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Abstract: Hong investigated the relationship between the minimax disparity minimum variance
regular increasing monotone (RIM) quantifier problems. He also proved the equivalence of their
solutions to minimum variance and minimax disparity RIM quantifier problems. Hong investigated
the relationship between the minimax ratio and maximum entropy RIM quantifier problems and
proved the equivalence of their solutions to the maximum entropy and minimax ratio RIM quantifier
problems. Liu proposed a general RIM quantifier determination model and proved it analytically
by using the optimal control technique. He also gave the equivalence of solutions to the minimax
problem for the RIM quantifier. Recently, Hong proposed a modified model for the general minimax
RIM quantifier problem and provided correct formulation of the result of Liu. Thus, we examine the
general minimum model for the RIM quantifier problem when the generating functions are Lebesgue
integrable under the more general assumption of the RIM quantifier operator. We also provide a
solution equivalent relationship between the general maximum model and the general minimax
model for RIM quantifier problems, which is the corrected and generalized version of the equivalence
of solutions to the general maximum model and the general minimax model for RIM quantifier
problems of Liu’s result.

Keywords: OWA operator; RIM quantifier; maximum entropy; minimax ratio; generating function;
minimal variability; minimax disparity; solution equivalence

1. Introduction

One of the important topics in the theory of ordered weighted averaging (OWA) operators is
the determination of the associated weights. Several authors have suggested a number of methods
for obtaining associated weights in various areas such as decision-making, approximate reasoning,
expert systems, data mining, fuzzy systems and control [1–22]. Yager [12] proposed RIM quantifiers
as a method for finding OWA weight vectors through fuzzy linguistic quantifiers. Liu [15] and Liu
and Da [16] gave solutions to the maximum-entropy RIM quantifier model when the generating
functions are differentiable. Liu and Lou [9] studied the equivalence of solutions to the minimax ratio
and maximum-entropy RIM quantifier models, and the equivalence of solutions to the minimax
disparity and minimum-variance RIM quantifier problems. Hong [17,18] gave the proof of the
minimax ratio RIM quantifier problem and the minimax disparity RIM quantifier model when the
generating functions are absolutely continuous. He also gave solutions to the maximum-entropy RIM
quantifier model and the minimum-variance RIM quantifier model when the generating functions are
Lebesgue integrable.

Based on these results, Hong [17,18] provided a relationship between the minimax disparity
and minimum-variance RIM quantifier problems. He also provided a correct relationship between
the minimax ratio and maximum-entropy RIM quantifier models. Liu [19] suggested a general RIM
quantifier determination model and proved it analytically using the optimal control methods. He also
studied the solution equivalence to the minimax problem for the RIM quantifier.
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This paper investigates the general minimax model for the RIM quantifier problem for the case in
which the generating functions are absolutely continuous and a generalized solution to the general
minimum model for the RIM quantifier problem for the case in which the generating functions are
Lebesgue integrable. Moreover, this paper provides a solution equivalent relationship between the
general maximum model and the general minimax model for RIM quantifier problems and generalizes
the results of Hong [17,18]. In this paper, we improve and extend Liu’s theorems to be suitable
for absolutely continuous generating functions. We have corrected and improved Theorem 13 [19]
by using the absolutely continuous condition of generating functions and the absolute continuity
condition of F′ for the general minimax model for the RIM quantifier problem. Theorem 9 [19] has
been improved using the Lebesgue integrability condition of generating functions and the continuity
condition of F′ for the general maximum model for the RIM quantifier problem.

Based on these results, we give a correct relationship between the general minimum model and
the general minimax model for RIM quantifier problems.

2. Preliminaries

Yager [11] proposed a new aggregation technique based on OWA operators. An OWA operator of
dimension n is a mapping F : Rn → R that has an associated weight vector W = (w1, · · · , wn)T with
the properties w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, · · · , n, such that

F(a1, · · · , an) =
n

∑
i=1

wibi,

where bj is the jth largest element of the collection of the aggregated objects {a1, · · · , an}. In [11], Yager
introduced a measure of “orness” associated with the weight vector W of an OWA operator:

orness(W) =
n

∑
i=1

n− i
n− 1

wi.

This measure characterizes the degree to which the aggregation is like an OR operation.
Here, min, max, and average correspond to W∗, W∗ and WA respectively, where W∗ =

(1, 0, · · · , 0), W∗ = (0, 0, · · · , 1) and WA = (1/n, 1/n, · · · , 1/n). Clearly, orness(W∗) =

1, orness(W∗) = 0 and orness(WA) = 1/2.
Yager [12] introduced RIM quantifiers as a method for obtaining OWA weight vectors through

fuzzy linguistic quantifiers.

