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Abstract: This paper assesses the bootstrap confidence intervals of a newly proposed process capability
index (PCI) for Weibull distribution, using the logarithm of the analyzed data. These methods can
be applied when the quality of interest has non-symmetrical distribution. Bootstrap confidence
intervals, which consist of standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected
percentile bootstrap (BCPB) confidence interval are constructed for the proposed method. A Monte
Carlo simulation study is used to determine the efficiency of newly proposed index Cpkw over the
existing method by addressing the coverage probabilities and average widths. The outcome shows
that the BCPB confidence interval is recommended. The methodology of the proposed index has
been explained by using the real data of breaking stress of carbon fibers.

Keywords: non-normal process capability index; bootstrap confidence intervals; average width;
coverage probabilities; Weibull distribution

1. Introduction

Process capability indices are used to assess the given production process, or whether not to
produce items according to the given specifications. The efficiency of these indices required that
the process follows a normal distribution [1–3]. However, the involvement of different noise factors,
sometime may result in the non-normal behaviors of the production process [4]. In case of non-normal
processes, the normality based classical process capability index (PCI) may give unreliable and
misleading results [5]. Several methods have been proposed [1,3–7] to estimate PCIs and deal with
non-normality issue. However, until now, we could not rely ona single method that creates efficiently
under all situations [4]. Moreover, it is also argued that all methods showed a variable performance
under different non-normal distributions [3]. Therefore, the evaluation of different non-normal PCIs,
under different distributions, is an important research area for practitioners and statisticians.

In this regard [4], the proposed non-normal PCI for Weibull and Log-normal distribution, using
the relationships among the parameters of the Weibull, Gumbel, and Log-normal distribution. Using
different examples, they discussed the point estimation of proposed PCIs and concluded that the
proposed PCIs could be used as standard indices. However, the applicability of these indices required
more research. Furthermore, the point estimation of all indices was compared with there commended
minimum value, in order to assess the capability of a particular process. Since PCIs are viewed as a
random variable, so the comparison of the point estimation of indices with any fixed minimum value
is criticized by many researchers [8,9]. Therefore, it is more practical to provide confidence intervals
for PCIs or at least lower limits to ensure that the process will not be worse than the lower interval
value [10].
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Confidence intervals depict useful information about the parameter of a population, based
on a random sample. The classical CIs are mostly used for obtaining exact limits, but there are
some situations in which the exact CIs are unavailable. These situations attributed to the use of
another conventional approach for constructing CIs. Likewise, point estimation, most of the work
for construction of the CIs for PCIs are based on normality assumption. The construction of CIs for
non-normal PCIs, non-parametric technique called bootstrap is commonly used by [11]. The bootstrap
technique is a computer-orientation statistical tool to estimate biases, standard errors, confidence
intervals, and so forth, where estimates are more complicated [12]. The idea of the bootstrapping
method was introduced by Efron [13], and later on, Efron and Tibshirani [14], have proposed three
types of bootstrap confidence intervals. In this paper, a bootstrap confidence interval for non-normal
PCIs for Weibull distribution is proposed.

Recently [4] there is research that shows the process capability indices for non-normal distributions
like Weibull and log-normal, whereas bootstrap confidence intervals have not been studied. Therefore,
in the present research work we focused on bootstrap confidence intervals, which have been extensively
employed to obtain confidence intervals for various PCIs. Various bootstrap estimation methods,
for constructing confidence intervals, have been developed, namely, standard bootstrap (SB), percentile
bootstrap (PB), and bias-corrected percentile bootstrap (BCPB).

In Section 2, we presented the process capability index Cpk, using Weibull distribution and three
methods of bootstrap confidence interval estimations. The simulation study, using the selected sample
size, different shape, and scale parameters are presented in Section 3. In Section 4, a numerical example
is provided to illustrate the use of process capability indices and some conclusions are given in Section 5.

