 Extraction of q-rung picture fuzzy ego-networks
INPUT: A q-RPF social network G = (P , Q).
OUTPUT: A q-RPF ego-network Gi = (Pi , Qi).

function Gi = (Pi , Qi)
for i = 1 to n do

for j = 1 to n do
if ui(µP (ui), ηP (ui), νP (ui)) is q-RPF ego then

choose all uj(µP (uj), ηP (uj), νP (uj)) such that i 6= j and
(µQ(uiuj), ηQ(uiuj), νQ(uiuj)) 6= (0, 0, 0)
Define a q-RPF vertex set
Pi = {ui(µP (ui), ηP (ui), νP (ui)), uj(µP (uj), ηP (uj), νP (uj))| f or all j}
and a q-RPF edge set
Qi = {uiuj(µQ(uiuj), ηQ(uiuj), νQ(uiuj)), ujuj′ (µQ(ujuj′ ), ηQ(ujuj′ ), νQ(ujuj′ ))|j < j

′
, f or all j}

end if
end for

end for
end function

We can use q-RPFG to examine the social relationships among different groups of people. By the
concept of q-RPF ego-networks, we can focus on a single entity to investigate its potential with other
members of a social group. We can also examine the percentage of relationships under a q-rung picture
fuzzy environment.

Consider a large company in Japan. The typical structure of executive titles is illustrated
as a set of employees P = {Chairman (C), CEO, President (C), Deputy president (DP)/Senior
executive (SE), Executive vice president (EVP), Senior vice president (SVP), Vice president (VP)/general
manager (GM)/Department head (DH), Deputy general manager (DGM), Manager (M)/Section head (SH),
Assistant manager (AM)/Team leader (TL), Staff (S)} for that company. Let P be the 4-RPFS on P given by
Table 1.

Table 1. A 4-RPFS of employees.

C CEO P DP/SE EVP SVP VP/GM/DH DGM M/SH AM/TL S

µP 0.9 0.8 0.7 0.6 0.6 0.45 0.55 0.65 0.5 0.4 0.3
ηP 0.6 0.5 0.6 0.55 0.56 0.8 0.5 0.6 0.8 0.7 0.7
νP 0.5 0.7 0.7 0.85 0.88 0.6 0.8 0.9 0.7 0.9 0.6

Figure 29 displays a 4-RPFG representing the social network composed of 11 different employees.
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Figure 4.1: A 4-rung picture fuzzy social network

There are 11 different q-RPF ego networks/graphs associated with given q-RPF network/graph, where
the vertices/nodes represent the powers of employees in company, and edges/links represent their relation-
ships. The membership functions µP , ηP , and νP in triplet (µP , ηP , νP) assigned to each node, indicate
their positive impact, their neutral behavior, and their negative impact within the company, respectively.
For example, (0.8, 0.5, 0.7) tells the status level of CEO as: The CEO possess 40.96% positive impact, and
24.01% negative impact within the company. Total 6.25% of his behavior is neutral. While the refusal degree

π =
4
√
1− 0.84 − 0.54 − 0.74 of CEO indicates that only 28.78000001% he has ability to refuse to participate in

company’s matters. However, the positive, neutral, and negative membership degrees µQ, ηQ, and νQ of edges
depict the positive associations, abstinence to associate, and negative associations among employees. For ex-
ample, the edge between president and assistant manager is assigned by triplet (0.3, 0.5, 0.3). The relationships
between them can be translated by means of q-rung picture fuzzy analysis as follows: They have only 0.81%
positive attitude. The neutral and negative behavior have same weightage, i.e., 6.25% and 86.69% of interac-
tions translate the extent of clash between them. Similar considerations can be extracted from other edges.
The corresponding adjacency matrix is shown in Table 1, where the degrees for each edge uv in G = (P,Q) is
evaluated using following relations:

µQ(uv) ≤ µP(u) ∧ µP(v),

ηQ(uv) ≤ ηP(u) ∧ ηP(v),

νQ(uv) ≤ νP(u) ∨ νP(v).

