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Abstract: This paper proposes a scheme to enhance the fidelity of symmetric and asymmetric
quantum cloning using a hybrid system based on nitrogen-vacancy (N-V) centers. By setting
different initial states, the present scheme can implement optimal symmetric (asymmetric) universal
(phase-covariant) quantum cloning, so that the copies with the assistance of a Current-biased
Josephson junction (CBJJ) qubit and four transmission-line resonators (TLRs) can be obtained.
The scheme consists of two stages: the first stage is the implementation of the conventional
controlled-phase gate, and the second is the realization of different quantum cloning machines
(QCM) by choosing a suitable evolution time. The results show that the probability of success for
QCM of a copy of the equatorial state can reach 1. Furthermore, the |W±4 〉 entangled state can be
generated in the process of the phase-covariant quantum anti-cloning. Finally, the decoherence effects
caused by the N-V center qubits and CBJJ qubit are discussed.

Keywords: multipurpose quantum simulator; hybrid solid-state quantum device; |W±4 〉 entangled
state; N-V center

1. Introduction

It is well-known that an unknown quantum state cannot be copied precisely [1]. The original paper
of this theorem [1] shows that the quantum no-cloning theorem is a consequence of the quantum state
superposition principle. Despite strict restriction, several similar QCMs are proposed. For example,
for an unknown quantum state, we can either obtain the imperfect copies [2] or perfect copies with
non-zero probability of failure [3].

In recent years, much effort has been made to study QCM theoretically and experimentally,
including the universal QCM [4–7], probabilistic quantum cloning [3,8], state-dependent cloning
[9], phase-covariant quantum cloning [10–12], quantum cloning in separate cavities via the optical
coherent pulse as a quantum communication bus [13], economical state-dependent telecloning [14,15],
and quantum jointly assisted cloning [16].

Quantum cloning is mainly applied in two fields. One is wiretap in quantum cryptography,
and the other is quantum computation. Application of wiretap in quantum cryptography is based
mostly on approximate quantum cloning [17,18]. In the application process, incomplete replication
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is permissible. As is commonly known, phase-covariant QCM could optimally clone the state in a
Bloch ball equator in the form of |ψ〉 = 1√

2
(|0〉+ eiφ|1〉). Phase-covariant QCM plays an important

role in applications in quantum cryptography, and it has a higher quality of reproduction of all equator
states than common QCM. This could be realized by coupling the system to be cloned to the auxiliary
system. To work out the operating scheme which could realize quantum cloning easily, it is necessary
to find out an appropriate quantum system, which should be easy to operate with good environmental
isolation so that the influences of de-coherence can be effectively avoided.

The new system connected four N-V centers and four TLRs by CBJJ. The N-V center(1) carries
the quantum state to be cloned, while the N-V center(2,3) are the clone quantum bits. The CBJJ
is the auxiliary quantum bit. The four TLRs are the data bus, and are connected to one another
through the CBJJ. Besides the special functions of different QCM, this system could also realize
phase-covariant quantum anti-cloning and generate the |W±4 〉 entangled state. Based on this, the new
scheme, which could realize the multi-purpose quantum simulator of the equator state with a high
retainment of quantum cloning, is put forward. Compared with various related studies we have
investigated and examined [8,12,14–16], this scheme has obvious advantages. Firstly, interactions
between CBJJ (NV) and TLRs could easily control the quantum cloning process by adjusting the
external parameters of the CBJJ and the frequencies of all the TLRs. Secondly, in the quantum
cloning scheme put forward in the study, only a controlled-NOT gate operation is required, and there
are three quantum bits in the final state of ancilla. The operation process of the scheme is simple,
with less auxiliary quantum bits, which could guarantee the high quality of the system’s reproduction.
Thirdly, in the process of quantum anti-cloning, it requires only Equation (9) to complete the quantum
anti-cloning, in which the CBJJ functions as the catalyst—in other words, its state is always retained in
the ground state |g〉. Thus, a noticeable feature of the anti-cloning scheme is that the TLRs only remain
in the virtual excited state, which means that the de-coherence caused by TLRs could be neglected.
Besides, the |W±4 〉 entangled state could be prepared in the process of quantum anti-cloning. Finally,
after the conversion of quantum cloning is completed, the initial quantum state could be pre-processed,
which could make the duplicates obtained have a high quality of reproduction. Therefore, effective
use of quantum resources could make our scheme an economical one. This is feasible in quantum
information processing. The remainder of this essay is as follows: Section 3 introduces three interactive
Hamiltonian functions of the system; Section 4 introduces our scheme in detail, which could be used
to realize a multi-purpose quantum simulator and be used for equator state quantum cloning, with a
high quality of reproduction; Section 5 discusses how to realize quantum anti-cloning, and to generate
the |W±4 〉 entangled state. Finally, a conclusion is made in Section 6.