2. Materials and Methods

Process capability index measures the performance of product, in such a way that the capability
of the process relates to the specified tolerance requirements. The manufacture process is assumed to
be normally distributed with mean µ and standard deviation σ; lower specification limit (LSL), and
upper specification limit (USL), then the process capability index Cpk is defined as:

Cpk =
min(USL− µ, µ− LSL)

3σ
(1)

Suppose, the process mean and standard deviation are unknown, then they are estimated from
the sample data (X1, X2, . . . , Xn), which is drawn from the normal distribution. If X, and S are the
true estimate of the unknown parameter µ and σ fora normal distribution. Then the sample process
capability index Cpk can be defined as

Cpk =
min

(
USL−X, X − LSL

)
3S

(2)

If X, and S are the estimators of mean and standard deviation, when samples are drawn from
normal distribution, these estimates happen to be extremely unstable. Clements [15] has proposed an
alternative method to handling the process capability for non-normal data. Based on Clements idea,
the non-normal process capability index Cpk is defined as:

Cpk = min
{

USL− ξp2

ξp3 − ξp2

,
ξp2 − LSL
ξp2 − ξp1

}
(3)

where ξp is the p-th quantile of the process, i.e., P
(
X < ξp

)
= p, and p1 = 0.00135, p2 = 0.5 and

p3 = 0.99865 of the analyzed distribution, respectively. Recently, the authors in [15], proposed
non-normal capability index for the Weibull distribution, using X, and S as mean and standard
deviation of the logarithm of the analyzed process, and although in the logarithm matrix, they are
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analogous to those of the normal distribution. Based on this fact, they proposed the Weibull process
capability index Cpkw is given by

Cpkw � min
{

ln(USL) − µ̂w

3σ̂w
,
µ̂w − ln(LSL)

3σ̂w

}
(4)

where µ̂w � ln(η̂) − γ
(

1
β̂

)
, σ̂w �

π

β̂
√

6
, γ is the Euler–Mascheroni constant (γ � 0.577216).

2.1. Bootstrap Confidence Intervals

Among various bootstrap methods to obtain the confidence intervals, a mainly used methods
are the SB, PB, and the BCPB method [14]. The bootstrap methods has been suggested by [16] in the
following manner. Let x1, x2, x3, · · · , xn be a random sample of size n drawn from any distribution of
interest say Θ. i.e., x1, x2, x3, · · · , xn ∼ Θ. Let θ̂ represents the estimator of PCI say Cpkw defined in
Equation (4). The bootstrap procedure required the following steps [1].

1. Obtained a bootstrap sample of size n i.e., x1
∗, x2

∗, x3
∗, · · · , xn

∗ from original sample by putting
1/n as mass at each point.

2. Let Xm
∗ where 1 ≤ m ≤ n be the mth bootstrap sample, then mth bootstrap estimator of θ is

computed as
θ̂∗m = θ̂(x1

∗, x2
∗, x3

∗, · · · , xn
∗) (5)

3. We get nn re-samples, for each sample a values of θ̂∗m are obtained. Each of these would be
estimate of θ̂. From the set all these estimates would constitute an empirical bootstrap distribution
of θ̂, see [1].

In this study, we assumed B = 1000 bootstrap resamples. The construction of confidence intervals
of the PCI θ̂ ∈

(
Cpkw

)
using bootstrap techniques are described as follows.

2.1.1. Standard Bootstrap (SB) Confidence Interval

The mean and standard deviation for B = 1000 bootstrap estimates of θ̂∗ are obtained as follows:

θ∗ = (1000)−1
1000∑
i−1

θ̂∗(i) (6)

S∗
θ̂∗

=

√√√( 1
999

) 1000∑
i=1

(θ̂∗(i) − θ∗)
2

(7)

Thus the SB (1− α)100% confidence interval (CI) is:

CISB = θ∗ ±Z
1−
α
2

S∗
θ̂∗

(8)

where Z
1−
α
2

is obtained by using
(
1−

α
2

)th
quantiles of the standard normal distribution.
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2.1.2. Percentile Bootstrap (PB) Confidence Interval

If θ̂∗(i); I = 1, 2, . . . , B be the ordered collection of bootstrap estimates of θ̂ then (1− α)100%
confidence interval of θ̂ is calculated as:

CIPB =

θ̂∗B(α
2
)
, θ̂∗

B(1−
α
2
)

 (9)

For a 95% confidence intervalwith B = 1000, this would be:

CIPB =
(
θ̂∗(25), θ̂

∗
(975)

)
(10)