Table 1: Adjacency matrix corresponding to Figure 4.1

C CEO P DP/SE EVP SVP VP/GM/DH DGM M/SH AM/TL S
C (0.0, 0.0, 0.0) (0.8, 0.2, 0.3) (0.7, 0.6, 0.6) (0.3, 0.5, 0.8) (0.0, 0.0, 0.0) (0.4, 0.5, 0.55) (0.5, 0.4, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.7) (0.0, 0.0, 0.0)
CEO (0.8, 0.2, 0.3) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.5, 0.5, 0.7) (0.5, 0.4, 0.0) (0.0, 0.0, 0.0) (0.5, 0.5, 0.7) (0.6, 0.4, 0.8) (0.3, 0.4, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
P (0.7, 0.6, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.4, 0.6, 0.1) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.4, 0.6, 0.5) (0.3, 0.5, 0.5) (0.0, 0.0, 0.0)
DP/SE (0.3, 0.5, 0.8) (0.5, 0.5, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.2, 0.4, 0.7) (0.5, 0.5, 0.8) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
EVP (0.0, 0.0, 0.0) (0.5, 0.4, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.3) (0.3, 0.5, 0.7)
SVP (0.4, 0.5, 0.55) (0.0, 0.0, 0.0) (0.4, 0.6, 0.1) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
VP/GM/DH (0.5, 0.4, 0.7) (0.5, 0.5, 0.7) (0.0, 0.0, 0.0) (0.2, 0.4, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
DGM (0.0, 0.0, 0.0) (0.6, 0.4, 0.8) (0.0, 0.0, 0.0) (0.5, 0.5, 0.8) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
M/SH (0.0, 0.0, 0.0) (0.3, 0.4, 0.7) (0.4, 0.6, 0.5) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.6) (0.2, 0.5, 0.1)
AM/TL (0.3, 0.5, 0.7) (0.0, 0.0, 0.0) (0.3, 0.5, 0.5) (0.0, 0.0, 0.0) (0.3, 0.5, 0.3) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
S (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.2, 0.5, 0.1) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
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Figure 29. A 4-rung picture fuzzy social network.

There are 11 different q-RPF ego networks/graphs associated with the given q-RPF
network/graph, where the vertices/nodes represent the powers of employees in the company,
and edges/links represent their relationships. The membership functions µP , ηP , and νP in triplet
(µP , ηP , νP ), assigned to each node, indicate their positive impact, their neutral behavior, and their
negative impact within the company, respectively. For example, (0.8, 0.5, 0.7) tells the status level of the
CEO as: the CEO possesses 40.96% positive impact, and 24.01% negative impact within the company.
A total of 6.25% of his behavior is neutral. While the refusal degree π = 4

√
1− 0.84 − 0.54 − 0.74 of

CEO indicates that only 28.78000001%, he has the ability to refuse to participate in the company’s
matters. However, the positive, neutral, and negative membership degrees µQ , ηQ , and νQ of edges
depict the positive associations, abstinence to associate, and negative associations among employees.
For example, the edge between president and assistant manager is assigned by triplet (0.3, 0.5, 0.3).
The relationships between them can be translated by a means of q-rung picture fuzzy analysis as
follows: they have only 0.81% positive attitude. The neutral and negative behavior have same the
weight, i.e., 6.25% and 86.69% of interactions translate the extent of the clash between them. Similar
considerations can be extracted from other edges. The corresponding adjacency matrix is shown in
Table 2, where the degrees for each edge uv in G = (P , Q) are evaluated using the following relations:

µQ(uv) ≤ µP (u)∧ µP (v),

ηQ(uv) ≤ ηP (u)∧ ηP (v),

νQ(uv) ≤ νP (u)∨ νP (v).
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Table 2. Adjacency matrix corresponding to Figure 29.

C CEO P DP/SE EVP SVP VP/GM/DH DGM M/SH AM/TL S

C (0.0, 0.0, 0.0) (0.8, 0.2, 0.3) (0.7, 0.6, 0.6) (0.3, 0.5, 0.8) (0.0, 0.0, 0.0) (0.4, 0.5, 0.55) (0.5, 0.4, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.7) (0.0, 0.0, 0.0)
CEO (0.8, 0.2, 0.3) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.5, 0.5, 0.7) (0.5, 0.4, 0.0) (0.0, 0.0, 0.0) (0.5, 0.5, 0.7) (0.6, 0.4, 0.8) (0.3, 0.4, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
P (0.7, 0.6, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.4, 0.6, 0.1) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.4, 0.6, 0.5) (0.3, 0.5, 0.5) (0.0, 0.0, 0.0)
DP/SE (0.3, 0.5, 0.8) (0.5, 0.5, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.2, 0.4, 0.7) (0.5, 0.5, 0.8) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
EVP (0.0, 0.0, 0.0) (0.5, 0.4, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.3) (0.3, 0.5, 0.7)
SVP (0.4, 0.5, 0.55) (0.0, 0.0, 0.0) (0.4, 0.6, 0.1) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
VP/GM/DH (0.5, 0.4, 0.7) (0.5, 0.5, 0.7) (0.0, 0.0, 0.0) (0.2, 0.4, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
DGM (0.0, 0.0, 0.0) (0.6, 0.4, 0.8) (0.0, 0.0, 0.0) (0.5, 0.5, 0.8) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
M/SH (0.0, 0.0, 0.0) (0.3, 0.4, 0.7) (0.4, 0.6, 0.5) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.6) (0.2, 0.5, 0.1)
AM/TL (0.3, 0.5, 0.7) (0.0, 0.0, 0.0) (0.3, 0.5, 0.5) (0.0, 0.0, 0.0) (0.3, 0.5, 0.3) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
S (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.3, 0.5, 0.7) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.2, 0.5, 0.1) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
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The CEO is a company’s top decision-maker, and all other executives answer to him/her. Next,
we want to study the powers of the CEO in this company, and his associations with other executives.
For this, we consider the CEO as ego, and extract a q-rung picture fuzzy ego network from a q-rung
picture fuzzy social network (see Figure 29) according to Algorithm 1.

