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Abstract: Linguistic variables play a vital role in several qualitative decision environments, in which
decision-makers assume several feasible linguistic values or criteria instead of a single term for an
alternative or variable. The motivation for the use of words or sentences instead of numbers is that
linguistic classification and characterizations are generally less precise than numerical ones. In this
research article, we encourage the fuzzy linguistic approach and introduce the novel concept known
as m-polar fuzzy linguistic variable (mFLV) to increase the affluence of linguistic variables based
on m-polar fuzzy (mF) approach. An mF set is an effective concept for interpreting uncertainty and
fuzziness. The concept of mFLV is more versatile and sensible for dealing with real-life problems,
when data comes from qualitative and multipolar information. We also introduce an mF linguistic
ELECTRE-I approach to solve multiple-criteria decision-making (MCDM) and multiple-criteria
group decision-making (MCGDM) problems, where the evaluation of the alternatives under suitable
linguistic values are determined by the decision-makers. Furthermore, we validate the efficiency of
our proposed technique by applying it to real-life examples, such as the salary analysis of companies
and by selecting a corrupt country. Finally, we develop an algorithm of our proposed approach,
present its flow chart, and generate computer programming code.
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1. Introduction

Problems related to uncertain situations generally exist in multiple-criteria decision-making (MCDM)
and multiple-criteria group decision-making (MCGDM), which are precisely appealing because of the
difficult state of affairs of modeling and uncertainties. Several theories have been developed to overcome
MCDM problems such as probability; however, in several directions, uncertainty is not probabilistic
in description but relatively vague or imprecise. Thus, other theories, such as fuzzy set theory and
fuzzy logic [1,2] have been prosperously applied to handle immature, imprecise, and vague information.
Usually, to hold such a vagueness and imprecision, where two or more fundamentals of imprecision
occur simultaneously, the modeling tools of ordinary fuzzy sets are limited. To overcome these limited
approaches, several extensions and generalizations of fuzzy sets have been introduced, including hesitant
fuzzy sets (HFSs) [3], bipolar fuzzy sets (BFSs) [4] and m-polar fuzzy sets (mF sets) [5].

In 2014, mF set theory was introduced by Chen et al. [5], which is the generalization of
bipolar fuzzy sets. An mF set on a set X is a mapping µ : X → [0, 1]m. The concept behind
it is that the multipolar information occurs because data of real-world problems are sometimes
from multiple characters and agents. The membership value in mF sets is more understanding in
obtaining uncertainty of data. The mF sets concede higher graphical representation of vague data,
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which promotes significantly better investigation in similarity measures, incompleteness and data
relationships. Akram [6] introduced several notions based on mF sets and mF graphs including certain
metrics in m-polar fuzzy graphs, certain types of irregular m-polar fuzzy graphs, and m-polar fuzzy
hypergraphs.

The preceding fuzzy tools are suitable for problems that are defined only in quantitative situations,
but generally, uncertainty is due to vagueness in a sense that is adopted by decision-makers in
problems whose description is relatively qualitative. For such a situation, the fuzzy linguistic
approach introduced by Zadeh [7–9] provided favorable outputs in many areas and applications [10].
In abandoning accuracy in the face of intense complexity, it is common to analyze the purpose of
what might be called linguistic variables, i.e., a variable whose values are not numbers but words or
sentences in artificial or natural language. The motivation for the use of words or sentences instead
of numbers is that the linguistic classification and characterizations are generally less precise than
numerical ones and have interesting uses in group decision analysis [11–15]. The linguistic approach
is very significant in the context of personalized individual semantics in CWW [16,17]. Liu and
Su [18] introduced the extended TOPSIS based on trapezoid fuzzy linguistic variables. Selvachandran
and Salleh [19] proposed the concept of intuitionistic fuzzy linguistic variables and intuitionistic
fuzzy hedges.

In the review of the fuzzy linguistic approach, including the distinct linguistic generalizations and
extensions, it is shown that the design of linguistic information has actually been limited up till now,
because mainly it is based on the concentration of very simple and single terms that should encircle
and direct the information arranged by the decision-makers, respecting a linguistic variable. In recent
years, several researchers, including Liao et al. [20] discussed the distance and similarity measures for
hesitant fuzzy linguistic term sets and their application in MCDM. Later, Riera et al. [21] introduced
some interesting properties of the fuzzy linguistic model based on discrete fuzzy numbers to manage
hesitant fuzzy linguistic information. A term set is constituted by the completeness of values of a
linguistic variable, which in assumption could have an infinite number of elements. Nonetheless,
in distinct settings and directions, decision-makers who have suggestions regarding the problems
defined under uncertainty cannot efficiently suggest a single term as an interpretation of their ability;
they are determining the several terms at the same time or looking for a more complex linguistic term
that is not usually defined in the linguistic term set. Therefore, Rodrguez et al. [22] worked with a
view to overcome such limitations, taking into account the idea under the concept of HFS, to deal with
several values in a membership function in a quantitative setting.

Elimination and choice translating reality (ELECTRE) is one of the MCDM methods, used in
situations in which the decision-maker wants to include different criteria, and there may be a robust
collection associated with the nature of evaluation surrounded by several standards. The ELECTRE
approach was first introduced by Benayoun et al. [23]. Govindan et al. [24] studied the ELECTRE and
made a comprehensive literature review on methodologies and applications. They focused on papers
dealing with applications or developments of ELECTRE and ELECTRE-based methods. The modified
concept of ELECTRE known as ELECTRE-I was introduced by Roy [25]. Furthermore, this approach
was expended in a variety of alternative variants. For the multiple attribute decision-making methods,
applications and widely used versions of ELECTRE-I, readers are referred to [26]. In the literature,
most of these methods have been combined with fuzzy set theory by many researchers. Sevkli [27]
compared crisp and fuzzy ELECTRE methods for supplier selection problems. For the selection of
academic staff, Rouyendegh and Erkan [28] used the concept of fuzzy ELECTRE. Vahdani et al. [29]
presented the comparison of fuzzy ELECTRE method with intuitionistic fuzzy ELECTRE method.
Hatami-Marbini et al. [30] applied the method of fuzzy group ELECTRE for the interpretation of
haphazard waste reprocessing of plants. Devi and Yadav [31] proposed intuitionistic fuzzy ELECTRE
to choose the proper location of plants under group decision-making environments. Zandi and
Roghanian [32] introduced a novel fuzzy ELECTRE method based on VIKOR method. Kheirkhah
and Dehghani [33] applied the fuzzy group ELECTRE method to the evaluation of quality of public
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transportation facilities. Vahdani and Hadipour [34] presented the technique of interval-valued fuzzy
ELECTRE. Hatami-Marbini and Tavana [35] expanded the method of ELECTRE-I and introduced the
method of fuzzy ELECTRE-I with numerical examples to illustrate the effectiveness of their proposed
method. Asghari et al. [36] used fuzzy ELECTRE-I method for the analysis of mobile payment models.
Furthermore, fuzzy ELECTRE-I technique was applied in evaluating catering firm alternatives by
Aytac et al. [37] and an environmental effect evaluation method based on fuzzy ELECTRE-I was
composed by Kaya and Kahraman [38]. For handling MCDM problems Wu and Chen [39] developed
the concept of intuitionistic fuzzy ELECTRE-I method. Chen and Xu [40] proposed a novel MCDM
technique by combining HFSs with ELECTRE-II method. Lupo [41] calculated the service quality
of three international airports using ELECTRE-III approach. ELECTRE methods have played a very
significant role in the group of outranking methods. These methods enable us to use incomplete
knowledge. For other notations, decision-making techniques and applications, readers are referred
to [42–53].

Decision-making [54] can be examined as a conclusion of some intellectual and psychological
processes that lead to the selection of an alternative among several options. Typical decision-making
problems are described as selecting a place to visit, deciding which candidate is suitable for election,
or choosing the best car to buy. It is worth noting that decision-making is a distinctive human
ability, which is not naturally guided and based on obvious or absolute assumptions. It does
not demand specific and complete analysis of information about the set of feasible alternatives.
This fact motivated several researchers to apply fuzzy set theory to discuss vagueness and uncertainty
in decision processes [55,56]. In recent years, many researchers have proposed very interesting
methodologies [57,58] applied MCDM evaluations such as Antucheviciene et al. [59] to solve civil
engineering problems by means of fuzzy and stochastic MCDM methods, which promoted complex
decision support systems to help decision-makers reach a solution.

