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Abstract: Blast waves are generated when an area grows abruptly with a supersonic speed, as in
explosions. This problem is quite interesting, as a large amount of energy is released in the process.
In contrast to the situation of imploding shocks in ideal gas, where a vast literature is available
on the effect of magnetic fields, very little is known about blast waves propagating in a magnetic
field. As this problem is highly nonlinear, there are very few techniques that may provide even an
approximate analytical solution. We have considered a problem on planar and radially symmetric
blast waves to find an approximate solution analytically using Sakurai’s technique. A magnetic field
has been taken in the transverse direction. Gas particles are supposed to be propagating orthogonally
to the magnetic field in a non-deal medium. We have further assumed that specific conductance
of the medium is infinite. Using Sakurai’s approach, we have constructed the solution in a power
series of (C/U)2, where C is the velocity of sound in an ideal gas and U is the velocity of shock front.
A comparison of obtained results in the absence of a magnetic field within the published work of
Sakurai has been made to generate the confidence in our results. Our results match well with the
results reported by Sakurai for gas dynamics. The flow variables are computed behind the leading
shock and are shown graphically. It is very interesting that the solution of the problem is obtained in
closed form.
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1. Introduction

The study of propagation of strong shock waves has always been given undivided attention by
various research groups in the field of science. In particular, it is useful in nuclear science, plasma
physics, geophysics, astrophysics, explosions, etc. Shocks are ubiquitary and quite useful in the
generation of energy. Radially converging shocks are used to create a hot spot at the center in Inertial
Confinement Fusion (ICF). The heat generated in the process is used to activate nuclear fission. After
World War II, it becomes extremely important to understand explosion dynamics. Motivated by this,
Sedov [1] first coined the idea of a similarity solution for the point explosion problem in an ideal
medium. Soon, this solution became famous as the “Sedov Similarity Solution” among researchers
due to its importance in blast wave theory. Taylor [2] found the analytical first approximate solution
for the problem. These results of Sedov and Taylor showed a way to estimate the effects of nuclear
or supernova explosions. Later, Sakurai [3,4] used this first approximate solution to find self-similar
solutions to the problem. Murata [5] and Donato [6] obtained the exact solutions to blast wave
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problems in gas dynamics. Murata [5] assumed that change in density ahead of shock front is governed
by the exponent of distance from the point (or axis) of ignition. The density ahead of the leading shock
was assumed to vary as the power of the radial distance from the center of explosion in his study.
Book [7] used Sedov formulas to find similarity solution of the point explosion problem. Lalicata and
Torrisi [8] used the similarity method for reacting flow. Propagation of shock waves generated by
sudden explosions within the presence of a magnetic field is very important because this phenomenon
is well marked in the disassembled nature of the absorption of energy. Anisimov and Spiner [9] and
Lerche [10] presented the theory of blast waves in magnetogasdynamics. A first comprehensive study
on the effect of magnetic field on the exploding shocks was presented by Lerche [11] in 1979. There is
an abrupt change in the entropy across an exploding shock and it releases a very high energy in the
process. It is well known that after the explosion, the front of the blast wave is circumscribed by the
surfaces of the shocks and propagates with decreasing velocity. Furthermore, a very high energy is
released in the process. It raises the temperature of the surrounding. Therefore, the assumption of
an ideal medium is not valid anymore, and one must consider the effect of non-deal medium on the
blast waves. The gas particles are ionized due to the presence of high temperature at the center. These
ionized gas particles generate the magnetic field. Therefore, the inclusion of a magnetic field on the
study of blast waves is essential for capturing the physics of the process well. It has many applications
in oceanography, astrophysics, aerodynamics, and atmospheric sciences.