2.1.3. Bias-Corrected Percentile Bootstrap (BCPB) Confidence Interval

A third method of bootstrap confidence interval, BCPB is based on correct the probable bias. The
step by step procedure to obtain BCPB method as follows:

i. The probability p0 is calculated using the (ordered) distribution of θ̂∗(i) as:

p0 = pr
(
θ̂∗ ≤ θ̂

)
(11)

ii. Let ∅ and ∅−1 represents the cumulative and inverse cumulative distribution functions ofa
standard normal variable z, then:

z0 = ∅−1(p0) (12)

iii. The percentiles of the ordered distribution of θ̂∗ is obtained as:

PL = ∅

2z0 + zα
2

 (13)

PU = ∅

2z0 + z
1−
α
2

 (14)

Finally, the BCPB confidence interval is given as:

CIBCPB =
(
θ̂∗(PLB), θ̂

∗
(PUB)

)
(15)

The performance of three bootstrap methods of confidence intervals are studied by using average
width and coverage probabilities are defined as:

Coverage probability =

(
Lw ≤ Ĉp ≤ Up

)
B

(16)

Average width =

∑B
i=1(Upi − Lwi)

B
. (17)

where Lw and Up are (1− α)% confidence interval based on B = 1000 replicates.

3. Simulation Study

In this section, a simulation study is conducted to compare the performance of three methods
of bootstrap confidence intervals when the process follows Weibull distribution. In this simulation
we examine performance for sample sizes n = {10, 15, 20, 25, 30, 35, 40}; the scale parametric values
η = (5.0, 5.5, 6.0); shape parametric combination values β = {2.5, 3.0, 3.5} and are displayed in Tables 1–3.
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The lower and upper specification limits are set as 1, and 29, respectively. We have used the Monte
Carlo simulation approach in this article to evaluate the performance of the proposed SB, PB, and BCPB
confidence intervals of Cpkw. A detailed study of the average length and coverage probabilities of the
proposed SB, PB, and BCPB confidence intervals for Cpkw is provided in Tables 1–3 for some selective
choices of n, η and β. From Tables 1–3, we observed that the average widths decrease with the increase
in sample size, in all the parametric combinations, as anticipated. The average widths increases for SB,
PB, and BCPB as β increases for a fixed η, moreover as η value increases average widths also increases
for SB, PB, and BCPB for fixed combinations of β. Furthermore, noticed that the average coverage
probabilities, in three methods confidence intervals in all the parametric combinations, achieved the
nominal level. However, it was marginally less than 95% confidence level. Among three methods of
bootstrap confidence intervals regarding the average widths, we noticed that BCPB < PB < SB, thus
BCPB performed well with respect to average width. Furthermore, in case of the average coverage
probability, SB shows better performance and BCPB closer competitor to the SB method. Therefore,
we conclude that BCPB shows an overall better performance of the bootstrap confidence intervals for
Weibull distribution.

Table 1. The average widths 95% bootstrap confidence intervals and coverage probabilities of Cpkw for
Weibull distribution when η = 5.0.

n β True CNpk
Average Widths Coverage Probabilities

SB PB BCPB SB PB BCPB

10 2.00 1.4114 1.3825 1.1175 0.9672 0.8584 0.9222
15 2.00 1.0081 0.9958 0.8708 0.9538 0.8922 0.9306
20 2.00 0.8208 0.8129 0.7362 0.9554 0.9034 0.9422
25 2.00 0.6866 0.7115 0.7054 0.6518 0.9528 0.9166 0.9430
30 2.00 0.6341 0.6291 0.5894 0.9512 0.9158 0.9400
35 2.00 0.5751 0.5709 0.5399 0.9520 0.9234 0.9430
40 2.00 0.5322 0.5288 0.5033 0.9528 0.9282 0.9434

10 2.50 1.7474 1.7088 1.3516 0.9682 0.8530 0.9196
15 2.50 1.2333 1.2175 1.0497 0.9556 0.8874 0.9316
20 2.50 0.9976 0.9877 0.8853 0.9558 0.8998 0.9412
25 2.50 0.8957 0.8616 0.8544 0.7829 0.9530 0.9120 0.9404
30 2.50 0.7660 0.7600 0.7073 0.9512 0.9132 0.9408
35 2.50 0.6936 0.6882 0.6475 0.9518 0.9206 0.9412
40 2.50 0.6411 0.6372 0.6034 0.9538 0.9274 0.9432