All previously proposed methods are unable to deal with the situation where given data is
in the form of sentences and words with m different numeric and fuzzy values with its crisp
domain. To handle this kind of information, we introduce the novel concept of the m-polar fuzzy
linguistic variable (mFLV) and develop the MCDM method for decision-making problems, because
all the traditional methods are ineffectual for studying this type of imprecise behavior of linguistic
computations and assessments. We apply the theory of mFLV to ELECTRE-I method to introduce
the mF linguistic ELECTRE-I technique for MCDM and MCGDM. The proposed technique is useful,
when given data is in the form of sentences and words with m different numeric and fuzzy values
within its crisp domain. Unlike classical ELECTRE techniques, precise information is not used in
analysis of alternatives and criteria. An mF linguistic ELECTRE-I approach is used to get more accurate
and consistent results when we must eliminate the choices and to deal with the systems with more
than one agreement. The proposed approach is more flexible as compared to various other extensions
of ELECTRE-I, because in this method a variable and its linguistic values are considered to be fixed
criteria for the ranking and evaluation of alternatives. All linguistic values are further classified by m
different numeric and fuzzy values, which provide more accurate and compatible results as compared
to other extensions of ELECTRE-I. This approach is valid for resolving decision-making problems in
our daily life. The organization of this research article is as follows.

In Section 2, we review some basic concepts and propose the concept of an mFLV with its
practical example. In Section 3, we present an mF linguistic ELECTRE-I approach for MCDM. In
Section 4, we present an mF linguistic ELECTRE-I approach for MCGDM. We applied our mF linguistic
ELECTRE-I approaches to real-life examples. We also present our proposed methods as an algorithm
and generate computer programming code. In Section 6, we present a conclusion.

2. m−Polar Fuzzy Linguistic Variable

In this section, we review some basic concepts and propose the concept of an mFLV with its
practical example.
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Definition 1 ([5]). An mF set on a universe X is a function R = (p1 ◦ R(r), p2 ◦ R(r), · · · , pm ◦ R(r)) :
X → [0, 1]m, where the i-th projection mapping is defined as pi ◦ R : [0, 1]m → [0, 1]. 0 = (0, 0, · · · , 0) is the
smallest element in [0, 1]m and 1 = (1, 1, · · · , 1) is the largest element in [0, 1]m.

Definition 2 ([7]). Linguistic variables are variables whose values are words or sentences in a natural or
artificial language. If these words are described by fuzzy sets that are defined over a universal set, then the
variables are called fuzzy linguistic variables.

Definition 3 ([7,12]). A linguistic term set is defined by means of an ordered structure providing the term set
that is distributed on a scale at which a total order has been defined. For example, a set S of seven terms could be
written as follows:

S = {so = nothing, s1 = very low, s2 = low, s3 = medium, s4 = high, s5 = very high, s6 = per f ect}.

An m-polar fuzzy linguistic variable is a variable that considers words in natural language(s) as
its values. The values of such a variable are characterized by mF sets that are defined in a universe that
contains the variable.

Definition 4. An m-polar fuzzy linguistic variable (mFLV) is characterized by a 4−tuple (Lv, V, Pd, M)

such that

• Lv is the name of an mFLV,
• V is the set of linguistic values of Lv,
• Pd = [0, ∞] is the physical domain in which an mFLV takes its crisp values,
• M is the semantic rule that relates every linguistic value in V to mF set.

We call the linguistic variable an mFLV, because its linguistic values are further classified by
m different characteristics. However, Pd is the physical domain in which an mFLV takes its crisp
values and this domain can be arranged in parts for linguistic values according to given requirements.
Finally, semantic rule M is described, which is actually a rule that differs the mFLV from previously
defined linguistic variables. This rule relates the linguistic values (V′l s|l = 1, 2, · · · , k) of mFLV with
mF set, which shows that when each linguistic value is further classified by m different characteristics,
the degree of linguistic values is defined by

di
l = pi ◦ dl(Vl) ∈ [0, 1], where i = 1, 2, · · · , m.

It clearly shows m different characterizations of each linguistic value. The contribution of mFLV
in real life is shown in Example 1.

Example 1. Let “temperature" be a linguistic variable and V = {Hot, Warm, Cool, Cold} be the set of its
linguistic values. The physical domain for linguistic variable is Pd = [0 ◦C, 50 ◦C], which is the set of real
non-negative numbers, and each linguistic value has different range of physical domain given as follows

• For cold temperature, physical domain is 0 ◦C to 10 ◦C,
• For cool temperature, physical domain is 10 ◦C to 20 ◦C,
• For warm temperature, physical domain is 20 ◦C to 30 ◦C,
• For hot temperature, physical domain is 30 ◦C to 50 ◦C.

We call this linguistic variable a 3−polar fuzzy linguistic variable (3FLV), because we describe a semantic
rule M that relates each linguistic value in set V with a 3−polar fuzzy set (3F set). According to the 3F set,
each linguistic value is characterized as

• p1 ◦ dl(Vl) serves as “heat energy",
• p2 ◦ dl(Vl) serves as “air pressure",
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• p3 ◦ dl(Vl) serves as “water vapors",

where l = 1, 2, 3. Thus, we have

Lv = {〈Hot, (0.90, 0.71, 0.20)〉, 〈Warm, (0.79, 0.61, 0.29)〉,
〈Cool, (0.45, 0.39, 0.69)〉, 〈Cold, (0.12, 0.19, 0.89)〉}.

In terms of the variable (temperature), four different linguistic values are discussed in Example 1, and each
linguistic value is further classified by three different criteria or properties on which linguistic value shows its
dependence. It shows the 3F restrictions on the values of a base variable. These 3F restrictions clearly show that
each linguistic value totally depends on heat energy, air pressure, and water vapors. Thus, we call temperature
a 3F linguistic variable by Definition 4.

3. mF Linguistic ELECTRE-I Approach for MCDM

In this section, we introduce an mF linguistic ELECTRE-I approach for MCDM problems, which is
based on the concept of mFLV. We also apply this approach to real-life examples in Section 3.1, to show
its importance and feasibility. In this approach, we choose Lv an mFLV and A = {a1, a2, · · · , an} the
set of mFLV of different alternatives. According to this mFLV, we take {Vl |l = 1, 2, · · · , k} the set
of linguistic values. These linguistic values are classified by m different characteristics. The degree
of each alternative (ap ∈ A, p = 1, 2, · · · , n) over all the linguistic values V′l s is given by mF set
℘p = {(ap, di

pl)|i = 1, 2, · · ·m}, where di
pl = pi ◦ dpl(ap, Vl) ∈ [0, 1] and di

pl classify the different
characteristics or properties of linguistic values. Pd is the actual physical domain in which the mFLV
takes its quantitative (crisp) values, i.e., Pd = [0,+∞]. In this case, we take the most suitable m values
from the physical domain of each linguistic value. A decision-maker is responsible for evaluating
mFLV of n different alternatives under k different linguistic values.

(i). Suitable ratings of alternatives are assessed in terms of m different characteristics under the physical
domain Pd. Tabular representation of an mF linguistic decision matrix is given by Table 1.

Table 1. Tabular representation of mF linguistic decision matrix.

m−Polar Fuzzy Physical Domain
Linguistic Pd1 Pd2 · · · Pdk

Variable m−Polar Fuzzy Linguistic Values
Lv V1 V2 · · · Vk
a1 (d1

11, d2
11, · · · , dm

11) (d1
12, d2

12, · · · , dm
12) · · · (d1

1k, d2
1k, · · · , dm

1k)
a2 (d1

21, d2
21, · · · , dm

21) (d1
22, d2

22, · · · , dm
22) · · · (d1

2k, d2
2k, · · · , dm

2k)
...

...
...

...
...

an (d1
n1, d2

n1, · · · , dm
n1) (d1

n2, d2
n2, · · · , dm

n2) · · · (d1
nk, d2

nk, · · · , dm
nk)

(ii). Decision-maker has an authority to assign weights to each linguistic value of mFLV of
alternatives according to his choice and the importance of each linguistic value. We discuss
the case of mFLV so the decision-maker must assign the weights in terms of linguistic term set
L = {L1 = very low, L2 = low, · · · , Lk = extremly high}. We suppose that the weights (wl ∈ (0, 1])

assigned by the decision-maker satisfy the normalized condition. i.e.,
k
∑

l=1
wl = 1.