Many research groups have worked afterwards on the topic to better understand the dynamics
of shock waves in a magnetic field. Among the recent research on the topic, we wish to mention
the work of Arora et al. [12], Siddiqui et al. [13], Singh et al. [14,15], and Pandey et al. [16]. Menon
and Sharma [17] studied the flattening and steepening of the characteristics wave fronts in an ideal
medium with magnetic field. Arora et al. [18] found a similar solution to the propagation of shocks in
a non-ideal medium. Relaxation effects were also included in the study. Later, Siddiqui et al. [19] used
asymptotic expansion of flow variables to find the solution to nonlinear waves far from the origin.
The relaxation of gas particles has been taken into account in the study. Evolutionary behavior of weak
shocks in real gas is presented by Arora and Siddiqui [20]. Despite there being vast literature available
on imploding shocks in real gas, the behavior of shock front after ignition is still an open problem. In
the present work, we have analyzed the flow variables after a blast in ignition by using the Sakurai
analytical approach. The medium is considered to be real gases. Effects of a magnetic field have also
been taken into account.

This paper is summarized as follows: Section 1 contains a brief introduction to the topic and
historical background of earlier studies. Section 2 presents the fundamental equations governing
the conservation laws. Rankine–Hugoniot (RH) jump conditions are also presented in this section.
In Section 3, we introduce the new independent variables and transform the fundamental equations
in the form of non-dimensional functions using the similarity analysis. In Section 4, power series
solutions in terms of (C/U)2 have been presented for the problem. In Section 5, the first approximation
solutions are obtained which correspond to Taylor’s series solution. In Section 6, a brief conclusion is
given about the whole study of this paper. Based on the study, we have concluded that the density and
magnetic pressure of the particle decreases behind the leading shock. Charged particles are transported
away by the magnetic field, and this gives an increase in the velocity of blast wind.

2. Fundamental Equations

The fundamental equations which govern unsteady planar (m = 0) or cylindrically (m = 1)
symmetric flow in a non-ideal gas in the presence of transverse magnetic field can be expressed
as [12,21]

ρt + ρux + uρx +
mρu

x
= 0, (1)

ut + uux +
1
ρ
(px + hx) = 0, (2)
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pt + upx + a2ρ

(
ux +

mu
x

)
= 0, (3)

ht + uhx + 2h
(

ux +
mu
x

)
= 0. (4)

Here ρ, u, p and h = µH2

2 denote the density, velocity, pressure, and magnetic pressure, respectively.
µ denotes the magnetic permeability and H being used for transverse magnetic field. a2 = γp

ρ(1−bρ)
is

speed of sound in real gases. γ is the ratio the specific heats at constant pressure and volume of the
gas. t and x represents the time and space variables, respectively. m = 0 denotes to planar symmetry
while m = 1 denotes cylindrical symmetry of the flow. It is assumed that electrical resistivity of the
medium is zero and magnetic field is orthogonal to the radial motion of gas particles.

This system of Equations (1)–(4) is supplemented with the equation of state for real gas as follows

p =
ρRT

(1− bρ)
. (5)

R, T represent the gas constant and temperature, respectively.
The position of leading shock at any time t is given by R̃ = R̃(t). Therefore, the velocity of shock

front is ( dR̃
dt = C). The conditions for flow variables ahead of shock are characterized by

ρ = ρ0(x), u = 0, p = p0, h = h0(x). (6)

RH conditions at the leading shock (x = R̃(t)) are obtained by the conservation of laws that can
be expressed in simplified form as follows [22]

(ρ)x=R =
(γ + 1)
(γ− 1)

ρ0

[
1− 2α

γ− 1
− 2

γ− 1

(
C
U

)2]
, (7)

(u)x=R =
2

(γ− 1)
S
[

1− α−
(

V
S

)2]
, (8)

(p)x=R =
2ρ0U2

γ + 1

[
1− α− γ− 1

2γ

(
C
U

)2]
− 1

2

(
γ + 1
γ− 1

)2

C0ρ0U2
[

1− 4α

γ− 1
− 4

γ− 1

(
C
U

)2]
, (9)

(h)x=R =
1
2

(
γ + 1
γ− 1

)2

C0ρ0U2
[

1− 4α

γ− 1
− 4

γ− 1

(
C
U

)2]
, (10)

where C0 = 2h0
ρ0U2 is the shock cowling number, C2 = γp0

ρ0
is the velocity of shock and α = (γ− 1)bρ0.