10 3.00 2.0854 2.0376 1.5885 0.9704 0.8480 0.9178
15 3.00 1.4601 1.4409 1.2302 0.9574 0.8824 0.9318
20 3.00 1.1759 1.1642 1.0361 0.9574 0.8984 0.9392
25 3.00 1.1049 1.0131 1.0046 0.9157 0.9538 0.9106 0.9400
30 3.00 0.8993 0.8923 0.8268 0.9514 0.9120 0.9394
35 3.00 0.8135 0.8070 0.7567 0.9510 0.9190 0.9390
40 3.00 0.7515 0.7467 0.7051 0.9538 0.9254 0.9428

10 3.50 2.4241 2.3668 1.8262 0.9726 0.8452 0.9178
15 3.50 1.6876 1.6646 1.4118 0.9584 0.8798 0.9314
20 3.50 1.3550 1.3413 1.1881 0.9580 0.8956 0.9374
25 3.50 1.3140 1.1654 1.1552 1.0494 0.9538 0.9078 0.9382
30 3.50 1.0335 1.0254 0.9474 0.9516 0.9114 0.9390
35 3.50 0.9342 0.9269 0.8667 0.9508 0.9170 0.9390
40 3.50 0.8626 0.8569 0.8074 0.9530 0.9248 0.9426
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Table 2. The average widths 95% bootstrap confidence intervals and coverage probabilities of Cpkw for
Weibull distribution when η = 5.5.

n β True CNpk
Average Widths Coverage Probabilities

SB PB BCPB SB PB BCPB

10 2.00 1.4091 1.3832 1.1300 0.9620 0.8576 0.9202
15 2.00 1.0138 1.0025 0.8852 0.9468 0.8914 0.9244
20 2.00 0.8329 0.8251 0.7529 0.9464 0.9030 0.9354
25 2.00 0.7361 0.7264 0.7201 0.6692 0.9464 0.9152 0.9380
30 2.00 0.6510 0.6454 0.6073 0.9436 0.9146 0.9350
35 2.00 0.5933 0.5885 0.5584 0.9448 0.9232 0.9394
40 2.00 0.5512 0.5472 0.5221 0.9480 0.9272 0.9410

10 2.50 1.7492 1.7141 1.3717 0.9654 0.8522 0.9180
15 2.50 1.2442 1.2296 1.0711 0.9488 0.8854 0.9264
20 2.50 1.0157 1.0061 0.9090 0.9486 0.8998 0.9356
25 2.50 0.9576 0.8826 0.8750 0.8070 0.9482 0.9114 0.9372
30 2.50 0.7890 0.7824 0.7316 0.9452 0.9130 0.9362
35 2.50 0.7179 0.7119 0.6721 0.9450 0.9190 0.9390
40 2.50 0.6661 0.6615 0.6281 0.9498 0.9270 0.9424

10 3.00 2.0925 2.0484 1.6163 0.9676 0.8474 0.9160
15 3.00 1.4770 1.4589 1.2595 0.9516 0.8820 0.9272
20 3.00 1.2005 1.1890 1.0670 0.9518 0.8970 0.9336
25 3.00 1.1792 1.0405 1.0313 0.9467 0.9480 0.9092 0.9370
30 3.00 0.9286 0.9208 0.8575 0.9464 0.9106 0.9364
35 3.00 0.8438 0.8369 0.7872 0.9456 0.9178 0.9376
40 3.00 0.7823 0.7767 0.7355 0.9504 0.9244 0.9422

10 3.50 2.4375 2.3839 1.8629 0.9688 0.8460 0.9142
15 3.50 1.7111 1.6895 1.4488 0.9528 0.8790 0.9264
20 3.50 1.3865 1.3730 1.2264 0.9526 0.8954 0.9342
25 3.50 1.4007 1.1994 1.1887 1.0869 0.9480 0.9076 0.9362
30 3.50 1.0691 1.0602 0.9846 0.9478 0.9106 0.9362
35 3.50 0.9707 0.9629 0.9033 0.9448 0.9164 0.9376
40 3.50 0.8994 0.8928 0.8437 0.9508 0.9248 0.9416

Table 3. The average widths 95% bootstrap confidence intervals and coverage probabilities of Cpkw for
Weibull distribution when η = 6.0.