Definition 1 ([12]). A fuzzy subset Q on the real line is called a RIM quantifier if Q(0) = 0, Q(1) = 1 and
Q(x) ≥ Q(y) for x > y.

The quantifier f or all is represented by the fuzzy set

Q∗(r) =

{
1, if x = 1,

0, if x 6= 1.

The quantifier there exists is defined as

Q∗(r) =

{
0, if x = 0,

1, if x 6= 0.

Both of these are examples of the RIM quantifier. A generating function representation of
RIM quantifiers has been proposed for analyzing the relationship between OWA operators and
RIM quantifiers.
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Definition 2. For f (t) on [0, 1] and the RIM quantifier Q(x), f (t) is called the generating function of Q(x),
if it satisfies

Q(x) =
∫ x

0
f (t)dt,

where f (t) ≥ 0 and
∫ 1

0 f (t)dt = 1.

If the RIM quantifier Q(x) is smooth, then f (x) should be continuous; if Q(x) is a piecewise
linear function, then f (x) is a jump piecewise function of some constants; and if Q(x) is an absolutely
continuous function, then f (x) is a Lesbegue integrable function and unique in the sense of being
“almost everywhere” [23].

Yager extended the orness measure of OWA operators, and defined the orness of RIM
quantifiers [10] as:

orness(Q) =
∫ 1

0
Q(x)dx =

∫ 1

0
(1− t) f (t)dt.

We see that Q∗ leads to the weight vector W∗, Q∗ leads to the weight vector W∗, and the ordinary
average RIM quantifier QA(x) = x leads to the weight vector WA. We also have orness(Q∗) =

1, rness(Q∗) = 0, and orness(QA) = 1/2.
As the RIM quantifier can be seen as a continuous form of OWA, an operator with a generating

function, the OWA optimization problem can be extended to the case of the RIM quantifier.

3. The General Model for the Minimax RIM Quantifier Problem

In this section, we consider the general model for the minimax RIM quantifier problem and
generalize some results of Hong [17,18]. Hong [7] provided a modified model for the minimax RIM
quantifier problem and the correct formulation of a result of Liu [19]. We summarize briefly.

∗ The minimax disparity RIM quantifier problem [15,17].

The minimax disparity RIM quantifier problem with a given orness level 0 < α < 1 consists of
finding a solution f : [0, 1]→ [0, 1] to the following optimization problem:

Minimize max
t∈(0,1)

| f ′(t) |,

subject to
∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1,

∫ 1

0
f (r)dr = 1,

f (r) ≥ 0.

∗ The minimax ratio RIM quantifier problem [9,18].

The minimax ratio RIM quantifier problem with a given orness level 0 < α < 1 consists of finding
a solution f : [0, 1]→ [0, 1] to the following optimization problem:

Minimize max
t∈(0,1)

∣∣∣∣
f ′(t)
f (t)

∣∣∣∣,

subject to
∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1,

∫ 1

0
f (r)dr = 1,

f (r) > 0.
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In regard to the above optimization problem, Liu [19] considered a general model for the minimax
RIM quantifier problem:

Minimize M f = max
r∈(0,1)

∣∣F′′( f (r)) f ′(r)
∣∣,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1, (1)

∫ 1

0
f (r)dr = 1,

f (r) > 0,

where the generating functions are continuous and F is a strictly convex function on [0, ∞), which is
differentiable to at least the 2nd order.

The above two cases are special cases of this model with F(x) = x2 and F(x) = x ln x. Hong [7]
gave a corrected and modified general model for the minimax RIM quantifier problem as follows:

∗ The general model for the minimax RIM quantifier problem.

Minimize M f = ess supr∈(0,1)
∣∣F′′( f (x)) f ′(x)

∣∣,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1, (2)

∫ 1

0
f (r)dr = 1,

f (r) > 0.

Theorem 1. Supposing that the generating functions are absolutely continuous, F is a strictly convex function
on [0, ∞), and F′ is absolutely continuous, then there is a unique optimal solution for problem (2), and that the
optimal solution has the form

f ∗(r) = max
{
(F′)−1 (a∗r + b∗) , 0

}
,

where a∗ and b∗ are determined by the constraints:




∫ 1
0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.

The next example shows that the condition of F′ being absolutely continuous on [0, ∞) in Theorem 1
is essential.