The initial density ρ0 is assumed to follow the power law given as

ρ0 = ρcx−δ, (11)

where x is the perpendicular distance of the point on leading shock from the point of explosion. ρc is
the constant density and δ is an exponent. Using the conservation of total energy, we get

E =
∫ R̃

0

[
1
2

u2 +
(1− bρ)

(γ− 1)

(
p
ρ
− p0

ρ0

)
+

(
h
ρ
− h0

ρ0

)]
ρxmdx, m = 0, 1, (12)

where E denotes the surface energy carried by blast waves per unit of area. We obtain the following
relation by the Lagrangian equation of continuity:

∫ R̃

0

ρ

ρ0
xmdx =

R̃m+1

m + 1
. (13)
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We use the value of
∫ R̃

0
ρ
ρ0

xmdx from Equation (13) in Equation (12) to get the following expression

E =
∫ R̃

0

[
1
2

ρu2 +
(1− bρ)

(γ− 1)
p + h

]
xmdx−

{
(1− bρ)p0

γ− 1
+ h0

}
R̃m+1

m + 1
. (14)

3. Similarity Transformation of Fundamental Equations

As the process is self-similar, x = R(t) and U = dR̃
dt . It gives us the characteristic scale. We,

therefore, introduce the following new independent non-dimensional variables in place of x and S :

x/R̃ = r, (C/U)2 = s. (15)

x/R̃ = r is known as similarity variable. Non-dimensional quantities u/U, p/p0, ρ/ρ0 and
h/(p0(U/C)2) are assumed to be equal to F, G, Π, and H, respectively which are consistent with
Equations (1)–(4). We, therefore, can take the similarity transformations as:

u = UF(r, s), (16)

p = p0(U/C)2G(r, s), (17)

ρ = ρ0Π(r, s), (18)

h = p0(U/C)2H(r, s) = p0H(r, s)/s. (19)

Using the system of Equations (16)–(19), we obtain

∂

∂x
=

1
R̃

∂

∂r
, (20)

D
Dt

=
U
R̃

[
(F− r)

∂

∂r
+ λs

∂

∂s

]
, (21)

where λ = λ(s) = R̃(ds/dR̃)/s. Substituting (16)–(19) into the fundamental Equations (1)–(4),
we obtain

(F− r)Πr + λs Πs + Π
(

Fr +
mF
r

)
= 0, (22)

Π
(
− λ

2
F + (F− r)Fr + λs Fs

)
+

1
γ
(Gr + Hr) = 0, (23)

− λG + (F− r)Gr + λs Gs +
γG

(1− b̄Π)

(
Fr +

mF
r

)
= 0, (24)

− λH + (F− r)Hr + λs Hs + 2H
(

Fr +
mF
r

)
= 0, (25)

where b̄ = bρ0. Using Equation (14), we obtain

s
(

R̃0

R̃

)m+1

=
∫ 1

0

(
1
2

γΠF2 +
(1− b̄Π)G
(γ− 1)

+ H
)

rmdr− (1− b̄Π)s
(γ− 1)(m + 1)

− γC0

2(m + 1)
, (26)

where

R̃0 =

(
E
p0

)1/(m+1)

. (27)
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Using (16)–(19), RH conditions become

Π(1, s) =
(γ + 1)
(γ− 1)

[
1− 2α

γ− 1
− 2

γ− 1
s
]

, (28)

F(1, s) =
2

γ + 1
(1− α− s), (29)

