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Abstract: Slow-hash algorithms are proposed to defend against traditional offline password recovery
by making the hash function very slow to compute. In this paper, we study the problem of slow-hash
recovery on a large scale. We attack the problem by proposing a novel concurrent model that guesses
the target password hash by leveraging known passwords from a largest-ever password corpus.
Previously proposed password-reused learning models are specifically designed for targeted online
guessing for a single hash and thus cannot be efficiently parallelized for massive-scale offline recovery,
which is demanded by modern hash-cracking tasks. In particular, because the size of a probabilistic
context-free grammar (PCFG for short) model is non-trivial and keeping track of the next most
probable password to guess across all global accounts is difficult, we choose clever data structures
and only expand transformations as needed to make the attack computationally tractable. Our
adoption of max-min heap, which globally ranks weak accounts for both expanding and guessing
according to unified PCFGs and allows for concurrent global ranking, significantly increases the
hashes can be recovered within limited time. For example, 59.1% accounts in one of our target
password list can be found in our source corpus, allowing our solution to recover 20.1% accounts
within one week at an average speed of 7200 non-identical passwords cracked per hour, compared to
previous solutions such as oclHashcat (using default configuration), which cracks at an average speed
of 28 and needs months to recover the same number of accounts with equal computing resources
(thus are infeasible for a real-world attacker who would maximize the gain against the cracking
cost). This implies an underestimated threat to slow-hash protected password dumps. Our method
provides organizations with a better model of offline attackers and helps them better decide the
hashing costs of slow-hash algorithms and detect potential vulnerable credentials before hackers do.

Keywords: data security; distributed computing; probabilistic context-free grammar; slow hash

1. Introduction

Slow-hash algorithms are regarded as safe protections of low-entropy passwords without secret
keys. Even if there exists a large leak of slow-hash protected passwords, it is still not a big concern
yet for the compromised service [1–3]. In this paper, we mainly focus on one of the most popular
slow-hash algorithms for practical password storage, the bcrypt hash.

Traditional brute-force recovery [4,5] enumerates all combinations of characters. It causes time
and space explosion and is not considered practical for cracking bcrypt hashes. Using a large number
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of already leaked accounts and passwords, there is chance to crack more accounts with fewer number
of guesses. Previous password-reused based online guessing techniques have shown some potential
for offline recovery. Das et al. [6] found that, by applying a few popular transform rules to passwords
from other sites, one has a strong possibility to guess a password of the same user in another site.
Wang et al. [7] proposed several learning models for cross-site online guessing when given the victim’s
one sister password and some personally identifiable information. Despite their success for online
guessing, it is still difficult to use them to recover bcrypt-hashed passwords. Firstly, the number of
matched accounts is usually very small w.r.t. the size of a given database, as reported by [6–8]. The data
used by researchers and security analysts only accounts for a small portion of the one circulating in
the dark web, resulting in the asymmetry of information. Secondly, cross-site recovery techniques
leave the unmatched accounts out of the guessing scope. A straightforward solution is to perform a
cross-site recovery followed by a brute-force recovery. This order may not be optimal because some
weak passwords of unmatched accounts can be easier to recover than strong passwords of matched
accounts. Thirdly, the existing cross-site recovery models have to try a constant number of guesses for
each target account (e.g., 1000) because, unlike trawling models which generate a fixed sequence of
guesses (i.e., transformation rules) for all accounts, cross-site models have varied source passwords for
different accounts which make the subsequent expansions less deterministic than those in trawling
models. For bcrypt, this means a long time will be spent on a difficult account (e.g., 20s in total,
assuming that the hashing process costs 0.02s for each of the 1000 guesses) before it has chance to
recover the remaining accounts, among which many could be easier to crack.

In this paper, we propose to perform efficient recovery of leaked slow-hash (the bcrypt hash,
particularly) password of a site, leveraging large corpora of passwords from multiple sources for
both training and guessing. The compromised credential verification service provider VeriClouds Co.
(Seattle, WA, USA) claimed in its whitepapers [9] that between 15% and 40% of a typical company’s
credentials already exist in the proprietary database. This finding indicates a promising direction to
base massive hash recovery mainly on password reuse.