Example 1. Letting F1(x) =
∫ x

0 (C(r) + r)dr where C(x) is a Cantor function, then F′(x) = C(x) + x and
F′′1 (x) = 1 a.e. but F′1(x) 6=

∫ x
0 F′′1 (r)dr, that is, F′1 is not absolutely continuous on [0, ∞). Let F2(x) =

(1/2)x2, then F′′2 (x) = 1. Since

ess supr∈(0,1)
∣∣F′′1 ( f (x)) f ′(x)

∣∣ = ess supr∈(0,1)
∣∣ f ′(x)

∣∣ = ess supr∈(0,1)
∣∣F′′2 ( f (x)) f ′(x)

∣∣,

the optimal solution of problem (2) with respect to F1 and F1 are the same. However, since F′1(x) 6= F′2(x),
the optimal solution of problem (2) with respect to F1 and F1 cannot be the same by Theorem 2, which is a
contradiction. This example shows the Theorem 2 is incorrect if F′ is not absolutely continuous on [0, ∞).



Symmetry 2019, 11, 455 5 of 11

4. The General Model for the Minimum RIM Quantifier Problem

In this section, we consider the general model for the minimum RIM quantifier problem.
We improve the results of Liu [19] and generalize Theorem 4 of Hong [17] and Theorem 5 of Hong [18].
Liu [19] obtained solutions to the general minimum RIM quantifier problem for the case in which the
generating functions are continuous and F is differentiable to at least the 2nd order by considering a
variational optimization problem using the Lagrangian multiplier method ([24], Chapter 2). In this
section, we consider a generalized result for this problem.

∗ The minimum variance RIM quantifier problem [17,18].

The minimum variance RIM quantifier problem under a given orness level is

Minimize D f =
∫ 1

0
f 2(r)dr,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1,

∫ 1

0
f (r)dr = 1,

f (r) > 0.

∗ The maximum entropy RIM quantifier problem [9,18].

The maximum entropy RIM quantifier problem with a given orness level 0 < α < 1 consists of
finding a solution f : [0, 1]→ [0, 1] to the following optimization problem:

Maximize −
∫ 1

0
f (r) ln f (r)dr,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1,

∫ 1

0
f (r)dr = 1,

f (r) > 0.

Recently, Liu [19] considered the general model for the minimum variance and maximum entropy
RIM quantifier problems, under a given orness level formulated as follows:

∗ The general model for the minimum RIM quantifier problem.

Minimize Vf =
∫ 1

0
F( f (r))dr,

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1, (3)

∫ 1

0
f (r)dr = 1,

f (r) > 0,

where F is a strictly convex function on [0, ∞), and differentiable to at least the 2nd order.
The above two cases are special cases of the model where F(x) = x2 and F(x) = xlnx.
Liu (Theorem 9, [19]) proved the following problem for the case in which generating functions

are continuous and F is differentiable to at least the 2nd order:

Theorem 2 (Theorem 9, [19]). There is a unique optimal solution for (3), and the optimal solution has the form
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f ∗(r) =

{
(F′)−1(a∗r + b∗), if (F′)−1(a∗r + b∗) ≥ 0,

0, elsewhere,

where a∗, b∗ are determined by the constraints:




∫ 1
0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.

Here, we consider a generalized result for Theorem 3 when f (x) is Lebesgue integrable and F′

is continuous.

Theorem 3. Suppose that the generating functions are Lebesgue integrable, F is a strictly convex function on
[0, ∞), and F′ is continuous. Then, there is a unique optimal solution for problem (3), and that optimal solution
has the form

f ∗(r) =

{
(F′)−1(a∗r + b∗) a.e., if (F′)−1(a∗r + b∗) > 0,

0 a.e., elsewhere,

where a∗ and b∗ are determined by the constraints:




∫ 1
0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.

Proof. As shown in Theorem 2, we consider the case where α ∈ (0, 1/2] and assume that {r < 1 :
f ∗(r) > 0} = [0, t) for some t ∈ (0, 1) and {r < 1 : f ∗(r) = 0} = [t, 1). We also note that for r ∈ [0, t],

F′( f ∗(r)) = a∗r + b∗

and for r ∈ (t, 1),
a∗r + b∗ < F′(0)

if F′(0) exists. Let the nonnegative function f satisfy 1 =
∫ 1

0 f (r)dr and
∫ 1

0 r f (r)dr = α. We set
f (r) = f ∗(r) + g(r), r ∈ [0, 1]. Then, noting that f (r) = g(r), r ∈ [t, 1], we have