G(1, s) =
2γ

γ + 1

[
1− α− (γ− 1)s

2γ

]
− 1

2

(
γ + 1
γ− 1

)2

C0γ

[
1− 4α

γ− 1
− 4s

γ− 1

]
, (30)

H(1, s) =
γ

2
C0

(
γ + 1
γ− 1

)2[
1− 4α

γ− 1
− 4s

γ− 1

]
. (31)

Now differentiating Equation (26) regarding s, we obtain the expression for λ as

λ =
J(m + 1)− (1−b̄Π)s

γ−1 − γC0
2

J − s dJ
ds −

γC0
2(m+1)

. (32)

Here

J =
∫ 1

0

(
1
2

γΠF2 +
(1− b̄Π)G
(γ− 1)

+ H
)

rmdr. (33)

The self-similar process of the explosion has clearly explained the power rule particularly
in Equation (27).

4. Construction of Solutions in Power Series of s

As we are seeking solution for strong shocks, the velocity of leading shock front S is very large than
the velocity of sound waves V in ideal gas. The quantity s = (V/S)2 is very small for strong shocks.
We, therefore, expand the non-dimensional quantities F, G, Π and H in power series s = (V/S)2

as follows
F = F(0) + sF(1) + s2F(2) + s3F(3) + ...,

G = G(0) + sG(1) + s2G(2) + s3G(3) + ...,

Π = Π(0) + sΠ(1) + s2Π(2) + s3Π(3) + ...,

H = H(0) + sH(1) + s2H(2) + s3H(3) + ....

(34)

Here F(i), G(i), Π(i) and H(i) (i = 0, 1, 2, ...) are either constants or functions of r. We use the
power series expansions from Equation (34) in Equation (33) to obtain the value of J as

J = J0(1 + σ1 s + σ2 s2 + ...), (35)

where

J0 =
∫ 1

0

[
γ

2
Π(0)(F(0))2 +

(1− bΠ(0))

γ− 1
G(0) + H(0)

]
rmdr,

σ1 J0 =
∫ 1

0

[
γ

2
Π(1)(F(0))2 + γΠ(0)F(0)F(1) +

1
γ− 1

(G(1) − bΠ(0)G(1) − bΠ(1)G(0)) + H(1)
]

rmdr,

σ2 J0 =
∫ 1

0

[
γ

2
Π(2)(F(0))2 + γΠ(0)F(0)F(2) +

γ

2
Π(0)(F(1))2 + 2Π(1)F(1)F(0) + H(2)

]
rmdr (36)

+
∫ 1

0

1
γ− 1

[G(2) − bΠ(2)G(0) − bΠ(1)G(1) − bΠ(0)G(2)]rmdr,

...
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Using (35) in (26), we obtain

s
(

R̃0

R̃

)m+1

= J0

[(
1− γC0

2(m + 1)J0

)
+

(
σ1 −

1
(m + 1)(γ− 1)J0

)
s + σ2s2 + ...

]
. (37)

In view of (15), Equation (37) becomes(
V
S

)2( R̃0

R̃

)m+1

= J0

[(
1− γC0

2(m + 1)J0

)
+

(
σ1−

1
(m + 1)(γ− 1)J0

)(
V
S

)2

+ σ2

(
V
S

)4

+ ...
]

. (38)

This equation provides a relation between shock velocity and its position at time t. We expand λ

by using Equations (32) and (35) as follows:

λ = (m + 1)[1 + σ
′
1s + 2σ

′
2s2 + ...], (39)

where

σ
′
1 =

σ1 − 1
(m+1)(γ−1)J0

1− γC0
2(m+1)(γ−1)J0

,

σ
′
2 =

σ2

1− γC0
2(m+1)J0

,

σ
′
3 =

σ3

1− γC0
2(m+1)J0

.