(iii). The weighted mF linguistic decision matrix is calculated as

W = [(e1
pl , e2

pl , · · · , em
pl)]n×k,

where
e1

pl = wld1
pl , e2

pl = wld2
pl , · · · , em

pl = wldm
pl .
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(iv). The mF linguistic concordance set is defined as

Yuv = {1 ≤ l ≤ k|eul ≥ evl , u 6= v; u, v = 1, 2, · · · , n},

where epl = e1
pl + e2

pl + · · ·+ em
pl .

(v). The mF linguistic discordance set is defined as

Zuv = {1 ≤ l ≤ k|eul ≤ evl , u 6= v; u, v = 1, 2, · · · , n},

where epl = e1
pl + e2

pl + · · ·+ em
pl .

(vi). The mF linguistic concordance indices are determined as

yuv = ∑
l∈Yuv

wl ,

therefore, the mF linguistic concordance matrix is computed as

Y =


− y12 y13 · · · y1n

y21 − y23 · · · y2n
y31 y32 − · · · y3n

...
...

... · · ·
...

yn1 yn2 yn3 · · · −

 .

(vii). The mF linguistic discordance indices are determined as

zuv =

max
l∈Zuv

√
1
m [(e1

ul − e1
vl)

2 + (e2
ul − e2

vl)
2 + · · ·+ (em

ul − em
vl)

2]

max
l

√
1
m [(e1

ul − e1
vl)

2 + (e2
ul − e2

vl)
2 + · · ·+ (em

ul − em
vl)

2]
,

therefore, the mF linguistic discordance matrix is be computed as

Z =


− z12 z13 · · · z1n
z21 − z23 · · · z2n
z31 z32 − · · · z3n

...
...

... · · ·
...

zn1 zn2 zn3 · · · −

 .

(viii). For the rankings of alternatives, we compute threshold values known as mF linguistic
concordance and discordance levels. The mF linguistic concordance and discordance levels are the
average of mF linguistic concordance and discordance indices.

ȳ =
1

n(n− 1)

n

∑
u=1
u 6=v

n

∑
v=1
u 6=v

yuv,

z̄ =
1

n(n− 1)

n

∑
u=1
u 6=v

n

∑
v=1
u 6=v

zuv.
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(ix). The mF linguistic concordance dominance matrix according to its mF linguistic concordance level
is computed as

R =


− r12 r13 · · · r1n
r21 − r23 · · · r2n
r31 r32 − · · · r3n
...

...
... · · ·

...
rn1 rn2 rn3 · · · −

 ,

where,

ruv =

{
1, yuv ≥ ȳ;
0, yuv < ȳ.

(x). The mF linguistic discordance dominance matrix according to its mF linguistic discordance level is
computed as

S =


− s12 s13 · · · s1n
s21 − s23 · · · s2n
s31 s32 − · · · s3n
...

...
... · · ·

...
sn1 sn2 sn3 · · · −

 ,

where,

suv =

{
1, zuv < z̄;
0, zuv ≥ z̄.

(xi). The aggregated mF linguistic dominance matrix is computed as

T =


− t12 t13 · · · t1n
t21 − t23 · · · t2n
t31 t32 − · · · t3n
...

...
... · · ·

...
tn1 tn2 tn3 · · · −

 ,

where, tuv is defined as
tuv = ruvsuv.

(xii). Finally, rank the alternatives according to the outranking values of matrix T. For each
pair of alternatives there exist a directed edge from alternative au to av if and only if tuv = 1.
Thus, the following three cases arise.

1. There exists a unique directed edge from au to av, which shows au is preferred over av.
2. There exists directed edges from au to av and av to au, which shows au and av are indifferent.
3. There does not exist any edge between au and av, which shows au and av are not comparable.

3.1. Salary Analysis of Companies

Salary analysis of companies is considered to be one of the scales to compare the economic
condition of companies, and it is not an easy task, especially when a decision-maker has to evaluate
them. We propose the mF linguistic ELECTRE-I method for MCDM, in which salary is a linguistic
variable and S = {Sc1 , Sc2 , Sc3 , Sc4 , Sc5} is the set of salary packages of five different well-known
companies. V = {Low, Moderate, Good, Very good} is taken as the set of linguistic values of salary.
The decision-maker must evaluate the companies on the basis of the linguistic values of their salary
package and he has to design a physical domain in which the salary package takes its quantitative
values, i.e., Pd = [10k, 100k]. The physical domain for linguistic values of salary package is given
as follows:
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• For low salary, physical domain is below 30k,
• For moderate salary, physical domain is 30k–50k,
• For good salary, physical domain is 50k–70k,
• For very good salary, physical domain is above 70k.

Physical domain of each linguistic value shows the range of salary given by decision-maker. The degree
of salary of each company, over all the linguistic values is given by 4F set ℘p = {(Scp , di

pl)|i =

1, 2, 3, 4}, where

• d1
pl = p1 ◦ dpl(ap, Vl) serves for career,

• d2
pl = p2 ◦ dpl(ap, Vl) serves for labor market,

• d3
pl = p3 ◦ dpl(ap, Vl) serves for experience,

• d4
pl = p4 ◦ dpl(ap, Vl) serves for credential,

where p = 1, 2, · · · , 5, and l = 1, 2, 3, 4. The 4F set shows the further classifications or properties on
which linguistic values depend.

(i). Tabular representation of 4F linguistic decision matrix is given by Table 2. It shows the different
ratings of linguistic values assigned by a decision-maker, in which he assigns ratings according to
his choice.

Table 2. Tabular representation of 4F linguistic decision matrix for Salary.

4−Polar Fuzzy Physical Domain
Linguistic Below 30k 30k–50k 50k–70k Above 70k
Variable 4−Polar Fuzzy Linguistic Values
(Salary) Low Moderate Good Very Good

Sc1 (0.3,0.4,0.5,0.4) (0.4,0.6,0.6,0.3) (0.6,0.7,0.8,0.7) (0.8,0.9,0.8,1.0)
Sc2 (0.2,0.5,0.4,0.3) (0.5,0.5,0.6,0.4) (0.4,0.6,0.7,0.5) (0.7,0.8,1.0,0.9)
Sc3 (0.4,0.3,0.5,0.5) (0.6,0.5,0.4,0.5) (0.6,0.6,0.7,0.7) (0.6,0.8,0.9,0.9)
Sc4 (0.3,0.3,0.2,0.4) (0.7,0.4,0.6,0.5) (0.7,0.4,0.5,0.6) (0.7,0.7,0.8,0.8)
Sc5 (0.2,0.5,0.4,0.4) (0.6,0.5,0.4,0.7) (0.4,0.5,0.5,0.6) (0.6,0.7,0.8,1.0)

(ii). The normalized weights assigned to each linguistic value of 4FLV by decision-maker are given
as follows:

wl = (0.15, 0.19, 0.27, 0.39).

(iii). The weighted 4F linguistic decision matrix is calculated in Table 3.

Table 3. Tabular representation of weighted 4F linguistic decision matrix for Salary.

4−Polar Fuzzy Physical Domain
Linguistic Below 30k 30k–50k
Variable 4−Polar Fuzzy Linguistic Values
(Salary) Low (0.15) Moderate (0.19)

Sc1 (0.045,0.060,0.075,0.060) (0.076,0.114,0.114,0.057)
Sc2 (0.030,0.075,0.060,0.045) (0.095,0.095,0.114,0.076)
Sc3 (0.060,0.045,0.075,0.075) (0.114,0.095,0.076,0.095)
Sc4 (0.045,0.045,0.030,0.060) (0.133,0.076,0.114,0.095)
Sc5 (0.030,0.075,0.060,0.060) (0.114,0.095,0.076,0.133)

4−Polar Fuzzy Physical Domain
Linguistic 50k–70k Above 70k
Variable 4−Polar Fuzzy Linguistic Values
(Salary) Good (0.27) Very Good (0.39)

Sc1 (0.162,0.189,0.216,0.189) (0.312,0.351,0.312,0.390)
Sc2 (0.108,0.162,0.189,0.135) (0.273,0.312,0.390,0.351)
Sc3 (0.162,0.162,0.189,0.189) (0.234,0.312,0.351,0.351)
Sc4 (0.189,0.108,0.135,0.162) (0.273,0.273,0.312,0.312)
Sc5 (0.108,0.135,0.135,0.162) (0.234,0.273,0.312,0.390)
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(iv). A 4F concordance set is calculated in Table 4.