2. Basic Theory

There are three interacting Hamiltonians in the system.

2.1. CBJJ–TLR Off-Resonant Interaction

As shown in Figure 1a, the Hamiltonian of the jth TLR is (h̄ = 1) [19]

H j
T = ω

j
ca†

j aj, (1)

where aj, (a†
j ) is the annihilation (creation) operator, ω

j
c = 2π/(

√
Fj

t Cj
t) is the frequency of the jth TLR,

and Fj
t and Cj

t is the inductance and capacitance of the jth TLR, respectively.
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Figure 1. (a) Diagram of a CBJJ coupled to four TLRs via the coupling capacitor, Cc. The black dot in
each TLR represents a N-V center. (b) Level diagram for the CBJJ. The CBJJ is modelled as a particle
with three levels: |g〉, |e〉, and | f 〉, and ω f e (ωeg) is the transition frequency between the levels |e〉 and
| f 〉 (|g〉 and |e〉). (c) Level diagram for the jth N-V center, where ω10 is the transition frequency between
the lowest level ms = 0 and the degenerated level ms = ±1.

As shown in Figure 1b, the energy level |g〉 is the energy zero-point, and the frequency ωeg '
0.9ωp, ω f e ' 0.81ωp is the plasma oscillation frequency, where ωp = (2π Ic/Φ0CJ)

1/2[1− (Ib/Ic)2]1/4

is the plasma oscillation frequency [20], with Φ0 = 1/2e being the flux quantum, CJ the junction
capacitance, Ib the bias current, and Ic the critical current. The modes of all the TLRs couple to
the transition |e〉 ↔ | f 〉, but decouple with other transitions, which could be realized by adjusting
the d-spacing of the CBJJ quantum bits in advance. In terms of the superconducting quantum bits,
the level measurement spacing could be adjusted conveniently by changing the external parameters’
junction capacitance CJ , bias current Ib, and critical current Ic) [21–24]. Those thoroughly describe
how you can make the independent energy level be unaffected by the resonator, while also adjusting
the energy level in advance spacing [25,26]. If the parameters of the CBJJ are CJ = 71.5 pF, Cc = 60 fF,
Ic = 67 µA, and Ib/Ic ≈ 0.99, the transition frequency ω f e/2π = 2.853 GHz. Therefore, if the TLR

with the inductance Fj
t = 75 nH, capacitance Cj

t = 2 pF, and the full-wave frequency of the TLR
is ω

j
c/2π = 2.582 GHz, the detuning ω f e − ω

j
c = 0.00628 GHz � 1 GHz, and using rotating-wave

approximation (RWA), the interacting Hamiltonian between the jth TLR and CBJJ is obtained as follows:

H j
T−C = η

j
t−c

(
σ+

f eaje
iφjt + σ−f ea†

j e−iφjt
)

, (2)

where η
j
t−c is the coupling factor, σ+

f e = | f 〉〈e|, σ−f e = |e〉〈 f |, and φj = ω f e − ω
j
c is the detuning

between |e〉 ↔ | f 〉 transition of the CBJJ and the jth TLR. Taking advantage of standard quantum
optical technology, from Equations (2) to (3), if the parameters are η

j
t−c/2π ∼ 100 MHz and φj/2π ∼

1000 MHz, the large-detuning condition is realized in the experiment. The effective Hamiltonian can
be obtained from Equation (2). The frequency ω f e of the CBJJ and the mode frequency of the jth TLR,

that is, φj � η
j
t−c, it could be realized by adjusting the level-spacing of the CBJJ quantum bits. For CBJJ

quantum bits, the level-spacing could be adjusted easily by adjusting the current bias or the magnetic
flux bias [21–26]. The valid Hamiltonian between the jth TLR and CBJJ is [27]:

H j
T−C =

4

∑
j=1

(η
j
t−c)

2

φj
(| f 〉〈 f | − |e〉〈e|) a†

j aj. (3)

2.2. N-V Center–TLR Resonant Interaction

As shown in Figure 1c, the ground state 3 A and the first excited state 3E of the N-V center are
the electron spin triplet state (S = 1). In the system, quantum bits are encoded into the ground triplet
state—that is, |3 A, ms = 0〉 = |0〉 and |3 A, ms = ±1〉 = |1〉. Then, the Hamiltonian of the jth N-V
center is:

H j
N−V =

1
2

ω
j
10Sz

j , (4)
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where Sz
j = |1〉j〈1| − |0〉j〈0|. If the TLRs(1,2,3,4) with the inductance Fj

t = 68 nH, capacitance

Cj
t = 1.8 pF, the full-wave frequency of the TLR is ω

j
c/2π = 2.8583 GHz, and the N-V center transition

frequency ω
j
10/2π = 2.87 GHz, the detuning ω

j
10 − ω

j
c = 0.073 GHz � 1 GHz , and with RWA,

the interaction Hamiltonian of the jth N-V center interacts with the jth TLR, described by:

H j
T−NV = gj

t−NV

(
S+

j aje
iδjt + S−j a†

j e−iδjt
)

, (5)

where S+
j = |1〉j〈0| and S−j = |0〉j〈1|. With gj

t−NV as the jth N-V–TLR coupling strength, δj = ω
j
10−ω

j
c

is the detuning between the jth N-V center transition frequency and the jth TLR frequency. When the
frequency of the jth TLR is resonant with the jth N-V center, that is, ω

j
10 = ω

j
c, Equation (5) becomes:

H j
T−NV = gj

t−NV

(
S+

j aj + S−j a†
j

)
. (6)

2.3. CBJJ–TLR–N-V Center Off-Resonant Interaction

The mode of each TLR couples to the transition |g〉 ↔ |e〉 of CBJJ, but decouples with other
transitions. This could be realized by adjusting the frequency of each TLR, or by adjusting the
level-spacing of the CBJJ quantum bits. The cavity mode frequency of the TLR can be changed in
various experiments [28–32]. In terms of CBJJ quantum bits, the electron level spacing could be
adjusted easily by adjusting the external controlled variables [33]. If the parameters of the CBJJ as
CJ = 71.5 pF, Cc = 60 fF, Ic = 67 µA, and Ib/Ic ≈ 0.99, the transition frequency ωeg/2π = 2.87 GHz,

the TLR with the inductance Fj
t = 68 nH, capacitance Cj

t = 1.8 pF, and the full-wave frequency of the
TLR is ω

j
c/2π = 2.8583 GHz, the detuning ωeg −ω

j
c = 0.073 GHz� 1 GHz , with RWA, the interacting

Hamiltonian between the jth TLR and CBJJ is:

H j
T−C = gj

t−c

(
σ+

egaje
i∆jt + σ−ega†

j e−i∆jt
)

, (7)

where σ+
eg = |e〉〈g| and σ−eg = |g〉〈e|. We used gj

t−c as the jth CBJJ–TLR coupling strength,

and ∆j = ωeg −ω
j
c as the detuning between the |g〉 ↔ |e〉 transition frequency of CBJJ and the jth

TLR frequency.
Combining Formulas (5) and (7), the total Hamiltonian can be obtained as follows:

HI =
4

∑
j=1

[
gj

t−c

(
σ+

egaje
i∆jt + σ−ega†

j e−i∆jt
)
+ gj

t−NV

(
S+

j aje
iδjt + S−j a†

j e−iδjt
)]

. (8)

Similarly to the analysis from Equations (2) to (3), from Equations (8) to (9), the large-detuning
conditions by tuning the parameters of the CBJJ and TLR, that is, δj � gj

t−NV and ∆j � gj
t−c can be

achieved. There is a detailed discussion in Section 5, which can be achieved by changing the frequency
of each TLR. The cavity mode frequency of the TLR can be changed in various experiments [28–33].
With this restriction, both N-V centers and CBJJ dispersively interact with TLRs, where it is convenient
to remove the modes of TLRs by the intermediate states [18,19]. Using Frohlich’s transformation
method [20,27,34], the effective Hamiltonian from Equation (8) can be achieved.

He f f =
4

∑
j=1

λj

(
σ−egS+

j + σ+
egS−j

)
, (9)

where λj = gj
t−cgj

t−NV(∆j + δj)/4∆jδj is the effective coupling strength between the jth N-V center
and CBJJ.
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3. Implementation of a Multipurpose Quantum Simulator

A two-qubit controlled-phase gate and the controlled-phase gate will realize the universal QCM.
The CBJJ qubit is the control qubit, and the N-V center qubit is the target qubit. The controlled-phase
gate can be realized in the following three steps:

Step (i): The jth N-V center and the jth TLR undergo an evolution for an interaction time
t1 = π/(2g) under the Hamiltonian (6). Without loss of generality, all the N-V center–TLR resonant
coupling strengths are identical—that is, gj

t−NV = g for i = 1, 2, 3, 4. It undergoes a transformation
|1〉j|0〉c,j → −i|0〉j|1〉c,j, with (|0〉c,j) |1〉c,j representing a (zero) single-photon state of the jth TLR.