For simplification, let us consider λ1 = σ
′
1, λ2 = 2σ

′
2, λ3 = 3σ

′
3,..., then the Equation (39) becomes

λ = (m + 1)[1 + λ1s + λ2s2 + ...]. (40)

We use the relations from Equations (34) and (40) in Equations (22)–(25). Comparing the likewise
powers of s on both sides of an equation, we get relations in terms of Ordinary Differential Equations
(ODEs). Comparing the terms free from s, we get

(F(0) − r)Π(0)
r + Π(0)

(
F(0)

r +
mF(0)

r

)
= 0, (41)

(F(0) − r)Π(0)F(0)
r +

1
γ
(G(0)

x + H(0)
x ) =

(m + 1)F(0)Π(0)

2
, (42)

− (m + 1)G(0) + (F(0) − r)G(0)
r +

γG(0)

(1− bΠ(0))

(
F(0)

r +
mF(0)

r

)
= 0, (43)

− (m + 1)H(0) + (F(0) − r)H(0)
r + 2H(0)

(
F(0)

r +
mF(0)

r

)
= 0. (44)
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Equating the power s, we get

(F(0) − r)Π(1)
r + F(1)Π(0)

r + (m + 1)Π(1) + Π(0)
(

F(1)
r +

mF(1)

r

)
+ Π(1)

(
F(0)

r +
mF(0)

r

)
= 0, (45)

− Π(0)

2
(m + 1)[F(1) + λ1F(0)]− (m + 1)Π(1)F(0)

2
+ Π(0)[(F(0) − r)F(1)

r + F(1)F(0)
r ]

+ Π(1)(F(0) − r)F(0)
r + (m + 1)Π(0)F(1) +

1
γ
[G(1)

r + H(1)
r ] = 0, (46)

− λG(1) + F(1)G(0)
r + λ1(G

(0)
r + G(1)) + F(0)G(1)

r + [1 + bΠ(1)G(0)

+ {bΠ(0) + (bΠ(0))2 + ...}G(1)][F(0) +
mF(0)

r
] = 0, (47)

− (m + 1)λ1H(0) + (F(0) − r)H(1)
r + F(1)H(0)

r + 2H(0)
(

F(1)
r +

mF(1)

r

)
+ 2H(1)

(
F(0)

r +
mF(0)

r

)
= 0, (48)

From Equations (28)–(31) and (34), we have

F(0)(1) =
2

γ + 1
(1− α), G(0)(1) =

2γ

γ + 1
(1− α)−

(
γ + 1
γ− 1

)2
γC0

2

(
1− 4α

γ− 1

)
,

Π(0)(1) =
γ + 1
γ− 1

(
1− 2α

γ− 1

)
, H(0)(1) =

(
γ + 1
γ− 1

)2
γC0

2

(
1− 4α

γ− 1

)
.

(49)

F(1)(1) = − 2
γ + 1

, G(1)(1) = −γ− 1
γ + 1

+ 2γC0
(γ + 1)2

(γ− 1)3 ,

Π(1)(1) = −2(γ + 1)
(γ− 1)

, H(1)(1) = −2γC0
(γ + 1)2

(γ− 1)3 .
(50)

To get the first approximate solution, we determine F(0), G(0), Π(0) and H(0) from the system of
nonlinear ODEs (41)–(44) with the boundary conditions given in Equation (49). Finally, these values
are used in Equation (36)1 to get approximate solution as follows

u = SF(0)(r), p = p0(S/V)2G(0)(r),

ρ = ρ0Π(0)(r), h = p0(S/V)2H(0)(r).
(51)

To get the second approximation, we need to determine the values of F(1), G(1), Π(1) and H(1)

in Equation (45). F(0), G(0), Π(0) and H(0) are used from the first approximation. F(1), G(1), Π(1) and
H(1) contain λ1. We use these values in terms of λ1 in Equation (36)2 to finally obtain the value of λ1.
The obtained value of λ1 is used to get the second approximate solution. The other steps involve the
repetition of the above process to get higher order approximate solutions of the problem.

