
symmetryS S

Article

Polynomial Least Squares Method for Fractional
Lane–Emden Equations
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Abstract: This paper applies the Polynomial Least Squares Method (PLSM) to the case of fractional
Lane-Emden differential equations. PLSM offers an analytical approximate polynomial solution in
a straightforward way. A comparison with previously obtained results proves how accurate the
method is.
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1. Introduction

The equation analyzed in this article was published at the end of the 19th century by Jonathan
Homer Lane in [1] and at the beginning of the 20th century explored in detail by Robert Emden in [2].
In the decades that followed, the equation Lane-Emden raised the interest of many researchers who
used different methods to determine numerical or analytical solution for the equation.

In this paper we start by considering the following Lane-Emden Fractional Differential
Equation [3–5]:

Dαy(x) +
k
x
· Dβy(x) + f (x, y(x)) = g(x), x > 0, 1 < α ≤ 2, 0 < β ≤ 1 (1)

together with the conditions:
y(0) = A, y′(0) = B (2)

where x ∈ [0, 1], k, A and B are real constants, f (x, y(x)) = h(x) · y(x), with h(x) and g(x) ∈ C[0, 1].
Dα and Dβ denote the Caputo fractional derivatives:

Dαy(x) =
1

Γ(2− α)
·
∫ x

0
(x− ζ)−α+1 · y′′(ζ)dζ, 1 < α ≤ 2.

Dβy(x) =
1

Γ(1− β)
·
∫ x

0
(x− ζ)−β · y′(ζ)dζ, 0 < β ≤ 1.

The above fractional Lane-Emden equation can demonstrate various phenomena arising in
mathematical physics and astrophysics. In recent years many researchers sought solutions for this
type of equation. Among them we mention: Mechee et al. (2012) by using the Collocation Method [3],
Akgul, Kazemi et al. (2018) by using a hybrid numerical method combining Chebyshev wavelets and
a finite difference approach [5], Yuzbasi (2011) by using the Bessel Collocation Method [6], Podlubny
(1999), Fazly and Wei (2015) and Davila, Dupaigne and Wei (2014) by using analytical methods [7–9],
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Saeed (2017) by using the Haar Adomian Method [10], Atabakzadeh, Akrami and Erjaee by using the
Chebyshev operational matrix method [11].

We remark that finding accurate approximate solutions to the problem (1) and (2) is usually not a
simple task due to the presence of a singularity in 0.

Depending on the values of the constants and functions involved in (1) and (2), there are
several particular types of equations with important practical applications, e.g., thermionic currents,
gravitational potential of the degenerate white-dwarf stars or isothermal gas spheres. Many studies
have been devoted to finding solutions for it, such as [12–16].

This paper has the following structure: The first section will introduce the Polynomial Least
Squares Method (PLSM) [17] which permits determination of analytical approximate polynomial
solutions for problems of the type (1) and (2). In the second section we will compare approximate
solutions obtained by using PLSM with corresponding approximate solutions obtained in previous
studies by means of other methods.

2. The Polynomial Least Squares Method

Attached to the problem (1) and (2), we have in view the operator:

D(y(x)) = Dαy(x) +
k
x
· Dβy(x) + h(x) · y(x)− g(x). (3)

We will compute approximate polynomial solutions ỹ(x) of (1) and (2) on the interval [0, 1],
satisfying the conditions:

|D(ỹ(x))| < ε, ε > 0 (4)

ỹ(0) = A, ỹ′(0) = B. (5)

Definition 1. An ε-approximate polynomial solution of the problem (1) and (2) is an approximate polynomial
solution ỹ(x) satisfying the relations (4) and (5).

Definition 2. A weak ε-approximate polynomial solution of the problem (1) and (2) is an approximate
polynomial solution ỹ(x) satisfying the relation:

∫ 1

0
|D(ỹ(x))|2dx ≤ ε (6)

together with the initial conditions (5).

Definition 3. We have in view the polynomials Pn(x) = a0 + a1x + a2x2 + · · ·+ anxn, ai ∈ R, i = 0, n
satisfying the conditions:

Pn(0) = A, P′n(0) = B.

One calls the sequence of polynomials Pn(x) convergent to the solution of the problem (1) and (2) if
lim

n→∞
D(Pn(x)) = 0.

Theorem 1. The problem (1) and (2) admits a sequence of weak approximate polynomial solutions.