Step (ii): Adjust the parameters of TLRs(1,2,3,4) such that each of the N-V centers is decoupled
from its own TLR, and adjust the parameters of CBJJ and TLRs(1,2,3,4) to satisfy the conditions of
Equation (3). An interaction time t2 = (πφj)/(η

j
t−c)

2 will result in the transformation |e〉|1〉c,j →
−|e〉|1〉c,j.

Step (iii): Adjust the parameters of CBJJ so that it is decoupled from every TLR. The parameters
of TLRs(1,2,3,4), such that each N-V center is resonant with its own TLR for an interaction time
t3 = (3π)/(2g) will result in the transformation |0〉j|1〉c,j → i|1〉j|0〉c,j.

The states after each step of the three transformations are summarized below:

|g〉|0〉j|0〉c,j |g〉|0〉j|0〉c,j |g〉|0〉j|0〉c,j |g〉|0〉j|0〉c,j

|g〉|1〉j|0〉c,j Step(i)
−−−−→

− i|g〉|0〉j|1〉c,j Step(ii)
−−−−→

− i|g〉|0〉j|1〉c,j Step(iii)
−−−−−→

|g〉|1〉j|0〉c,j

|e〉|0〉j|0〉c,j |e〉|0〉j|0〉c,j |e〉|0〉j|0〉c,j |e〉|0〉j|0〉c,j

|e〉|1〉j|0〉c,j − i|e〉|0〉j|1〉c,j i|e〉|0〉j|1〉c,j − |e〉|1〉j|0〉c,j,

(10)

The auxiliary qubit and the jth TLR were decoupled from the other qubits at the end of the evolution.
Next, a universal QCM with our system required the following six steps:
Step (i): Suppose CBJJ and the four N-V centers do not couple with the four TLRs at the

beginning. Meanwhile, suppose N-V center(1) carries the quantum states to be cloned, which are
all recombination coefficients and are initially in an arbitrary superposed state. It is prepared in an
arbitrary superposition state:

|Ψ〉1 = α|+〉1 + βeiϕ|−〉1, (11)

where α and β are real coefficients, and they satisfy the normalization condition α2 + β2 = 1,
ϕ ∈ (0, 2π), |+〉1 = 1/

√
2(|0〉1 + |1〉1), |−〉1 = 1/

√
2(|0〉1 − |1〉1). This state can be prepared by

an additional microwave pulse acting on N-V center(1).
Suppose CBJJ is in the state |g〉 at the beginning, where the following operation could be adopted:

add a classic pulse resonance |g〉 → |e〉 to realize interconversion, adjust the duration time t of the
classic pulse, and set the auxiliary phase of the classic pulse; then, the CBJJ preparation state could be
expressed as [35,36]:

|Ψ〉′2 = cos Ωt|g〉 − ie−iζ sin Ωt|e〉, (12)

where Ω, ζ, and t are the Rabi frequency, initial phase, and duration of the pulse, respectively. If ζ = π,
Equation (12) can be written as:

|Ψ〉2 = cos Ωt|g〉+ i sin Ωt|e〉. (13)
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If N-V center(2) is initially in the state |0〉2, the external parameters of the CBJJ and TLR(2) will
meet the conditions of Equation (9), that is, δ2 � g2

t−NV and ∆2 � g2
t−c. Therefore, the corresponding

time evolution is:

|g〉|0〉2 −→ |g〉|0〉2,

|g〉|1〉2 −→ cos (λ2t) |g〉|1〉2 − i sin (λ2t) |e〉|0〉2,

|e〉|0〉2 −→ cos (λ2t) |e〉|0〉2 − i sin (λ2t) |g〉|1〉2,

|e〉|1〉2 −→ |e〉|1〉2.

(14)

If the controlled-phase gate is between CBJJ and N-V center(1), then the state vector of the
entangled N-V center–CBJJ state can be expressed as:

cos (Ωt)
(

α|+〉1 + βeiϕ|−〉1
)
|g〉|0〉2

+ i sin (Ωt)
(

α|−〉1 + βeiϕ|+〉1
)
[cos (λ2t) |e〉|0〉2

− i sin (λ2t) |g〉|1〉2].