5. The First Approximation

The Equations (41)–(44) can be written in the following forms:

Π(0)
r

Π(0)
=

(
F(0)

r +
mF(0)

r

)
/(r− F(0)), (52)
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(F(0) − r)Π(0)F(0)
r +

1
γ
(G(0)

r + H(0)
r ) =

(m + 1)F(0)Π(0)

2
, (53)

G(0)
r

G(0)
=

[
− (m + 1) +

γ

(1− b̄Π(0))

(
F(0)

r +
mF(0)

r

)]
/(r− F(0)), (54)

H(0)
r

H(0)
=

(
2F(0)

r +
2mF(0)

r
−m− 1

)
/(r− F(0)). (55)

We substitute the values G(0)
r and H(0)

r from Equations (54) and (55) in Equation (53) to get F(0)
r in

the following form

F(0)
r =

[
m+1

γ − mF(0)

(1−b̄Π(0))r
+

(
m+1

γ − 2mF(0)

γr

)
H(0)

G(0) +
(m+1)F(0)Π(0)(r−F(0))

2G(0)

]
[

2H(0)

γG(0) +
1

(1−b̄Π(0))
− Π(0)(r−F(0))

G(0)

] . (56)

Taylor [23] performed similarity transformation and presented the approximate solution for
intense explosion. This approximation has been used by Sakurai [3] to produce analytical solution
in gas dynamics. We, therefore, has assumed the first approximation F(0) as given in the work of
Taylor [23]

F(0)(r) =
r
γ
+ Arn. (57)

We get the value of A in the following form using Equations (49) and (57),

A =
γ(1− 2α)− 1

γ(γ + 1)
. (58)

We use Equations (56)–(58) to get n. After determining the values of A and n, we integrate
Equations (52)–(55) with boundary conditions (49) to obtain

Π(0)(r) =
γ + 1
γ− 1

(
1− 2α

γ− 1

)[
γ

γ + 1− rn−1

]( (n+m)(γ(1−2α)−1)
(n−1)(γ−1) + m+1

(n−1)(γ−1)

)
r(

m+1
γ−1 ), (59)

G(0)(r) =
{

2γ
γ+1 (1− α)−

(
γ+1
γ−1

)2
γC0

2

(
1− 4α

γ−1

)}[
γ

γ+1−rn−1

](B)

r

(γ+1)(m+1)b̄(1− 2α
γ−1 )

(γ−1)2 [1−b̄ γ+1
γ−1 (1−

2α
γ−1 )] , (60)

where

B =
γ(m + n)(γ(1− 2α)− 1) + γ(m + 1)b̄(γ + 1)(1− 2α

γ−1 )

(n− 1)(γ− 1){1− b̄( γ+1
γ−1 )(1−

2α
γ−1 )}

.

and

H(0)(r) =
γC0

2

(
γ + 1
γ− 1

)2(
1− 4α

γ− 1

)[
γ

γ + 1− rn−1

]( 2(m+n)(γ(1−2α)−1)+(1+m)(2−γ)
(n−1)(γ−1)

)
r
(m+1)(2−γ)

(γ−1) . (61)

Dimensionless quantities F(0), Π(0) and G(0) are computed in Tables 1 and 2 for (m = 0, 1) in ideal
gas (without magnetic field i.e., C0 = 0). A comparison of the obtained results is presented with the
published work of Sakurai [4] in gas dynamics. Schematic of dimensionless flow variables are depicted
in Figures 1–4.
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Table 1. F(0), Π(0) and G(0) for m = 0, γ = 1.4 and C0 = 0.

x α F(0) Sakurai [3] Π(0) Sakurai [3] G(0) Sakurai [3] F(0) Π(0) G(0)