n β True CNpk
Average Widths Coverage Probabilities

SB PB BCPB SB PB BCPB

10 2.00 1.3752 1.3523 1.1176 0.9630 0.8610 0.9204
15 2.00 0.9894 0.9811 0.8771 0.9448 0.8924 0.9246
20 2.00 0.8162 0.8101 0.7484 0.9434 0.9040 0.9320
25 2.00 0.7813 0.7141 0.7085 0.6664 0.9418 0.9160 0.9302
30 2.00 0.6430 0.6380 0.6065 0.9374 0.9146 0.9292
35 2.00 0.5894 0.5845 0.5597 0.9378 0.9220 0.9286
40 2.00 0.5504 0.5461 0.5252 0.9402 0.9284 0.9324

10 2.50 1.7010 1.6702 1.3518 0.9656 0.8584 0.9186
15 2.50 1.2077 1.1971 1.0573 0.9478 0.9018 0.9282
20 2.50 0.9886 0.9816 0.9000 0.9476 0.9018 0.9326
25 2.50 1.0142 0.8608 0.8545 0.7997 0.9412 0.9126 0.9328
30 2.50 0.7727 0.7673 0.7268 0.9402 0.9142 0.9298
35 2.50 0.7068 0.7016 0.6701 0.9394 0.9198 0.9316
40 2.50 0.6590 0.6544 0.6282 0.9424 0.9272 0.9322

10 3.00 2.0275 1.9882 1.5862 0.9686 0.8550 0.9188
15 3.00 1.4260 1.4129 1.2372 0.9514 0.8858 0.9298
20 3.00 1.1603 1.1524 1.0509 0.9496 0.9006 0.9334
25 3.00 1.2470 1.0064 0.9993 0.9322 0.9436 0.9106 0.9344
30 3.00 0.9010 0.8952 0.8462 0.9414 0.9142 0.9302
35 3.00 0.8225 0.8173 0.7795 0.9402 0.9180 0.9338
40 3.00 0.7657 0.7610 0.7300 0.9428 0.9252 0.9332
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Table 3. Cont.

n β True CNpk
Average Widths Coverage Probabilities

SB PB BCPB SB PB BCPB

10 3.50 2.3538 2.3066 1.8190 0.9702 0.8548 0.9174
15 3.50 1.6434 1.6276 1.4158 0.9540 0.8854 0.9300
20 3.50 1.3308 1.3220 1.2002 0.9504 0.9002 0.9332
25 3.50 1.4798 1.1504 1.1430 1.0629 0.9460 0.9098 0.9338
30 3.50 1.0274 1.0215 0.8866 0.9420 0.9144 0.9352
35 3.50 0.9362 0.9309 0.8866 0.9420 0.9194 0.9340
40 3.50 0.8700 0.8653 0.8298 0.9448 0.9240 0.9366

4. Illustrative Examples

In this section, the following real data set corresponds to an uncensored data set from [17] on
breaking the stress of carbon fibers (in Gba) is considered and describe the proposed methods of CNpk
confidence intervals:

0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 1.69,
1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43,
2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85, 2.87, 2.88,
2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39,
3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56.

The goodness of fit for our model by plotting the superimposed for the data shows that the Weibull
distribution is a good fit. This is shown in Figure 1andthe goodness of fit is emphasized with Q-Q
plot, displayed in the following Figure 1. The maximum likelihood estimates of the two-parameters of
Weibull distribution for the breaking stress of carbon fibres are β̂ = 2.7928 and η̂ = 2.9435, and by using
the Kolmogorov-Smirnov test, we found that the maximum distance between the data and the fitted of
the Weibull distribution is 0.06 with p-value is 0.8586. Therefore, the Weibull distribution provides a
reasonable fit for the breaking stress of carbon fibres. The process capability of Weibull distribution,
using breaking stress of carbon fibresis, displayed in Figure 2. If LSL = 0.5 and USL = 9.5 then Cpkw
using Equation (4) is 1.0005 whereas Cpk using Equation (3) is 0.90297. Hence our proposed method of
process capability index performs better than the traditional process capability index.
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Figure 1. Density plot and Q-Q plot of the fitted Weibull distribution for the breaking stress of
carbon fibres.
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5. Comparison of Proposed Cpkw Index with the Existing Cpk