Proof. We compute a weak ε-approximate polynomial solution, in the sense of the Definition 2,
of the type:

ỹ(x) =
n

∑
k=0

dkxk (7)

where d0, d1, · · · , dn are constants calculated as follows:
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(1) We substitute the approximate solution (7) in the Equation (1) and obtain the remainder:

D(ỹ(x)) = Dαỹ(x) +
k
x
· Dβỹ(x) + h(x) · ỹ(x)− g(x). (8)

(2) We attach to problem (1) and (2) the real functional:

J (d2, d3 · · · , dn) =

1∫
0

D2(ỹ(x))dx (9)

where d0, d1 are computed as functions of d2, d3 · · · , dn by using the initial conditions (5).
(3) We compute d0

2, d0
3, · · · d0

m as values which give the minimum of the functional (9) and the value
of d0

0, d0
1 as functions of d0

2, d0
3, · · · , d0

m using the initial conditions.
(4) Using the constants d0

0, d0
1, · · · , d0

m thus determined, we construct the polynomial:

Tn(x) =
n

∑
k=0

d0
k xk. (10)

Theorem 2. The sequence of polynomials Tn(x) from (10) satisfies the property:

lim
n→∞

1∫
0

D2(Tn(x))dx = 0. (11)

Moreover, ∀ε > 0, ∃no ∈ N, n > n0 such that ∀n ∈ N, n > n0 it follows that Tn(x) is a weak
ε-approximate polynomial solution of the problem (1) and (2).

Proof. Taking into account the way the coefficients of polynomial Tn(x) are computed and also the
relations (8)–(10), the following inequalities are satisfied:

0 ≤
1∫

0

D2(Tn(x))dx ≤
1∫

0

D2(Pn(x))dx, ∀n ∈ N (12)

It follows that:

0 ≤ lim
n→∞

1∫
0

D2(Tn(x))dx ≤ lim
n→∞

1∫
0

D2(Pn(x))dx = 0, (∀)n ∈ N. (13)

We obtain:

lim
x→∞

1∫
0

D2(Tn(x))dx = 0 (14)

From this we obtain that (∀)ε > 0, ∃no ∈ N such that (∀)n ∈ N, n > n0. It results that Tn(x) is a
weak ε-approximate polynomial solution of the problem (1) and (2).

Remark 1. As far as the above remark is concerned, in order to find ε-approximate polynomial solutions of
the problem (1) and (2) by using the (PLSM), we will first determine weak approximate polynomial solutions,
ỹ(x) following the previously described steps 1 to 4. If |D(ỹ(x))| < ε, then ỹ(x) is also an ε-approximate
polynomial solution.
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Error Estimation

We denote with L the following operator:

L(y(x)) = Dαy(x) +
k
x
· Dβy(x) + h(x) · y(x) (15)

thus, Equation (1) becomes:
L(y(x)) = g(x) (16)

where x > 0, y(x) : [0, 1]→ R, 1 < α ≤ 2, 0 < β ≤ 1, together with the conditions:

y(0) = A, y′(0) = B (17)

With ỹ an approximate solution for the problem (15)–(17), using (for simplicity) the notation:

R(x) = R(x, ỹ(x)) = Dαy(x) +
k
x
· Dβy(x) + h(x) · y(x)− g(x),

we obtain:
R(x) = L(ỹ(x))− g(x) (18)

which means as ỹ satisfies:

L(ỹ(x)) = Dαỹ(x) +
k
x
· Dβỹ(x) + h(x) · ỹ(x) = g(x) +R(x) (19)

with initial conditions:
ỹ(0) = A, ỹ′(0) = B (20)

We define the error function in the following way: ẽ(x) = y(x)− ỹ(x), where y(x) is the exact
solution for the problem (1) and (2) and we obtain the differential equation for error function:

L(ẽ(x)) = L(y(x))−L(ỹ(x)) = −R(x) (21)

with the conditions:
ẽ(0) = 0, ẽ′(0) = 0 (22)

The problem for the error function becomes so : L(ẽ(x)) = −R(x) or:

Dα ẽ(x) +
k
x
· Dβ ẽ(x) + h(x) · ẽ(x) = −R(x) (23)

with ẽ(0) = 0, ẽ′(0) = 0.
Solving the (23) equation in the same manner as described above, we obtain the approximation

ẽ(x), we will be able to determine the absolute maximum error:

Ẽ = max {|ẽ(x)|, 0 ≤ x ≤ 1} (24)

In this manner we estimate the error without knowing the exact solution of the initial problem (1)
and (2).
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3. Applications