(15)

Step (ii): Adjust the parameters of CBJJ and TLR(2) to make them return to the initial state,
where the CBJJ and N-V center(2) is decoupling with TLR(2). Then, when the N-V center(3) is on the
state |0〉3 at the beginning, adjust the external parameters of CBJJ and TLR(3), as well as when the
corresponding time evolution is also Equation (9)—that is, δ3 � g3

t−NV and ∆3 � g3
t−c. In case the

evolution time selected t4 = π/(2λ3), the generated state is:

cos (Ωt)
(

α|+〉1 + βeiϕ|−〉1
)
|g〉|0〉2|0〉3+

i sin (Ωt)
(

α|−〉1 + βeiϕ|+〉1
)
[−i cos (λ2t) |g〉|0〉2|1〉3

− i sin (λ2t) |g〉|1〉2|0〉3].

(16)

Step (iii): The classic π/2 micro-wave pulse on N-V center(1,2,3) and the transformation generated
by the pulse could be written as:

|0〉j ↔
√

1
2
(
|0〉j − |1〉j

)
= |−〉j,

|1〉j ↔
√

1
2
(
|0〉j + |1〉j

)
= |+〉j,

(17)

where j = 1, 2, 3. Then, the total state of N-V center(1,2,3) and CBJJ is:

A
(

α|1〉1 + βeiϕ|0〉1
)
|g〉|−〉2|−〉3

+ B
(

α|0〉1 + βeiϕ|1〉1
)
|g〉|−〉2|+〉3

+ C
(

α|0〉1 + βeiϕ|1〉1
)
|g〉|+〉2|−〉3,

(18)

where A = cos (Ωt), B = sin (Ωt) cos (λ2t), and C = sin (Ωt) sin (λ2t).
Step (iv): Adjust the parameters of CBJJ and TLR(3) to make them return to the initial state,

where the CBJJ and N-V center(3) are decoupling with TLR(3). Then, adjust the external parameters of
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CBJJ and TLR(1) to make it satisfy Equation (9)—that is, δ1 � g1
t−NV and ∆1 � g1

t−c, and the evolution
time is selected as t5 = (3π)/(2λ1), where the generated state is:

A
(

αi|e〉+ βeiϕ|g〉
)
|0〉1|−〉2|−〉3

+ B
(

α|g〉+ βieiϕ|e〉
)
|0〉1|−〉2|+〉3

+ C
(

α|g〉+ βieiϕ|e〉
)
|0〉1|+〉2|−〉3.

(19)

Step (v): Adjust the parameters of CBJJ and TLR(1) to make them return to the initial state,
and implement a controlled-phase gate on N-V center(2,3). The basis {|+〉, |−〉} vector is the
implemented controlled-NOT gate, and the generated state is:

A
(

αi|e〉|+〉2|+〉3 + βeiϕ|g〉|−〉2|−〉3
)
|0〉1

+ B
(

α|g〉|−〉2|+〉3 + βieiϕ|e〉|+〉2|−〉3
)
|0〉1

+ C
(

α|g〉|+〉2|−〉3 + βieiϕ|e〉|−〉2|+〉3
)
|0〉1.

(20)

Step (vi): Adjust TLRs(1,2,3,4), as well as the parameters of the corresponding N-V center(1,2,3,4)
to make them return to the initial state. Suppose N-V center(4) is on the state |0〉4, and adjust the
external parameters of CBJJ and TLR(4) to make them satisfy the conditions required by Equation (9),
that is, δ4 � g4

t−NV and ∆4 � g4
t−c. If the evolution time is selected as t6 = π/(2λ4), through simple

arrangement, the final state of the overall system could be written as:

α [A|+〉2|+〉3|N 〉+ |N⊥〉 (B|−〉2|+〉3 + C|+〉2|−〉3)]
+ βeiϕ [A|−〉2|−〉3|N⊥〉+ |N 〉 (B|+〉2|−〉3 + C|−〉2|+〉3)] ,

(21)

where |N 〉 = |g〉|0〉1|1〉4, |N⊥〉 = |g〉|0〉1|0〉4. The N-V center(4) in Equation (21) ensures the
orthogonality of the states |N 〉 and |N⊥〉; therefore, it is the most important qubit in the ancillary qubit
state. The state of Equation (21) is |Ψ〉, the N-V center state |+〉, and the ancillary state |N 〉 has the
same quantum logic state. In Equation (21), the second and the third N-V center qubit is the clone
qubit, and the corresponding fidelities is:

F2 = 〈Ψ|Tr1,3,4,CBJJ (|Ψ〉〈Ψ|) |Ψ〉

=
(

α4 + β4
) (
A2 + C2

)
+ α2β2

(
2B2 + 4AC

)
,

F3 = 〈Ψ|Tr1,2,4,CBJJ (|Ψ〉〈Ψ|) |Ψ〉

=
(

α4 + β4
) (
A2 + B2

)
+ α2β2

(
2C2 + 4AB

)
.