∫ t

0
g(r)dr +

∫ 1

t
f (r)dr =

∫ 1

0
g(r)dr = 0, (4)

since 1 =
∫ 1

0 f (r)dr =
∫ 1

0 f ∗(r)dr +
∫ 1

0 g(r)dr = 1 +
∫ 1

0 g(r)dr. We also have

∫ t

0
rg(r)dr +

∫ 1

t
r f (r)dr =

∫ 1

0
rg(r)dr = 0, (5)

since α =
∫ 1

0 r f (r)dr =
∫ 1

0 r f ∗(r)dr +
∫ 1

0 rg(r)dr = α +
∫ 1

0 rg(r)dr. We now show that

∫ 1

0
F ( f (r)) dr ≥

∫ 1

0
F ( f ∗ (r)) dr.
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Since F(x)− F(x0) ≥ F′(x0)(x− x0) (the equality holds if and only if x = x0), we have that

∫ 1

0
F( f (r))dr−

∫ 1

0
F( f ∗(r))dr

=
∫ 1

0
F(( f ∗(r) + g(r)))dr−

∫ 1

0
F( f ∗(r))dr

≥
∫ 1

0
F′( f ∗(r))g(r)dr

=
∫ t

0
(a∗r + b∗)g(r)dr +

∫ 1

t
F′(0)g(r)dr

= a∗
∫ t

0
rg(r)dr + b∗

∫ t

0
g(r)dr +

∫ 1

t
F′(0)g(r)dr

= a∗(−
∫ 1

t
r f (r)dr) + b∗(−

∫ 1

t
f (r)dr) +

∫ 1

t
F′(0)g(r)dr

=
∫ 1

t
(F′(0)− a∗r− b∗) f (r)dr

≥ 0,

where the fourth equality comes from (4) and (5) and the second inequality comes from the fact that
a∗r + b∗ ≤ F′(0) a.e. for r ∈ [t, 1]. The equalities hold if and only if f ∗ = f a.e. This completes
the proof.

Combining Theorems 2 and 4, we now have a solution equivalent relationship between the general
minimum RIM quantifier problem and the general minimax RIM quantifier problem. This result
generalizes Theorem 6 of Hong [17] and Theorem 5 of Hong [18] and provides a corrected version of
Theorem 13 [19].

Theorem 4. Suppose that the generating functions are absolutely continuous and F′ is increasing and absolutely
continuous. Then, the general minimum RIM quantifier problem has the same solution as the general minimax
RIM quantifier problem.

5. Numerical Example

We consider a RIM quantifier operator F which is not differentiable to at least the second order,
but F′ is absolutely continuous, and find an optimal solution of two RIM quantifier problems.

Let a RIM quantifier operator F be

F(x) =

{
x2

2, if 0 ≤ x < 1
2 ,

x2 − 1
2 x + 1

8 , if 1
2 ≤ x ≤ 1.

Then,

F′(x) =

{
x, if 0 ≤ x < 1

2 ,

2x− 1
2 , if 1

2 ≤ x ≤ 1.

Hence, F(x) is strictly convex and F′(x) is absolutely continuous, but F(x) is not the second order
differentiable. Let

f ∗(r) =

{
(F′)−1(a∗r + b∗), if (F′)−1 (a∗r + b∗) > 0,
0, elsewhere ,

where a∗ and b∗ are determined by the constraints:
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∫ 1
0 r f ∗(r)dr = α,∫ 1
0 f ∗(r)dr = 1,

f ∗(r) ≥ 0.
(6)

We consider the case for 0 < α ≤ 1/2. Then, a∗ ≤ 0 and b∗ > 0.

Case (1) (See Figure 1) There exists m, d ∈ [0, 1] such that m < d and

f ∗(r) =





1
2 (a∗r + b∗) + 1

4 , if 0 ≤ r ≤ m,
a∗r + b∗, m < r ≤ d,
0, d < r ≤ 1.

Since a∗m + b∗ = 1
2 and a∗d + b∗ = 0, b∗ = −a∗m + 1

2 and d = m− 1
2a∗ . Hence,

f ∗(r) =





1
2 a∗(r−m) + 1

2 , if 0 ≤ r ≤ m,
a∗(r−m) + 1

2 , m < r ≤ m− 1
2a∗ ,

0, m− 1
2a∗ < r ≤ 1.

From (6),

a∗ =
2m− 4−

√
2m2 − 16m + 16
2m2 ,

α = −4m3a∗3 − 12m2a∗2 + 6ma∗ − 1
48a∗2

hold. In addition, since a∗ < 0 and f ∗(1) < 0,

0 < m < 4−
√

10, 0 < α <
17− 4

√
10

12
.