The performance of the proposed process capability index Cpkw has been made with the existing
process capability index Cpk proposed by Clements [15], using the coverage probabilities and average
widths. The values of coverage probabilities and average widths are compared using breaking stress
of carbon fibres data, which was fitted for Weibull distribution with parameters are β̂ = 2.792827 and
η̂ = 2.943466. The Bootstrap confidence intervals and widths of the, Cpkw and Cpk are given in Table 4
for the given example. A numerical example shows that the width of class intervals are considered
large in traditional Cpk method as compared to the bootstrap approach for Cpkw. Moreover, between
three Bootstrap methods, BCPB sows better performance than other two methods of Bootstrapping,
the simulation results also show the same. Therefore, the proposed process capability index Cpkw
comparatively better than traditional process capability index in case Weibull distribution.

Table 4. Bootstrap confidence intervals and widths of the new Cpkw and Clements traditional Cpk.

Weibull Distribution

Methods
Bootstrap New Cpkw Traditional Cpk

Confidence Intervals Widths Confidence Intervals Widths

SB (0.5654, 0.7513) 0.1859 (1.0322, 1.3014) 0.2692
PB (0.5948, 0.7829) 0.1881 (0.8974, 1.1605) 0.2631

BCPB (0.5805, 0.7575) 0.1770 (0.9251, 1.1736) 0.2485

Exponential Weibull Distribution

Methods
Bootstrap Cpkew Traditional Cpk

Confidence Intervals Widths Confidence Intervals Widths

SB (0.5672, 0.8748) 0.3076 (0.7204, 1.0398) 0.3194
PB (0.5953, 0.9056) 0.3103 (0.6633, 0.9707) 0.3074

BCPB (0.5739, 0.8816) 0.3077 (0.6364, 0.9589) 0.3225

Furthermore, the proposed new process capability index and traditional process capability index
are also compared with exponential Weibull distribution, which was first introduced by Mudholkar and
Srivastava [18] as an extension of the Weibull family. The probability density function of exponential
Weibull distribution with scale parameter σ and shape parameters λ and θ is given as follows:

f (x) =
(
θλ
σ

)(x
σ

)λ−1
e−(x/σ)λ

[
1− e−(x/σ)λ

]θ
; x ≥ 0 (18)
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P
(
X < ξEWD

p

)
= p⇒ ξEWD

p = σ
[
− ln

(
1− p1/θ

)]1/λ
(19)

The proposed process capability index Cpkw is given below:

Cpkew = Min

 USL− ξEWD
p2

ξEWD
p3

− ξEWD
p2

,
ξEWD

p2
− LSL

ξEWD
p2

− ξEWD
p1

 (20)

The breaking stress of carbon fibres data is fitted to exponential Weibull distribution with
parameters are σ̂ = 2.6879, λ̂ = 2.4161 and θ̂ = 1.3097. The Bootstrap confidence intervals and widths
of the, Cpkew and Cpk are given in Table 4 for the exponential Weibull distribution for this data set.
The results shows that the proposed process capability index for Weibull distribution show lower
confidence width than the exponential Weibull distribution.

6. Conclusions

In this article, we developed an interval estimation of newly proposed non-normal process
capability index for Weibull distribution using the logarithm of the analyzed data. A comparison is
made between SB, PB, and BCPB confidence intervals and their coverage probabilities using simulation
studies. A confidence interval is better performed if the average width is low and with higher coverage
probability. Compared to Clements [15], the non-normal process capability index, the proposed method
gives the smaller widths of confidence intervals. Therefore, we conclude thatthe proposed procedure
has been very powerful and enriching the process capability index. Using a Monte Carlo simulation
technique, we evaluated the performance of the proposed bootstrap confidence intervals with respect
to the coverage probabilities and average widths of each confidence interval. The results indicated that
the basic-corrected percentile bootstrap (BCPB) confidence interval showed better coverage probability
and smaller widths, as compared to other two confidence intervals, for the proposed and traditional
method. Hence it is concluded that the BCPB interval is more suitable than the other two methods.
The methodology was illustrated using areal data set of breaking stress of carbon fibres and depicted a
similar pattern, as observed using simulation studies. Our future research work may include the study
of process capability indices for more non-normal distributions using the transformation of variables.
The proposed method can be extended for abroad family of distributions as future research.
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