Table 4. Tabular representation of 4F linguistic concordance set.

v 1 2 3 4 5
Y1v − {1, 3, 4} {3, 4} {1, 3, 4} {1, 3, 4}
Y2v {2} − {2, 4} {1, 3, 4} {3, 4}
Y3v {1, 2} {1, 2, 3} − {1, 3, 4} {1, 3, 4}
Y4v {2} {2, 3} {2} − {3}
Y5v {2} {1, 2} {2} {1, 2, 4} −

(v). A 4F discordance set is calculated in Table 5.

Table 5. Tabular representation of 4F linguistic discordance set.

v 1 2 3 4 5
Z1v − {2} {1, 2} {2} {2}
Z2v {1, 3, 4} − {1, 2, 3} {2, 3} {1, 2}
Z3v {3, 4} {2, 4} − {2} {2}
Z4v {1, 3, 4} {1, 3, 4} {1, 3, 4} − {1, 2, 4}
Z5v {1, 3, 4} {3, 4} {1, 3, 4} {3} −

(vi). A 4F linguistic concordance matrix is calculated as follows:

Y =


− 0.81 0.66 0.81 0.81

0.19 − 0.58 0.81 0.66
0.34 0.61 − 0.81 0.81
0.19 0.46 0.19 − 0.27
0.19 0.34 0.19 0.73 −

 .

(vii). A 4F linguistic discordance matrix is calculated as follows:

Z =


− 0.3189 0.6639 0.6488 0.8293
1 − 1 1 0.6890
1 0.7222 − 0.5451 0.4451
1 1 1 − 1
1 1 1 0.9791 −

 .

(viii). A 4F linguistic concordance level y = 0.5230, and 4F linguistic discordance level z = 0.8421
are calculated.

(ix). A 4F linguistic concordance dominance matrix is calculated as follows:

R =


− 1 1 1 1
0 − 1 1 1
0 1 − 1 1
0 0 0 − 0
0 0 0 1 −

 .

(x). A 4F linguistic discordance dominance matrix is calculated as follows:

S =


− 1 1 1 1
0 − 0 0 1
0 1 − 1 1
0 0 0 − 0
0 0 0 0 −

 .
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(xi). An aggregated 4F linguistic dominance matrix is calculated as follows:

T =


− 1 1 1 1
0 − 0 0 1
0 1 − 1 1
0 0 0 − 0
0 0 0 0 −

 .

(xii). Finally, to rank the companies according to the outranking values of aggregated 4F linguistic
dominance matrix T, we draw a directed graph for each pair of companies as shown in Figure 1.

Figure 1. Graphical representation of outranking relation of companies.

From directed graph of companies as shown in Figure 1 the following cases arise.

1. There exists directed edges from Sc1 to Sc2 ,Sc3 ,Sc4 and Sc5 which show Sc1 is preferred over all
other companies according to its salary package.

2. Similarly, Sc1 is preferred over Sc5 .
3. Similarly, Sc3 is preferred over Sc2 ,Sc4 and Sc5 .
4. There does not exist any edge from Sc4 to any other company, which shows Sc4 is incomparable

to others.
5. Similarly, Sc5 is incomparable to others.

Hence, Sc1 is the most dominated company as compared to others and has highest ranking
according to its salary package.

We show the comparison of companies and summarize the whole procedure in Table 6.

Table 6. Tabular representation of comparison of companies.

Comparison of Yuv Zuv yuv zuv ruv suv tuv RankingCompanies
(Sc1 , Sc2 ) {1, 3, 4} {2} 0.81 0.3189 1 1 1 Sc1 → Sc2

(Sc1 , Sc3 ) {3, 4} {1, 2} 0.66 0.6639 1 1 1 Sc1 → Sc3

(Sc1 , Sc4 ) {1, 3, 4} {2} 0.81 0.6488 1 1 1 Sc1 → Sc4

(Sc1 , Sc5 ) {1, 3, 4} {2} 0.81 0.8293 1 1 1 Sc1 → Sc5

(Sc2 , Sc1 ) {2} {1, 3, 4} 0.19 1 0 0 0 Incomparable
(Sc2 , Sc3 ) {2, 4} {1, 3, 4} 0.58 1 1 0 0 Incomparable
(Sc2 , Sc4 ) {1, 3, 4} {1, 3, 4} 0.81 1 1 0 0 Incomparable
(Sc2 , Sc5 ) {3, 4} {1, 2, 4} 0.66 0.6890 1 1 1 Sc2 → Sc5

(Sc3 , Sc1 ) {1, 2} {3, 4} 0.34 1 0 0 0 Incomparable
(Sc3 , Sc2 ) {1, 2, 3} {2, 4} 0.61 0.7222 1 1 1 Sc3 → Sc2

(Sc3 , Sc4 ) {1, 3, 4} {2} 0.81 0.5451 1 1 1 Sc3 → Sc4

(Sc3 , Sc5 ) {1, 3, 4} {2} 0.81 0.4451 1 1 1 Sc3 → Sc5

(Sc4 , Sc1 ) {2} {1, 3, 4} 0.19 1 0 0 0 Incomparable
(Sc4 , Sc2 ) {2, 3} {1, 3, 4} 0.46 1 0 0 0 Incomparable
(Sc4 , Sc3 ) {2} {1, 3, 4} 0.19 1 0 0 0 Incomparable
(Sc4 , Sc5 ) {3} {1, 2, 4} 0.27 1 0 0 0 Incomparable
(Sc5 , Sc1 ) {2} {1, 3, 4} 0.19 1 0 0 0 Incomparable
(Sc5 , Sc2 ) {1, 2} {3, 4} 0.34 1 0 0 0 Incomparable
(Sc5 , Sc3 ) {2} {1, 3, 4} 0.19 1 0 0 0 Incomparable
(Sc5 , Sc4 ) {1, 2, 4} {3} 0.73 0.9791 1 0 0 Incomparable
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4. mF Linguistic ELECTRE-I Approach for MCGDM

In this section, we introduce an mF linguistic ELECTRE-I approach for MCGDM problems,
which is based on the concept of mFLV. We also apply this approach to real-life examples
in Section 4.1, to show its importance and feasibility. In this approach, a group of r
decision-makers (Dg, g = 1, 2, · · · , r) is responsible for evaluating mFLV of n different alternatives
(ap ∈ A, p = 1, 2, · · · , n) under k different linguistic values of Lv (Vl , l = 1, 2, · · · , k). In the same sense
as we used in MCDM, the degree of each alternative over all the linguistic values V′l s is given by an mF

set ℘p = {(ap, dgi
pl)|i = 1, 2, · · ·m}, where dgi

pl = pi ◦ dg
pl(ap, Vl) ∈ [0, 1] and di

pl classify the different
properties or criteria of linguistic values according to each decision-maker.

(i). In this case, a group of r decision-makers is responsible for evaluating mFLV of n different
alternatives, and the suitable ratings of alternatives are according to all decision-makers that are
assessed in terms of m different characteristics under the physical domain Pd. Tabular representation
of mF linguistic decision matrix under group of r decision-makers is given by Table 7, which describes
the ratings given by each decision-maker.

Table 7. Tabular representation of mF linguistic decision matrix under a group of decision-makers.

m−Polar Fuzzy Physical Domain
Decision Linguistic Pd1 Pd2 · · · Pdk

Makers Variable m−Polar Fuzzy Linguistic Values
Lv V1 V2 · · · Vk

a1 (dg1
11 , dg2

11 , · · · , dgm
11 ) (dg1

12 , dg2
12 , · · · , dgm

12 ) · · · (dg1
1k , dg2

1k , · · · , dgm
1k )

Dg a2 (dg1
21 , dg2

21 , · · · , dgm
21 ) (dg1

22 , dg2
22 , · · · , dgm

22 ) · · · (dg1
2k , dg2

2k , · · · , dgm
2k )

...
...

...
...