(22)

The different QCM was realized in this quantum simulator. A universal QCM can be obtained
when the coefficients α, β, and ϕ are unknown. The fidelities F2 = F3 = 5/6 can be obtained if
Ωt = arccos(

√
2/3), λ2t7 = π/4 from Equation (22). Then, an optimal symmetric 1 → 2 universal

QCM is realized. If the variables Ωt and λ2t satisfy the relationship tan Ωt (cos λ2t + sin λ2t) =

1, the fidelities can be written as F2 =
(
1 + sin 2λ2t + sin2 λ2t

)
/ (2 + sin 2λ2t),

F3 =
(
1 + sin 2λ2t + cos2 λ2t

)
/ (2 + sin 2λ2t), which are shown in Figure 2a. Then, the state

of Equation (21) is the transformation of optimal asymmetric universal quantum cloning [37].
The phase-covariant QCM is realized if the coefficients α, β are known, and ϕ is unknown. With

α = cos Υ
2 , β = sin Υ

2 (Υ ∈ [0, 2π]), λ2t = π/4, and cos Ωt =
√
(1 + 1/

√
1 + 2 tan4 Υ)/2, the state of

Equation (21) is the transformation of optimal phase-covariant quantum cloning [10,11]. The fidelities
can be calculated as F2 = F3 = (2 + cos2 Υ +

√
cos4 Υ + 2 sin4 Υ)/4, which is shown in Figure 2b.

If Υ = π/2, cos Ωt =
√

1/2, α = β = 1/
√

2, the state of Equation (21) is the transformation of
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optimal symmetric phase-covariant quantum cloning, and N-V center(1) is in the equatorial state
(|+〉1 + eiϕ|−〉1)/

√
2, which is to be cloned, and the two fidelities are F2 = F3 = (1 + 1/

√
2)/2.

If λ2t ∈ [0, π/2], the state of Equation (21) is the transformation of optimal asymmetric phase-covariant
quantum cloning, and the two fidelities are F2 = (1 + sin λ2t)/2, F3 = (1 + cos λ2t)/2, which is shown
by the dashed lines in Figure 2a. The optimal asymmetric phase-covariant quantum cloning has a
higher fidelity than the optimal asymmetric universal quantum cloning from Figure 2a. Based on
the above analysis, the high-fidelity quantum cloning can be realized by suitable parameters in the
quantum simulator.

Figure 2. (a) The two solid lines are the fidelities of the optimal asymmetric universal quantum cloning,
and the two dashed lines are the fidelities of the optimal asymmetric phase- covariant quantum cloning.
(b) The fidelity of the optimal phase-covariant quantum cloning.

4. Implementation of Quantum Anticloning

With an excitation number operatorM = σ+
egσ−eg + ∑4

j=1 S+
j S−j [26], [He f f ,M] = 0, the eigenvalue

is M = 0, and M = 1 ofM, and the basic states are:

|χ0〉 = |01020304g〉 = |q0〉 ⊗ |g〉,
|χ1〉 = |11020304g〉 = |q1〉 ⊗ |g〉,
|χ2〉 = |01120304g〉 = |q2〉 ⊗ |g〉,
|χ3〉 = |01021304g〉 = |q3〉 ⊗ |g〉,
|χ4〉 = |01020314g〉 = |q4〉 ⊗ |g〉,
|χ5〉 = |01020304e〉 = |q0〉 ⊗ |e〉,

(23)

where |χ0〉 denotes the state in the subspace with eigenvalue M = 0, and |χ1〉 · · · |χ5〉 denotes the states
in the subspace with eigenvalue M = 1. Assume |ψ(0)〉 is the initial state of this system, with time t,
and the state of this system evolves into |ψ(t)〉 = Û(t)|ψ(0)〉, where Û(t) is the time evolution operator
in the basis of states |χ1〉 · · · |χ5〉, where it has the form:

Û(t) =


1− 2λ2

1ε −2λ1λ2ε −2λ1λ3ε −2λ1λ4ε −iλ1sin(υt)/υ

−2λ2λ1ε 1− 2λ2
2ε −2λ2λ3ε −2λ2λ4ε −iλ2sin(υt)/υ

−2λ3λ1ε −2λ3λ2ε 1− 2λ2
3ε −2λ3λ4ε −iλ3sin(υt)/υ

−2λ4λ1ε −2λ4λ2ε −2λ3λ4ε 1− 2λ2
4ε −iλ4sin(υt)/υ

−iλ1sin(υt)/υ −iλ2sin(υt)/υ −iλ3sin(υt)/υ −iλ4sin(υt)/υ cos(υt)

 , (24)

where υ2 = ∑4
j=1 λ2

j is the effective collective Rabi oscillation frequency of the four N-V centers,

ε = sin2(υt/2)/υ2.
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Next, the quantum anticloning with this temporal evolution equation required the following
three steps:

Step (i): Assume that the CBJJ and the four N-V centers are initially decoupled from the four TLRs.
We also assumed that the N-V center(1) carried the quantum state, which was to be anticloned. It was
prepared in an arbitrary coherent superposition state, 1√

2
(|01〉+ eiξ |11〉). The CBJJ qubit and the other

three N-V center qubits were in their unexcited states, |020304g〉. Therefore, the initial state of this
system is:

|ψ(0)〉 = 1√
2

(
|01〉+ eiξ |11〉

)
⊗ |020304g〉

=
1√
2

(
|χ0〉+ eiξ |χ1〉

)
.

(25)

Step (ii): Adjust the external parameters of CBJJ and the four TLRs to meet the conditions of
Equation (9)—that is, δj � gj

t−NV and ∆j � gj
t−c, where j = 1, 2, 3, 4. Using Equation (23), the initial

state |ψ(0)〉 becomes:

|ψ(t)〉 = 1√
2

(
|χ0〉+ eiξ |χ1(t)〉

)
, (26)

where

|χ1(t)〉 =
4

∑
j=1

Uj1(t)|qj〉 ⊗ |g〉 − i
λ1sin(υt)

υ
|χ5〉. (27)

If the evolution time is t = t∗ = nπ
υ (n is an odd number), the CBJJ is separable from the N-V

centers. When the CBJJ state notation is dropped, the final state at t = t∗ will be:

|ψ(t∗)〉 = 1√
2

[
|q0〉+ eiξ

(
b1|q1〉+ b

4

∑
j=2
|qj〉
)]

, (28)

where

b1 =
3− r2

3 + r2 , b =
−2r

3 + r2 . (29)

In Equation (28), λ1 6= λ2 = λ3 = λ4 = λ, and where r = λ1/λ, the effective collective Rabi
oscillation frequency was υ = λ

√
r2 + 3.

Step (iii): If b1 = ±b, and the optimal coupling ratio r+ = 3, r− = 1, Equation (27) can be
written as:

|ψ(t∗)〉 = 1√
2

(
|q0〉+ eiξ |W±4 〉

)
, (30)

where |W±4 〉 = −
1
2

(
±|q1〉+ ∑4

j=2 |qj〉
)

. So far, it achieved phase-covariant quantum anticloning,

and prepared a |W±4 〉 entangled state [38,39].

5. Discussion

The feasibility of the experiment was discussed in the presented scheme. The method in our
system requires different conditions to realize different quantum clonings. For example, if η

j
t−c/2π ∼

100 MHz, φj/2π ∼ 1000 MHz [40], and the off-resonant condition φj � η
j
t−c, the CBJJ–TLR off-resonant

case is satisfied; whereas if the jth TLR with inductance Fj
t = 60.7 nH, capacitance Cj

t = 2 pF,
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the full-wave frequency ω
j
c/2π = 2.87 GHz [41], it is equal to zero-field splitting Dgs/2π = 2.87

GHz between the lowest level ms = 0, the degenerated level ms = ±1 [30], and the N-V center–TLR
resonant condition ω

j
10 = ω

j
c, where the N-V center–TLR resonant case is satisfied. If the parameters

of the jth TLR is assumed as inductance Fj
t = 70 nH and capacitance Cj

t = 2 pF, the frequency
ω

j
c/2π = Dgs − δj = 2.67 GHz, the detuning δj/2π = 200 MHz [42], the parameters of CBJJ is

tuned as CJ = 2.3 pF, Cc = 1 fF, Ic = 2.177 µA, Ib/Ic ≈ 0.99, the detuning ∆j/2π = 250 MHz,