0.0 0.8333 6.000 1.167 0.8333 6.000 1.167
1.0 0.015 - - - 0.8208 5.550 1.167

0.025 - - - 0.8125 5.250 1.167

0.0 0.7170 3.096 0.815 0.7251 3.096 0.815
0.9 0.015 - - - 0.7199 2.899 0.835

0.025 0.7159 2.767 0.848

0.0 0.6151 1.785 0.647 0.6259 1.785 0.647
0.8 0.015 - - - 0.6251 1.660 0.664

0.025 - - - 0.6240 1.577 0.677

0.0 0.5239 1.080 0.556 0.5341 1.080 0.556
0.7 0.015 - - - 0.5356 0.990 0.567

0.025 - - - 0.5362 0.931 0.575

0.0 0.4405 0.658 0.504 0.4484 0.658 0.504
0.6 0.015 - - - 0.4507 0.593 0.508

0.025 - - - 0.4521 0.551 0.515

0.0 0.3624 0.389 0.473 0.3676 0.389 0.473
0.5 0.015 - - - 0.3698 0.345 0.471

0.025 - - - 0.3712 0.317 0.471

0.0 0.2877 0.214 0.456 0.2877 0.214 0.456
0.4 0.015 - - - 0.2921 0.187 0.450

0.025 - - - 0.2933 0.170 0.446

0.0 0.2148 0.102 0.447 0.2160 0.102 0.447
0.3 0.015 - - - 0.2169 0.088 0.437

0.025 - - - 0.2177 0.079 0.431

0.0 0.1430 0.037 0.443 0.1432 0.037 0.443
0.2 0.015 - - - 0.1436 0.0316 0.432

0.025 - - - 0.1439 0.0282 0.423

0.0 0.0714 0.006 0.442 0.0714 0.006 0.442
0.1 0.015 - - - 0.0715 0.005 0.429

0.025 - - - 0.0716 0.005 0.419

0.0 0.0000 0.000 0.442 0.0000 0.000 0.442
0.0 0.015 - - - 0.0000 0.000 0.429

0.025 - - - 0.0000 0.000 0.419
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Figure 1. Schematic of non-dimensional velocity (a) F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, C0 = 0, m = 0 and α = 0.0, 0.015, 0.025, 0.05.
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Table 2. F(0), Π(0) and G(0) for m = 1, γ = 1.4 and C0 = 0.

x α F(0) Sakurai [3] Π(0) Sakurai [3] G(0) Sakurai [3] F(0) Π(0) G(0)