...
an (dg1

n1, dg2
n1, · · · , dgm

n1 ) (dg1
n2, dg2

n2, · · · , dgm
n2 ) · · · (dg1

nk, dg2
nk, · · · , dgm

nk )

Table 7 shows the different ratings of linguistic values assigned by a group of r decision-makers,
in which each decision-maker assigns ratings according to his choice. The final mF linguistic decision
matrix under group of decision-makers is the aggregated mF linguistic decision matrix that is the
average ratings of all decision-makers. Aggregated ratings are calculated as follows:

d1′
pl =

1
r

r

∑
g=1

dg1
pl , d2′

pl =
1
r

r

∑
g=1

dg2
pl , · · · , dm′

pl =
1
r

r

∑
g=1

dgm
pl .

p = 1, 2, · · · , n and l = 1, 2, · · · , k.

For final decisions and ratings, aggregated mF linguistic decision matrix is calculated in Table 8
by using above-average ratings.

Table 8. Tabular representation of aggregated mF linguistic decision matrix.

m−Polar Fuzzy Physical Domain
Linguistic Pd1 Pd2 · · · Pdk

Variable m−Polar Fuzzy Linguistic Values and Weights

Lv
V1 V2 · · · Vk
w1 w2 · · · wk

a1 (d1′
11, d2′

11, · · · , dm′
11 ) (d1′

12, d2′
12, · · · , dm′

12 ) · · · (d1′
1k, d2′

1k, · · · , dm′
1k )

a2 (d1′
21, d2′

21, · · · , dm′
21 ) (d1′

22, d2′
22, · · · , dm′

22 ) · · · (d1′
2k, d2′

2k, · · · , dm′
2k )

...
...

...
...

...
an (d1′

n1, d2′
n1, · · · , dm′

n1) (d1′
n2, d2′

n2, · · · , dm′
n2) · · · (d1′

nk, d2′
nk, · · · , dm′

nk)

(ii). Decision-makers have an authority to assign weights to each linguistic value of alternatives
according to their choice and the importance of each linguistic value, but we are discussing the case
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of mFLV so decision-makers have to assign the weights in terms of the linguistic term set L = {L1 =

extremely low, L2 = medium, · · · , Lk = very high}. We suppose that the weights assigned by the
decision-makers are

Wg = (wg
1 , wg

2 , · · · , wg
k ) ∈ (0, 1], g = 1, 2, · · · , r.

Weights assigned by the decision-makers satisfy the normalized condition. i.e.,

k

∑
l=1

wg
l = 1, g = 1, 2, · · · , r.

Aggregated weights according to decision-makers are W
′
= (w

′
1, w

′
2, · · · , w

′
k), where,

w
′
l =

1
r

r

∑
g=1

wg
l , l = 1, 2, · · · , k.

(iii). The weighted aggregated mF linguistic decision matrix W = [(e1′
pl , e2′

pl , · · · , em′
pl )]n×k under group

decision-making is calculated as

e1′
pl = w

′
ld

1′
pl , e2′

pl = w
′
ld

2′
pl , · · · , em′

pl = w
′
ld

m′
pl .

Steps (iv) to (xii) are same as described in Section 3.

4.1. Selection of Corrupted Country

Usually, corruption is considered to be criminal activity or dishonesty initiated by a person
or organization associated with the situation of authority, often to attain unauthorized benefits.
Corruption may comprise several activities including misappropriation, extortion, and bribery,
though it may also involve practices that are enforced in several countries. Corruption can
appear on variant scales. It ranges from poor level of consideration between a small number of
people—“petty corruption”—to the corruption that influences the government on a large scale—“grand
corruption”—and corruption that is so common it is part of the everyday conformation of society,
carrying corruption as one of the evidences of organized crime. Crime and corruption are regional,
sociological junctures which occur with usual constancy in all countries on a global scale in fluctuating
proportions and degrees. Increasingly, several tools and intimators have been developed that can rate
several forms of corruption with growing accuracy.

• Petty corruption

Petty corruption appears at a lower scale and occurs at the practical end of civil services when a
civil authoritative person accommodates civil people. For example, in several small places such as
police stations, registration offices, state licensing boards, and several other government and private
sectors, it indicates the daily fault of power by low- and mid-level public officials in their interactions
with frequent civilians, who are trying to approach basic services or goods in public places such as
schools, police departments, hospitals, and other agencies.

• Grand corruption

Grand corruption occurs at the highest scale of government in a way that depends on the
expressive overthrow of the legal, political, and economic systems. Such a type of corruption is usually
found in countries with dictatorial or authoritarian governments but also in those without sufficient
policing of corruption.

• Systemic corruption

Systemic corruption or endemic corruption is primarily due to the weaknesses of an institution,
organization, or management. It can be differentiated with agents or individual officials, who perform
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corruptly within the system. Factors that encourage systemic corruption include elective powers,
lack of transparency, conflicting stimulus, monopolistic powers, low pay, and a culture of immunity.
Measuring the corruption at country level is a very difficult phenomenon for anti-corruption agencies
because it is willfully hidden, and therefore it is almost impossible to evaluate it directly. Corruption
inside a rustic government undermines the solidity of its establishments and tends to cause popular
unrest. To overcome this difficulty and to measure the corruption at country level, we use mF
linguistic ELECTRE-I approach for MCGDM, in which corruption is the linguistic variable and
C = {C1, C2, C3, C4, C5, C6, C7} is the set of seven countries in which corruption must be measured.
Let V = {petty corruption, grand corruption, systemic corruption} be the set of linguistic values
of corruption. Anti-corruption agencies and media sources work as decision-makers; they have to
evaluate the countries on the basis of the linguistic values of corruption and design a physical domain
in which corruption takes its quantitative values, i.e., Pd = [10%, 100%]. The physical domain for
linguistic values of corruption is given as follows:

• For petty corruption, physical domain is 40%–60%,
• For grand corruption, physical domain is 50%–80%,
• For systemic corruption, physical domain is 30%–70%.

Physical domain of each linguistic value shows the scale of corruption given by group of
decision-makers. The degree of corruption of each country over all the linguistic values are given by
4F set ℘p = {(Cp, di

pl)|i = 1, 2, 3, 4}, where

• d1
pl = p1 ◦ dpl(ap, Vl) serves for personal greed,

• d2
pl = p2 ◦ dpl(ap, Vl) serves for cultural environment,

• d3
pl = p3 ◦ dpl(ap, Vl) serves for Institutional scale,

• d4
pl = p4 ◦ dpl(ap, Vl) serves for organizational level,

where p = 1, 2, · · · , 7, and l = 1, 2, 3. The 4F set shows the further criteria or properties on which
linguistic values depend.

(i). Tabular representation of 4F linguistic group decision matrix is given by Table 9. It shows the
different ratings of linguistic values assigned by a group of two decision-makers, in which each
decision-maker assigns ratings according to his choice.

Table 9. Tabular representation of 4F linguistic group decision matrix for corruption.

4−Polar Fuzzy Physical Domain
Decision Linguistic 40%–60% 50%–80% 30%–70%
Makers Variable 4−Polar Fuzzy Linguistic Values

(Corruption) Petty Corruption Grand Corruption Systemic Corruption
Ratings according to anti-corruption agencies

C1 (0.6,0.5,0.3,0.4) (0.5,0.6,0.7,0.8) (0.2,0.1,0.5,0.6)
C2 (0.5,0.7,0.5,0.6) (0.4,0.6,0.8,0.9) (0.3,0.4,0.7,0.8)
C3 (0.3,0.4,0.4,0.7) (0.6,0.5,0.7,0.8) (0.3,0.3,0.5,0.7)

D1 C4 (0.3,0.6,0.5,0.4) (0.7,0.6,0.8,0.7) (0.2,0.4,0.4,0.6)
C5 (0.4,0.4,0.5,0.7) (0.4,0.5,0.8,0.8) (0.1,0.4,0.3,0.5)
C6 (0.6,0.4,0.5,0.7) (0.6,0.7,0.5,0.7) (0.5,0.5,0.4,0.7)
C7 (0.7,0.3,0.2,0.5) (0.4,0.5,0.6,0.8) (0.4,0.3,0.5,0.8)

Ratings according to media sources
C1 (0.5,0.4,0.3,0.5) (0.6,0.6,0.8,0.6) (0.3,0.2,0.6,0.7)
C2 (0.6,0.4,0.5,0.7) (0.8,0.7,0.7,0.8) (0.4,0.3,0.7,0.6)
C3 (0.3,0.5,0.7,0.6) (0.4,0.5,0.6,0.8) (0.5,0.4,0.6,0.6)

D2 C4 (0.5,0.6,0.5,0.3) (0.5,0.7,0.6,0.8) (0.3,0.5,0.6,0.5)
C5 (0.5,0.6,0.5,0.7) (0.7,0.4,0.7,0.7) (0.3,0.4,0.5,0.4)
C6 (0.7,0.4,0.4,0.5) (0.6,0.6,0.6,0.6) (0.4,0.3,0.6,0.5)
C7 (0.6,0.5,0.3,0.5) (0.5,0.7,0.7,0.6) (0.4,0.4,0.7,0.7)
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For final decision and ratings, aggregated 4F linguistic decision matrix is calculated in Table 10.