Figure 30 displays a q-rung picture fuzzy ego network H = (A , B) for selected ego, i.e.,
CEO (colored node).

The CEO is a company’s top decision-maker, and all other executives answer to him/her. Next we want to
study the powers of CEO in this company, and his associations with other executives. For this, we consider
CEO as ego, and extract a q-rung picture fuzzy ego network from q-rung picture fuzzy social network (See
Figure 4.1) according to Algorithm 4.1.

Figure 4.2 displays a q-rung picture fuzzy ego network H = (A ,B) for selected ego, i.e. CEO (colored
node).
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Figure 4.2: A 4-rung picture fuzzy ego-network

The CEO influences the executives who are board members, and jointly supervise the activities of company.
The titles designate an individual as an officer of the company with specific responsibilities that make them
legally accountable in their position. The following investigations provide a q-RPF social network analysis for
CEO:

• The impact of CEO is equally distributed with vice president, and deputy president as the positive,
neutral, and negative associations of both are 6.25%, 6.25%, and 24.01%, respectively.

• CEO highly refuses to value the inputs of executive vice present for strategic initiatives as there is 91.19%
refusal part while no negative associations between them, where the positive associations is 6.25%, and
2.56% is the neutrality in their behavior.

• By means of the positive, and negative associations of CEO with chairman, the founder of the company,
we can interpret as: Chairman works 40.96% on CEO’s opinion, 0.81% he works opposite of his opinion,
0.16% his behavior is neutral with CEO, and 58.07% the chairman refuses to trust on his part.

• The reporting relationships between general manager, and CEO is 12.96% positive, 2.56% neutral, and
40.96% negative. While 56.48% of his own part, the general manager refuses to report him.

• Between vice president, and deputy president, there is less positive (0.16%), and high negative (24.01%)
associations, which indicate their history of conflict.

• Manager being a section head has to resolve all cases in his section to answer CEO. The absence of edge
with executive vice president show that he has no concern with executive vice president in company’s
matters.

The similar investigations can be seen between executives (alters) in the q-RPF ego-network (Figure 4.2).

29

Figure 30. A 4-rung picture fuzzy ego-network.

The CEO influences the executives who are board members, and jointly supervise the activities of
company. The titles designate an individual as an officer of the company with specific responsibilities
that make them legally accountable in their position. The following investigations provide a q-RPF
social network analysis for the CEO:

• The impact of CEO is equally distributed with the vice president, and deputy president as the
positive, neutral, and negative associations of both are 6.25%, 6.25%, and 24.01%, respectively.

• The CEO greatly refuses to value the inputs of executive vice present for strategic initiatives as
there is 91.19% refusal part while no negative associations between them, where the positive
associations are 6.25%, and 2.56% is the neutrality in their behavior.

• By means of the positive and negative associations of the CEO with the Chairman, the founder
of the company, we can this interpret as: the Chairman works 40.96% on the CEO’s opinion,
for 0.81%, he works opposite of his opinion, for 0.16%, his behavior is neutral with the CEO, and,
for 58.07%, the chairman refuses to trust his part.

• The reporting relationships between general manager, and CEO is 12.96% positive, 2.56% neutral,
and 40.96% negative, while, for 56.48% of his own part, the general manager refuses to report
to him.

• Between the vice president and deputy president, there is less positive (0.16%), and high negative
(24.01%) associations, which indicate their history of conflict.

• The manager being a section head has to resolve all cases in his section to answer to the CEO.
The absence of edge with the executive vice president show that he has no concern with the
executive vice president in company’s matters.
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The similar investigations can be seen between executives (alters) in the q-RPF ego-network
(Figure 30).

5. Conclusions

Real life situations are often very uncertain and vague in nature. Due to a lack of information,
the future state of system might not be completely known. The notion of fuzzy set offers a suitable
departure point for the creation of such a framework which has potentially wider scope of applicability.
The picture and spherical fuzzy models are a good way to tackle the uncertain information, when
people think about not only the reaction is positive or negative, but there are some abstinence and
refusal. The q-RPF model is more efficient than picture and spherical fuzzy models because it provides
a wide space of permissible triplets. In the present study, we have explored some graph-theoretic ideas
under q-RPF circumstances. Regularity is one of the attributes that permits many of the challenges
connected with graph analysis to be addressed. The present study has provided a novel description on
edge regularity of q-RPFGs and developed several related results. In particular, the edge regularity
of square q-RPFGs and q-RPF line graphs has been illustrated. These graphs have eventually helped
to link certain q-RPF systems and crisp systems allowing for greater ease in computing properties of
these q-RPF systems for modeling purposes or optimizing q-RPF networks. Moreover, the q-RPFLGs
can be applied to work out extremal problems. We have also established the relationships between
regular and edge regular q-RPFGs. Finally, we have presented the concept of q-RPF ego-networks to
extract knowledge from large social networks as an application. Our future work will expand on these
terms: (1) Interval-valued q-RPFGs; (2) Bipolar-valued q-RPFGs; and (3) Hesitant q-RPFGs.
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