0.0 0.8333 6.000 1.167 0.8333 6.000 1.167
1.0 0.015 - - - 0.8208 5.550 1.167

0.025 - - - 0.8125 5.250 1.167

0.0 0.7008 1.898 0.685 0.7072 1.898 0.684
0.9 0.015 - - - 0.7196 1.767 0.767

0.025 0.7314 1.678 0.874

0.0 0.5973 0.783 0.531 0.6038 0.783 0.531
0.8 0.015 - - - 0.6246 0.713 0.577

0.025 - - - 0.6503 0.668 0.667

0.0 0.5104 0.347 0.468 0.5141 0.346 0.468
0.7 0.015 - - - 0.5351 0.309 0.474

0.025 - - - 0.5691 0.284 0.517

0.0 0.4322 0.153 0.441 0.4346 0.150 0.441
0.6 0.015 - - - 0.4503 0.131 0.414

0.025 - - - 0.4880 0.119 0.406

0.0 0.3582 0.058 0.429 0.3592 0.0582 0.429
0.5 0.015 - - - 0.3695 0.050 0.378

0.025 - - - 0.4077 0.045 0.323

0.0 0.2859 0.019 0.425 0.2863 0.019 0.425
0.4 0.015 - - - 0.2919 0.016 0.357

0.025 - - - 0.3255 0.014 0.260

0.0 0.2140 0.005 0.424 0.2144 0.004 0.424
0.3 0.015 - - - 0.2168 0.004 0.346

0.025 - - - 0.2443 0.003 0.211

0.0 0.1429 0.001 0.424 0.1429 0.001 0.423
0.2 0.015 - - - 0.1437 0.001 0.340

0.025 - - - 0.1630 0.000 0.173

0.0 0.0714 0.000 0.424 0.0714 0.000 0.423
0.1 0.015 - - - 0.0715 0.000 0.338

0.025 - - - 0.0815 0.000 0.143

0.0 0.0000 0.000 0.424 0.0000 0.000 0.423
0.0 0.015 - - - 0.0000 0.000 0.338

0.025 - - - 0.0000 0.000 0.118
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Figure 2. Schematic of non-dimensional (a) velocity F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, α = 0, m = 0 and C0 = 0.00, 0.02, 0.04.
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Figure 3. Schematic of non-dimensional (a) velocity F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, C0 = 0, m = 1 and α = 0.0, 0.015, 0.025, 0.05.
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Figure 4. Schematic of non-dimensional (a) velocity F(0), (b) pressure G(0), (c) density Π(0) and
(d) magnetic pressure H(0) for γ = 1.4, α = 0, m = 1 and C0 = 0.00, 0.02, 0.04.
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6. Conclusions

In the present work, we have successfully used the Sakurai [4] approach to find the first-order
approximate analytical solution of the planar and cylindrical symmetric flow under the presence
of transverse magnetic field in a non-ideal medium. However, Sakurai [4] has obtained a solution
in gas dynamics by using this method; there is no study afterwards that provides approximate
analytical solution of the problem with magnetic field in non-ideal medium. We have tried to fill
the gap by providing approximate analytical solutions of the problem with magnetic and non-ideal
effects. These findings are quite useful for the groups working in the field of Magneto Hydrodynamics
(MHD) or Computational Fluid Dynamics (CFD). To generate confidence in our results, we have
recovered all results of Sakurai’s [4] published work as a particular case of our problem (i.e., C0 = 0) in
Tables 1 and 2. The effects of non-ideal medium and transverse magnetic field on flow variables are
depicted in Figures 1–4.

Figure 1 consists of the profiles of velocity, density, pressure, and magnetic pressure for planar
shocks (m = 0 ) with γ = 1.4, C0 = 0, and α = 0.00, 0.015, 0.025, 0.050. It is clearly seen from Figure 1
that the dimensionless profiles of flow variables decrease as value of parameter α increases except the
pressure which increases with the small increase in the parameter α. This is expected physically as gas
particles will collide more frequently with the increase of non-idealness α which results in the rise in
pressure with the increment of α. In Figure 2, we observe that the pressure and density decrease as
we increase the value of C0, while the magnetic pressure increases for planar motion (m = 0) after
a certain point. It is again an expected result as the charged particles will be transported away very
quickly with the increase of C0. It results in dropping in pressure after the blast. At the point of
explosion, the process is not fully self-similar and therefore the initial dynamics is a bit off. It agrees
with blast wave theory. It is well known that the phenomena are not self-similar at very near the center
or axis of explosion. However, point explosions can be self-similar at considerable distance from the
source (see Sakurai [3,4]). Figures 3 and 4 display the profiles of the flow variables for cylindrically
symmetric flow (m = 1). From Figures 3a and 4a, we observed that as we increase the value of α

and C0, velocity increases. Figure 3b shows that as the value of parameter α increases, pressure also
increases after a certain point. This describes the physics of the post-shock process very well as increase
in α makes the collision of the gas particles more frequent. Figure 4b shows that an increment in the
value of C0 causes a decrease in pressure for the cylindrically symmetric flow. It is attributed to the fact
that the ionized gas molecules are carried away by a strong magnetic field. It is one of the reasons that
the instabilities at the shock front can be suppressed under the presence of a magnetic field. Figure 4c
shows that the density of the medium decreases as C0 increases. Figure 4d shows that as the value of
C0 increases, magnetic pressure also increases.
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