Table 10. Tabular representation of aggregated 4F linguistic group decision matrix for corruption.

4−Polar Fuzzy Physical Domain
Linguistic 40%–60% 50%–80% 30%–70%
Variable 4−Polar Fuzzy Linguistic Values

(Corruption) Petty Corruption Grand Corruption Systemic Corruption
C1 (0.55,0.45,0.3,0.45) (0.55,0.6,0.75,0.7) (0.25,0.15,0.55,0.65)
C2 (0.55,0.55,0.5,0.65) (0.6,0.65,0.75,0.85) (0.35,0.35,0.7,0.7)
C3 (0.3,0.45,0.55,0.65) (0.5,0.5,0.65,0.8) (0.4,0.35,0.55,0.65)
C4 (0.4,0.6,0.5,0.35) (0.6,0.65,0.7,0.75) (0.25,0.45,0.5,0.55)
C5 (0.45,0.5,0.5,0.7) (0.55,0.45,0.75,0.75) (0.2,0.4,0.4,0.45)
C6 (0.65,0.4,0.45,0.6) (0.6,0.65,0.55,0.65) (0.45,0.4,0.5,0.6)
C7 (0.65,0.4,0.25,0.5) (0.45,0.6,0.65,0.7) (0.4,0.35,0.6,0.75)

(ii). To measure the corruption at country level, anti-corruption agencies and media sources are
considered as decision-makers and the weights assigned by decision-makers are given by Table 11.

Table 11. Tabular representation of weights assigned by decision-makers.

Decision 4−Polar Fuzzy Linguistic Values
Makers Petty Corruption Grand Corruption Systemic Corruption

D1 0.3251 0.3453 0.3296

D2 0.2915 0.3801 0.3284

D
′ 0.3083 0.3627 0.3290

(iii). The weighted aggregated 4F linguistic group decision matrix is calculated in Table 12.

Table 12. Tabular representation of weighted aggregated 4F linguistic group decision matrix for corruption.

4−Polar Fuzzy Physical Domain
Linguistic 40%–60% 50%–80% 30%–70%
Variable 4−Polar Fuzzy Linguistic Values

(Corruption) Petty Corruption Grand Corruption Systemic Corruption
C1 (0.1696,0.1387,0.0925,0.1387) (0.1995,0.2176,0.2720,0.2539) (0.0823,0.0494,0.1810,0.2138)
C2 (0.1696,0.1696,0.1542,0.2004) (0.2176,0.2358,0.2720,0.3083) (0.1152,0.1152,0.2303,0.2303)
C3 (0.0925,0.1387,0.1696,0.2004) (0.1814,0.1814,0.2358,0.2902) (0.1316,0.1152,0.1810,0.2138)
C4 (0.1233,0.1850,0.1542,0.1079) (0.2176,0.2358,0.2539,0.2720) (0.0823,0.1481,0.1645,0.1810)
C5 (0.1387,0.1542,0.1542,0.2158) (0.1995,0.1632,0.2720,0.2720) (0.0658,0.1316,0.1316,0.1481)
C6 (0.2004,0.1233,0.1387,0.1850) (0.2176,0.2358,0.1995,0.2358) (0.1481,0.1316,0.1645,0.1974)
C7 (0.2004,0.1233,0.0771,0.1542) (0.1632,0.2176,0.2358,0.2539) (0.1316,0.1152,0.2139,0.2468)

(iv). A 4F linguistic concordance set is calculated in Table 13.

Table 13. Tabular representation of 4F linguistic concordance set.

v 1 2 3 4 5 6 7
Y1v − { } {2} { } {2, 3} {2} {2}
Y2v {1, 2, 3} − {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}
Y3v {1, 3} { } − {1, 3} {3} {2, 3} {1, 2}
Y4v {1, 2, 3} { } {2} − {2, 3} {2} {1, 2}
Y5v {1} { } {1, 2} {1} − {1, 2} {1, 2}
Y6v {1, 3} { } {1, 2, 3} {1, 3} {3} − {1, 2}
Y7v {1, 3} {3} {3} {3} {3} {3} −
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(v). A 4F linguistic discordance set is calculated in Table 14.

Table 14. Tabular representation of 4F linguistic discordance set.

v 1 2 3 4 5 6 7
Z1v − {1, 2, 3} {1, 3} {1, 2, 3} {1} {1, 3} {1, 3}
Z2v { } − { } { } { } { } {3}
Z3v {2} {1, 2, 3} − {2} {1, 2} {1, 2, 3} {3}
Z4v { } {1, 2, 3} {1, 3} − {1} {1, 3} {3}
Z5v {2, 3} {1, 2, 3} {3} {2, 3} − {3} {3}
Z6v {2} {1, 2, 3} {2, 3} {2} {1, 2} − {3}
Z7v {2} {1, 2, 3} {1, 2} {1, 2} {1, 2} {1, 2} −

(vi). A 4F linguistic concordance matrix is calculated as follows:

Y =



− 0 0.3627 0 0.6917 0.3627 0.3627
1 − 1 1 1 1 1

0.6373 0 − 0.6373 0.3290 0.6917 0.6710
1 0 0.3627 − 0.6917 0.3627 0.6710

0.3083 0 0.6710 0.3083 − 0.6710 0.6710
0.6373 0 1 0.6373 0.3290 − 0.6710
0.6373 0.3290 0.3290 0.3290 0.3290 0.3290 −


.

(vii). A 4F linguistic discordance matrix is calculated as follows:

Z =



− 1 1 1 0.8900 1 1
0 − 0 0 0 0 0.3813

0.5221 1 − 0.644 0.5009 1 0.2448
0 1 1 − 1 1 0.7079
1 1 1 0.6792 − 0.9193 1

0.7328 1 0.8089 0.5182 1 − 0.9071
0.5693 1 1 1 0.8811 1 −


.

(viii). A 4F linguistic concordance level y = 0.5243, and 4F linguistic discordance level z = 0.7359
are calculated.

(ix). A 4F linguistic concordance dominance matrix is calculated as follows:

R =



− 0 0 0 1 0 0
1 − 1 1 1 1 1
1 0 − 1 0 1 1
1 0 0 − 1 0 1
0 0 1 0 − 1 1
1 0 1 1 0 − 1
1 0 0 0 0 0 −


.

(x). A 4F linguistic discordance dominance matrix is calculated as follows:

S =



− 0 0 0 0 0 0
1 − 1 1 1 1 1
1 0 − 1 1 0 1
1 0 0 − 0 0 1
0 0 0 1 − 0 0
1 0 0 1 0 − 0
1 0 0 0 0 0 −


.
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(xi). An aggregated 4F linguistic dominance matrix is calculated as follows:

T =



− 0 0 0 0 0 0
1 − 1 1 1 1 1
1 0 − 1 0 0 1
1 0 0 − 0 0 1
0 0 0 0 − 0 0
1 0 0 1 0 − 0
1 0 0 0 0 0 −


.

(xii). Finally, to rank the companies according to the outranking values of aggregated 4F linguistic
dominance matrix T, we draw a directed graph for each pair of countries as shown in Figure 2.

Figure 2. Graphical representation of outranking relation of countries.

From directed graph of countries as shown in Figure 2 the following cases arise.

1. There does not exist any edge from C1 to any other country, which shows C1 is incomparable
to others.

2. There exists directed edges from C2 to C1, C3, C4, C5, C6 and C7 which show C2 is preferred over
all other countries.

3. Similarly, C3 is preferred over C1, C4 and C7.
4. Similarly, C4 is preferred over C1 and C7.
5. There does not exist any edge from C5 to any other country, which shows SC5 is incomparable

to others.
6. C6 is preferred over C1 and C4.
7. Similarly, C7 is preferred over C1.