and the coupling factors gj
t−c/2π = 50 MHz [41], then the CBJJ–TLR–N-V center off-resonant

case is satisfied. There are some schemes to realize the strong coupling between individual
N-V centers and a TLR [43,44], which could create a N-V center–TLR interaction with a strength
of tens of MHz. Then, if gj

t−NV/2π = 50 MHz [41], δj � gj
t−NV and ∆j � gj

t−c, for the
CBJJ–TLR–N-V center off-resonant case the CBJJ–TLR–N-V center off-resonant conditions are satisfied.
Therefore, the considerable effective coupling strength between the jth N-V center and CBJJ are
λj/2π = gj

t−cgj
t−NV(∆j + δj)/4∆jδj ' 35 MHz.

For the process of quantum anti-cloning, the optimal coupling ratio r+ = 3, r− = 1 could be
obtained by controlling the position of the N-V centers with respect to the TLR. Such as for the
coupling ratio r− = 1, this could be realized by placing the four N-V centers in the equivalent positions
with respect to the TLR. For the coupling ratio r+ = 3, this could be realized by placing the three
output qubits N-V centers(2,3,4) in equivalent positions, where the input qubit N-V center(1) is placed
elsewhere to guarantee r+ = 3.

In the current experiments, the TLR decay rate κ, the spontaneous emission rate γ f e (γeg),
and quantum tunneling rate Γ f (Γe) of the level | f 〉 (|e〉) of CBJJ, the dephasing rate γφ of CBJJ were
on the order of hundreds of kilohertz [45,46]. Because all the coupling strengths η, g, and λ were two
orders higher than the dissipation rates, the scheme can be said to be reliable and feasible. On the other
hand, the relaxation time T1 of the N-V centers were reported from 6 ms at room temperature [47] to
28− 265 s at low temperature [48]. In addition, the dephasing time T2 = 2 ms of the N-V centers was
also reported [49]. In the process of universal quantum cloning, the operation time in every step was
t1 ∼ 5 ns, t2 ∼ 50 ns, t3 ∼ 15 ns, t4 ∼ 3.6 ns, t5 ∼ 7.2 ns, and t6 ∼ 21.6 ns, which was much shorter than
the decoherence times of the N-V center, TLR, and CBJJ. In the process of phase-covariant quantum
anti-cloning, the evolution time can be calculated as t = t∗ = π

υ ∼ 7.14 ns, which is much shorter
than the decoherence times of the N-V center, TLR, and CBJJ. The implementation of a multipurpose
quantum simulator for high-fidelity quantum cloning and anti-cloning is feasible with the system.

6. Conclusions

As discussed in the Reference [4], the fidelity should have a precision greater than 0.92. In the
scheme, all the CBJJ-NV interactions and classical pulses led to errors. The total operations were
10 when it considered the detection and preparation. Therefore, if the pulse has a fidelity greater
than 10

√
0.92 ≈ 0.992, the necessary precision can be satisfied. This value is smaller than the value

(≈ 0.995) presented in the Reference [4], which could greatly reduce the experimental requirement for
the pulse. In the process of quantum anti-cloning, if we chose the optimal coupling ratio r+ = 3, r− = 1,
then the fidelity of m outputs would be 1

2 (1 + 1√
m ) [38]. In the system, if m = 2, then the maximal

fidelity is 1
2 (1 + 1√

2
), where the optimal fidelity is 1→2 for phase-covariant cloning [11]. It realized

a multipurpose quantum simulator for high-fidelity quantum cloning and the anti-cloning of an
equatorial state.

In summary, a novel system which could realize a multi-purpose quantum simulator was put
forward in this paper, which can implement different quantum cloning and anti-clonings, including
optimal symmetric universal quantum cloning, optimal asymmetric universal quantum cloning,
optimal symmetric phase covariance quantum cloning, optimal asymmetric phase covariance quantum
cloning, and optimal phase covariance quantum anti-cloning. Solid quantum bits were well-isolated
with the external world, which could inhibit the decoherence and made it easy to operate. Moreover,
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it features less operating procedures and auxiliary quantum bits, which could facilitate quantum
cloning and anti-cloning and lower the experimental requirements of the system. Finally, after
quantum cloning and anti-cloning, different quantum clones with various reliabilities can be obtained
by pre-processing of the initial quantum state. Thus, the quantum resources can be used effectively,
and the scheme is an economical one. Because of the short operation time and long decoherence time
of N-V centers, TLRs and CBJJ, the two schemes are realizable with experimental conditions which are
currently available.
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