3.1. Application 1

Consider the fractional Lane-Emden equation [3]:

Dαy(x) +
1

xα−β
· Dβy(x) +

1
xα−2 y(x) = g(x) (25)

with g(x) = x{2−α}
(

6x
(

Γ(4− β) + Γ(4− α)

Γ(4− α)Γ(4− β)
+

x2

6

)
− 2

(
Γ(3− β) + Γ(3− α)

Γ(3− α)Γ(3− β)
+

x2

2

))
, α = 3

2 ,

β = 1
2 together with the initial conditions:

y(0) = 1, y′(0) = 0. (26)

The exact solution of the problem (25) and (26) is: y(x) = x3 − x2.
An approximate solution of this problem using the collocation method was proposed in [3] and

the solution presented absolute errors larger than 10−8.
Using the Polynomial Least Squares Method (PLSM) presented in the previous section, we choose

an approximate solution ỹ(x) of the type:

ỹ(x) = d0 + d1 · x + d2 · x2 + d3 · x3.

By using the boundary conditions we compute c̃0 = 0, c̃1 = 0 and the approximate solution
becomes: ỹ(x) = d2 · x2 + d3 · x3.

The corresponding functional (9) is:

J (d2, d3) =
d2

2
6

+
10d2

2
3
√

π
+

200d2
2

9π
+

2d2d3

7
+

536d2d3

75
√

π
+

448d2d3

9π
+

d2

21
− 12d2

25
√

π

−16d2

3π
+

d2
3

8
+

56d2
3

15
√

π
+

784d2
3

25π
+

d3

28
− 8d3

25
√

π
− 2912d3

225π
+

1
168
− 2

25
√

π
+

856
225π

.

In order to find the minimum of this functional we can compute the stationary points by equating
to zero its partial derivatives with respect to d2 and d3. We obtain as expected d2 = −1, d3 = 1 and it
is easy to show (by means of the second derivative) that this stationary point is indeed the minimum.
It follows that by using PLSM we are able to find the exact solution of the problem, ỹ(x) = x3 − x2.

3.2. Application 2

We consider the fractional Lane-Emden Equation [3]:

Dαy(x) +
1

xα−β
· Dβy(x) +

1
xα−2 y(x) = g(x) (27)

with g(x) = x{2−α}
(
−6x

(
Γ(4− β) + Γ(4− α)

Γ(4− α)Γ(4− β)
+

x2

6

)
+ 2

(
Γ(3− β) + Γ(3− α)

Γ(3− α)Γ(3− β)
+

x2

2

))
, α = 3

2 ,

β = 1 together with the initial conditions:

y(0) = 1, y′(0) = 0. (28)

The exact solution of the problem (27) and (28) is: y(x) = −x3 + x2.
Again, an approximate solution of this problem using the collocation method was proposed in [3]

and the solution presented absolute errors larger than 10−8 .
Applying PLSM and using the same steps as in the previous example, we are again able to find

the exact solution of the problem: ỹ(x) = −x3 + x2.
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3.3. Application 3

Consider the following Lane-Emden fractional differential Equation [5]:

Dαy(x) +
k

xα−β
· Dβy(x) +

1
1− x

· y(x) = g(x), 0 < x < 1 (29)

together with the conditions:
y(0) = 0, y(1) = cos(1). (30)

where g(x) =
x3

1− x
cos(x)− 5x sin(x) + 4 cos(x), α = 1.9 and β = 0.9.

The exact solution of the problem is y(x) = x2 cos(x) ([5]).
For this problem, by using PLSM we obtain the approximate analytical solution:

ỹ(x) = −0.215146 · x6 + 0.415059 · x5 − 0.549661 · x4 − 0.164992 · x3 + 1.03409 · x2 + 0.0209532 · x.

The absolute error of the approximation, computed as the absolute value of the difference between
the exact solution and the approximate one, is presented in Figure 1.

Figure 1. The absolute maximum error using Polynomial Least Squares Method (PLSM) for Application 3.

4. Conclusions

The Polynomial Least Squares Method (PLSM) is considered as a simple, efficient, accurate
method for calculating approximate polynomial solutions for Lane–Emden-type fractional differential
equations.

The comparison with anterior results highlights the accuracy of the method. At the same time,
the fact that the solutions are polynomials of relatively small degree leads to solutions that are not only
precise but also that present a very simple expression.

Since the method does not actually depend on a particular equation, it can be easily applied to
other types of equations, even strongly nonlinear ones.
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