Hence, the country C2 is most dominated as compared to others. Hence C2 is the most
corrupted country.

We show the comparison of countries and summarize the whole procedure in Table 15.

Table 15. Tabular representation of comparison of countries.

Comparison of Yuv Zuv yuv zuv ruv suv tuv RankingCountries
(C1, C2) { } {1, 2, 3} 0 1 0 0 0 Incomparable
(C1, C3) {2} {1, 3} 0.3627 1 0 0 0 Incomparable
(C1, C4) { } {1, 2, 3} 0 1 0 0 0 Incomparable
(C1, C5) {2, 3} {1} 0.6917 1 1 0 0 Incomparable
(C1, C6) {2} {1, 3} 0.3627 1 0 0 0 Incomparable
(C1, C7) {2} {1, 3} 0.3627 1 0 0 0 Incomparable
(C2, C1) {1, 2, 3} { } 1 0 1 1 1 C2 → C1
(C2, C3) {1, 2, 3} { } 1 0 1 1 1 C2 → C3
(C2, C4) {1, 2, 3} { } 1 0 1 1 1 C2 → C4
(C2, C5) {1, 2, 3} { } 1 0 1 1 1 C2 → C5
(C2, C6) {1, 2, 3} { } 1 0 1 1 1 C2 → C6
(C2, C7) {1, 2, 3} {3} 1 0.3813 1 1 1 C2 → C7
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Table 15. Cont.

Comparison of Yuv Zuv yuv zuv ruv suv tuv RankingCountries
(C3, C1) {1, 3} {2} 0.6373 0.5221 1 1 1 C3 → C1
(C3, C2) { } {1, 2, 3} 0 1 0 0 0 Incomparable
(C3, C4) {1, 3} {2} 0.6373 0.6444 1 1 1 C3 → C4
(C3, C5) {3} {1, 2} 0.3290 0.5009 0 1 0 Incomparable
(C3, C6) {2, 3} {1, 2, 3} 0.6917 1 1 0 0 Incomparable
(C3, C7) {1, 2} {3} 0.6710 0.2448 1 1 1 C3 → C7
(C4, C1) {1, 2, 3} { } 1 0 1 1 1 C4 → C1
(C4, C2) { } {1, 2, 3} 0 1 0 0 0 Incomparable
(C4, C3) {2} {1, 3} 0.3627 1 0 0 0 Incomparable
(C4, C5) {2, 3} {1} 0.6917 1 1 0 0 Incomparable
(C4, C6) {2} {1, 3} 0.3627 1 0 0 0 Incomparable
(C4, C7) {1, 2} {3} 0.6710 0.7079 1 1 1 C4 → C7
(C5, C1) {1} {2, 3} 0.3083 1 0 0 0 Incomparable
(C5, C2) { } {1, 2, 3} 0 1 0 0 0 Incomparable
(C5, C3) {1, 2} {3} 0.6710 1 1 0 0 Incomparable
(C5, C4) {1} {2, 3} 0.3083 0.6792 0 1 0 Incomparable
(C5, C6) {1, 2} {3} 0.6710 0.9193 1 0 0 Incomparable
(C5, C7) {1, 2} {3} 0.6710 1 1 0 0 Incomparable
(C6, C1) {1, 3} {2} 0.6373 0.7328 1 1 1 C6 → C1
(C6, C2) { } {1, 2, 3} 0 1 0 0 0 Incomparable
(C6, C3) {1, 2, 3} {2, 3} 1 0.8089 1 0 0 Incomparable
(C6, C4) {1, 3} {2} 0.6373 0.5182 1 1 1 C6 → C4
(C6, C5) {3} {1, 2} 0.3290 1 0 0 0 Incomparable
(C6, C7) {1, 2} {3} 0.6710 0.9071 1 0 0 Incomparable
(C7, C1) {1, 3} {2} 0.6373 0.5693 1 1 1 C7 → C1
(C7, C2) {3} {1, 2, 3} 0.3290 1 0 0 0 Incomparable
(C7, C3) {3} {1, 2} 0.3290 1 0 0 0 Incomparable
(C7, C4) {3} {1, 2} 0.3290 1 0 0 0 Incomparable
(C7, C5) {3} {1, 2} 0.3290 0.8811 0 0 0 Incomparable
(C7, C6) {3} {1, 2} 0.3290 1 0 0 0 Incomparable

We present our proposed method of decision-making in an Algorithm 1 and show its flow chart
in Figure 3.

Algorithm 1: The algorithm of proposed approach for MCGDM.
Step 1. Input

n, no. of alternatives against linguistic variable.
k, no. of linguistic values.
m, no. of membership values.
g, no. of decision-makers.
Dg, mF linguistic decision matrices according to decision-makers.
wg

l , weights according to decision-makers.
Step 2. Compute an aggregated mF linguistic decision matrix D.
Step 3. Compute aggregated weights W

′
.

Step 4. Compute the weighted aggregated mF linguistic decision matrix W.
Step 5. Compute mF linguistic concordance set Yuv.
Step 6. Compute mF linguistic discordance set Zuv.
Step 7. Compute mF linguistic concordance indices yuv and concordance matrix Y.
Step 8. Compute mF linguistic discordance indices zuv and discordance matrix Z.
Step 9. Compute mF linguistic concordance and discordance levels ȳ and z̄.
Step 10. Compute mF linguistic concordance dominance matrix R.
Step 11. Compute mF linguistic discordance dominance matrix S.
Step 12. Compute aggregated mF linguistic dominance matrix T.
Step 13. Output

The most dominating alternative with maximum value of T.
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Figure 3. mF linguistic ELECTRE-I approach for MCDM and MCGDM.

5. Discussion of Proposed Approach

In this section, we discuss the novelty of our purposed concept and its decision-making methods.

1. Linguistic variables are considered to be the generalizations of numerical variables and take
the concept of words in natural languages as values and associate human knowledge into
various systems in an organized, efficient and productive manner. In many applications
of decision-making, where the situations totally depend upon uncertainty and imprecision,
fuzzy linguistic variables are used extensively. All previously defined concepts related to linguistic
variables are insufficient for explaining the situation, when the given data is in the form of
sentences and words with m different numeric and fuzzy values within its crisp domain. It is
actually the generalization of fuzzy linguistic variables, because in the proposed concept the
linguistic values are further characterized into m different numeric and fuzzy values.
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2. ELECTRE-I method is preferred over all other MCDM methods, because it is a binary outranking
method in which the alternatives can be compared without consideration of their fine preference.
It is more reliable as it does not depend on expert personal opinions, and alternatives can be
eliminated that are dominated by other alternatives to a specified degree.

3. The comparison of mF linguistic variable and mF linguistic ELECTRE-I method with fuzzy
linguistic approaches and decision-making methods given in the literature is described by an
example of salary analysis of companies given in Section 3.1. In this example, we consider salary
as a linguistic variable and define its linguistic values such as low, moderate, good, and very
good; we call it 4F linguistic variable because we categorize these linguistic values in a further
four different fuzzy values such as career, labor market, experience, and credential. Previous
knowledge tells us about the linguistic values of a linguistic variable, but it is unable to deal the
criteria on which linguistic values depend. An mF linguistic variable covers all the aspects on
which salary is based and an mF linguistic ELECTRE-I approach can deal with such a complex
situation and provides flexible decision results.

6. Conclusions

ELECTRE has been considered to be one of the MCDM techniques, based on the outranking
relations, which has induced a new preference relation called incomparability used to handle situations
in which the decision-makers are unable to compare two alternatives. Traditional methods are deemed
ineffectual for studying the imprecise behavior of linguistic computations and assessments, because it
has become difficult to collect data about linguistic assessments in terms of numeric and fuzzy values.
To deal with such a complexity, we have proposed the concept of mFLV, which can deal with the
situation when we have data in terms of linguistic assessments and m different numeric or fuzzy
values as well. We also have developed an mF linguistic ELECTRE-I approach to deal with MCDM and
MCGDM problems, which are used to handle complex situations of mFLV and compile the outranking
relations of alternatives to choose and compare the best alternatives, among others. The mF linguistic
ELECTRE-I method is used to get more authentic and consistent results, when we must eliminate the
choices and to deal with the systems with more than one arrangement. Moreover, the proposed method
is considered more efficient than previously existing methods, when the alternatives are eliminated that
are dominated by other alternatives to a specified degree with linguistic values. However, the proposed
approach is unable to determine and describe the weights assigned by decision-makers, although the
weights considered in this approach are normalized but arbitrary. Finally, we have applied our
technique to real-life problems, developed an algorithm, presented its flow chart, and generated
computer programming code. In the future, we plan to extend our research study to MCDM and
MCGDM methods such as PROMETHEE, AHP, and other versions of ELECTRE based on mFLV.
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Appendix A

We show the computer programming code of Algorithm 1 in Table A1 by using MATLAB R2014a.
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Table A1. MATLAB computer programming code of proposed approach for MCDM and MCGDM.