Figure 1. The graph of f ∗ (0 < α < 17−4
√

10
12 ).
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Case (2) (See Figure 2) There exists m ∈ [0, 1] such that

f ∗(r) =

{
1
2 (a∗r + b∗) + 1

4 , if 0 ≤ r ≤ m,
a∗r + b∗, m < r ≤ 1.

Since a∗m + b∗ = 1
2 ,

f ∗(r) =

{
1
2 a∗(r−m) + 1

2 , if 0 ≤ r ≤ m,
a∗(r−m) + 1

2 , m < r ≤ 1.

From (6),

a∗ =
2

m2 − 4m + 2
,

α =
2m3 + 3m2 − 24m + 14

12(m2 − 4m + 2)

hold. In addition, since a∗ < 0 and f ∗(1) ≥ 0,

4−
√

10 ≤ m ≤ 1,
17− 4

√
10

12
≤ α ≤ 5

12
.
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Figure 2. The graph of f ∗ ( 17−4
√

10
12 ≤ α ≤ 5

12 )

Since a∗m + b∗ = 1
2 and a∗d + b∗ = 0, b∗ = −a∗m + 1

2 and d = m− 1
2a∗ . Hence160

f ∗(r) =





1
2 a∗(r−m) + 1

2 , if 0 ≤ r ≤ m
a∗(r−m) + 1

2 , m < r ≤ m− 1
2a∗

0, m− 1
2a∗ < r ≤ 1.

From (6),161

a∗ =
2m− 4−

√
2m2 − 16m + 16
2m2

α = −4m3a∗3 − 12m2a∗2 + 6ma∗ − 1
48a∗2

hold. And since a∗ < 0 and f ∗(1) < 0,

0 < m < 4−
√

10, 0 < α <
17− 4

√
10

12
.

Case 2) There exists m ∈ [0, 1] such that162

f ∗(r) =

{
1
2 (a∗r + b∗) + 1

4 , if 0 ≤ r ≤ m
a∗r + b∗, m < r ≤ 1.

Since a∗m + b∗ = 1
2 ,163

f ∗(r) =

{
1
2 a∗(r−m) + 1

2 , if 0 ≤ r ≤ m
a∗(r−m) + 1

2 , m < r ≤ 1.

Figure 2. The graph f ∗ ( 17−4
√

10
12 ≤ α ≤ 5

12 ).

Case (3) (See Figure 3) For all 0 ≤ r ≤ 1,

f ∗(r) =
1
2
(a∗r + b∗) +

1
4

.

From (6),

a∗ = −12 + 24α,

b∗ =
15
2
− 12α
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hold. In addition, since a∗ ≤ 0 and f ∗(1) > 1
2 , 5

12 < α ≤ 1
2 .Version March 25, 2019 submitted to Journal Not Specified 10 of 12

Figure 3. The graph of f ∗ ( 5
12 < α ≤ 1

2 )

From (6),164

a∗ =
2

m2 − 4m + 2

α =
2m3 + 3m2 − 24m + 14

12(m2 − 4m + 2)

hold. And since a∗ < 0 and f ∗(1) ≥ 0,

4−
√

10 ≤ m ≤ 1,
17− 4

√
10

12
≤ α ≤ 5

12
.

Case 3) For all 0 ≤ r ≤ 1,165

f ∗(r) =
1
2
(a∗r + b∗) +

1
4

.

From (6),166

a∗ = −12 + 24α

b∗ =
15
2
− 12α

hold. And since a∗ ≤ 0 and f ∗(1) > 1
2 , 5

12 < α ≤ 1
2 .167

6. Conclusions168

In this paper, we examined the general minimax model for the RIM quantifier problem for the169

case in which the generating functions are absolutely continuous and a generalized solution to the170

general minimum model for the RIM quantifier problem for the case in which the generating functions171

are Lebesgue integrable. And we provided a solution equivalent relationship between the general172

Figure 3. The graph f ∗ ( 5
12 < α ≤ 1

2 ).

6. Conclusions

In this paper, we examined the general minimax model for the RIM quantifier problem for the case
in which the generating functions are absolutely continuous and a generalized solution to the general
minimum model for the RIM quantifier problem for the case in which the generating functions are
Lebesgue integrable. In addition, we provided a solution equivalent relationship between the general
maximum model and the general minimax model for RIM quantifier problems and generalizes results
of Hong based on these results. We also corrected Liu’s theorems from a mathematical perspective as
their theorems are not suitable for absolutely continuous generating functions.
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