MATLAB Computer Programming Code

1. clc
2. n=input(‘no. of alternatives against linguistic variable’);
3. k=input(‘no.of linguistic values’);
4. m=input(‘no. of membership values’);
5. g=input(‘no. of decision maker’);
6. Rr=(1:n);Cr=1:m*k;Cw=1:k;A_g=zeros(n,m*k);w_g=zeros(1,k);
7. for i=1:g
8. D= input(‘enter the m-polar fuzzy linguistic decision matrix nxkxm’);
9. A_g(Rr,Cr)=A_g(Rr,Cr)+D;w=input(‘enter the weights’)w_g(1,Cw)=w_g(1,Cw)+w;
10. end
11. A_g=A_g/g
12. w=w_g/g
13. W=zeros(n,m∗k);Sm=zeros(n,k);Y_uv=zeros(n,n∗k); Z_uv=zeros(n,n∗k);
14. Y=zeros(n,n); Z=zeros(n ˆ 2,m∗k);
15. for p=1:n
16. l=1;
17. for q=1:m∗k
18. W(p,q)=A_g(p,q).∗w(1,l);
19. if mod(q,m)==0
20. l=l+1;
21. end
22. end
23. end
24. W
25. for p=1:n
26. l=1;
27. for j=1:m∗k
28. Sm(p,l)=Sm(p,l)+W(p,j);
29. if mod(j,m)==0
30. l=l+1;
31. end
32. end
33. end
34. Q=Sm’
35. Q=Q(:)’;
36. for p=1:n
37. for j=1:k∗n
38. l=mod(j,k);
39. if l==0
40. l=k;
41. end
42. if Sm(p,l)≥ Q(1,j)
43. Y_uv(p,j)=1;
44. end
45. if Sm(p,l)≤ Q(1,j)
46. Z_uv(p,j)=1;
47. end
48. end
49. end
50. fprintf(‘\n concordance Set Y_uv =\n’)
51. for u=1:n
52. v=0;
53. for j=1:k∗n
54. if mod(j,k)==1
55. v=v+1;
56. end
57. l=mod(j,k);
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Table A1. Cont.

MATLAB Computer Programming Code

58. if l==0
59. l=k;
60. end
61. if u==v
62. if l==1
63. fprintf(‘ - ’)
64. end
65. elseif u =v
66. if l==1
67. fprintf(‘ { ’)
68. c=0;
69. end
70. if Y_uv(u,j)==1;
71. c=c+1;
72. fprintf(‘%d,’,l)
73. end
74. if l==k & c==0
75. fprintf(‘ ,’,l)
76. end
77. if l==k
78. fprintf(‘\b} ’)
79. end
80. end
81. end
82. fprintf(‘\n’)
83. end
84. fprintf(‘\n discordance Set Z_uv =\n’)
85. for u=1:n
86. v=0;
87. for j=1:k∗n
88. if mod(j,k)==1
89. v=v+1;
90. end
91. l=mod(j,k);
92. if l==0
93. l=k;
94. end
95. if u==v
96. if l==1
97. fprintf(‘ - ’)
98. end
99. elseif u∼=v
100. if l==1
101. fprintf(‘ { ’)
102. c=0;
103. end
104. if Z_uv(u,j)==1;
105. c=c+1;
106. fprintf(‘ %d,’ ,l )
107. end
108. if l==k & c==0
109. fprintf(‘ ,’ ,l )
110. end
111. if l==k
112. fprintf(‘\b} ’)
113. end
114. end
115. end
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Table A1. Cont.

MATLAB Computer Programming Code

116. fprintf(‘\n ’)
117. end
118. for u=1:n
119. v=0;
120. for j=1:k∗n
121. if mod(j,k)==1
122. v=v+1;
123. end
124. l=mod(j,k);
125. if l==0
126. l=k;
127. end
128. if u =v
129. if Y_uv(u,j)==1
130. Y(u,v)=Y(u,v)+w(1,l);
131. end
132. end
133. end
134. end
135. fprintf(‘\nY=\n’)
136. for u=1:n
137. for v=1:n
138. if u==v
139. fprintf(‘ - ’)
140. else
141. fprintf(‘%.4f ’,Y(u,v))
142. end
143. end
144. fprintf(‘\n ’)
145. end
146. v=0;r=0; l=1:m∗k; B=zeros(n,n∗k);r=0;D=zeros(n,n);Z=zeros(n,n);
147. for u=1:n
148. for q=1:n
149. v=v+1;
150. z(v,l)=(W(u,l)-W(q,l)). ˆ 2;
151. end
152. end
153. A=zeros(n ˆ 2,k);r=0; s=0; C=zeros(n ˆ 2,1);D=zeros(n,n);Z1=zeros(n,n);
154. for i=1:n ˆ 2
155. q=0;
156. for j=1:m∗k
157. if mod(j,m)==1
158. q=q+1;
159. end
160. A(i,q)=A(i,q)+z(i,j);
161. end
162. A(i,:)=sqrt(A(i,:)/m);
163. C(i,1)=max(A(i,:));
164. if mod(i,n)==1
165. r=r+1;
166. end
167. for j=1:k
168. s=s+1;
169. B(r,s)=A(i,j);
170. end
171. t=mod(i,n);
172. if t==0
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Table A1. Cont.

MATLAB Computer Programming Code

173. t=n;
174. end
175. Z1(r,t)=C(i,1);
176. if mod(i,n)==0
177. s=0;
178. end
179. end
181. for i=1:n
182. q=0;
183. for j=1:k∗n
184. if mod(j,k)==1
185. q=q+1;
186. end
187. l=mod(j,k);
188. if l==0
189. l=k;
190. end
191. if Z_uv(i,j)==1
192. D(i,q)=max(D(i,q),B(i,j));
193. end
194. end
195. end
196. for u=1:n
197. for v=1:n
198. if u =v
199. Z(u,v)=D(u,v)/Z1(u,v);
200. end
201. end
202. end
203. fprintf(‘\nZ=\n’)
204. for u=1:n
205. for v=1:n
206. if u==v
207. fprintf(‘ - ’)
208. else
209. fprintf(‘%.4f ’,Z(u,v))
210. end
211. end
212. fprintf(‘ \n ’)
213. end
214. a=sum(Y); b=sum(a); a1=sum(Z); b1=sum(a1); R=zeros(n,n);S=zeros(n,n);
215. y_bar=b/(n∗(n-1))
216. z_bar=b1/(n∗(n-1))
217. for u=1:n
218. for v=1:n
219. if u =v
220. if Y(u,v)≥ y_bar
221. R(u,v)=1;
222. end
223. if Z(u,v)< z_bar
224. S(u,v)=1;
225. end
226. end
227. end
228. end
229. fprintf(‘\nR=\n’)
230. for u=1:n
231. for v=1:n
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MATLAB Computer Programming Code

232. if u==v
233. fprintf(‘- ’)
234. else
235. fprintf(‘%d ’,R(u,v))
236. end
237. end
238. fprintf(‘ \n ’)
239. end
240. fprintf(‘\nS=\n’)
241. for u=1:n
242. for v=1:n
243. if u==v
244. fprintf(‘- ’)
245. else
246. fprintf(‘%d ’,S(u,v))
247. end
248. end
249. fprintf(‘\n ’)
250. end
251. T=R.∗S; fprintf(‘\nT=\n’)
252. for u=1:n
253. for v=1:n
254. if u==v
255. fprintf(‘- ’)
256. else
257. fprintf(‘%d ’,T(u,v))
258. end
259. end
260. fprintf(‘ \n ’)
261. end
262. G=digraphs(T)
263. plot(G)
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