We target the overall efficiency of slow-hash recovery, i.e., recovering the most accounts with the
least cost. Our main focus is not about improving the success rate for each individual account, but
rather how to optimize the entire system’s efficiency. No study has been conducted for this setting.
The main insight is to consider the recovery of all accounts holistically, and to dynamically adjust
the order of attempts so that more promising (account, candidate password) pairs are tried earlier.
This reordering is critical for our setting because every attempt is expensive, and it is impossible to
finish, say, 1000 attempts for all accounts in a reasonable time. We perform the reordering by globally
ranking the (account, candidate password) pairs, while the candidate passwords for each account are
generated using a learning model called probabilistic context-free grammar (PCFG for short), which
is the mainstream method typically for online guessing. The probability learned by PCFG is utilized
for ranking.

Though the idea of global ranking is intuitive, there are several challenges. First, we need to
handle both accounts with and without leaked passwords, which is not done by previous PCFG models.
Second, the global ranking can take a long time and consume a lot of memory, which delays the recovery
and has scalability issues. These challenges are solved by integrating several ideas—unified PCFGs,
symmetrical multithread collaboration, and incremental transformation with materialization—into
a novel concurrent model. Unified PCFGs combine the trawling model with the targeted guessing
model and prioritize guesses for both cross-site and none cross-site accounts. Symmetrical multithread
collaboration separates the processes of password hashing and grammar expanding, making them
cooperate efficiently. Incremental transformation reduces the time and memory needed for sorting by
avoiding enumeration. Materialization can further transfer inactive candidates which occupy a lot of
memory to the disk and sort them externally.

In summary, the contributions of this paper are:
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• Recovering slow hashes by reusing passwords from a large source corpus. Our corpus is the
largest ever studied in literature to our knowledge. Based on it, we find cross-site passwords
account for a large proportion of the target sites, which can be exploited for hash recovery.

• Identifying a less-studied issue which degrades the efficiency of massive-scale slow-hash recovery:
weak accounts are blocked by stronger accounts during expanding and guessing. We solve this
by proposing concurrent global prioritization and overcome two key shortcomings of the usage
of a huge global heap which the method brings in.

• Helping organizations to better protect their data. Our algorithm models the behavior of
real-world attackers who would try the best to maximize the cracking profit before it is finally
exceeded by the cost. Based on it, organizations can better balance the hashing costs with
the sever load, and can proactively detect weak credentials before financial and reputational
damages happen.

The rest of this paper is organized as follows. Section 2 introduces existing recovery methods
and the challenges of slow-hash recovery. Section 3 presents the statistics of the VeriClouds dataset,
an overview of our proposed framework, and the details of the design. The experimental results are
given in Section 4. Section 5 concludes this paper and points out some future research directions.

2. Related Work

2.1. Offline Password Guessing

Human-chosen passwords are well-known to be predictable on average [10], which leave
room for password guessing. An attacker can carry out online guessing by trying a series of
possible password candidates against the publicly facing server. Another way to launch an attack
is offline guessing, during which the attacker recovers hashed (e.g., SHA1, MD5) passwords from
a breached database, without the need to query the publicly facing server. While an online attack
is facing mitigations including rate-limiting password entry attempts, single sign-on and two-factor
authentication, an offline guessing attack is easier to accomplish as it is free from the limit of number
of guesses. We study the problem of offline password recovery in this paper.

Typical types of offline guessing include:
Brute-force and mask attacks. Brute-force method simply enumerates all possible strings by

trying all combinations of characters from given charsets. This is inefficient and only used in practice
when guessing short or randomly generated passwords. Mask attack reduces the password candidate
keyspace by configuring the attack to explore a more specific and popular structure, such as trying
upper-case letters only on the first position. Mask attack can be effective for short passwords as it
requires less exhaustion.

Dictionary and mangled wordlist attacks. Dictionary attack, also known as wordlist attack,
simply tries all words in a list. Many modern cracking tools like Hashcat [4] and John the Ripper [5]
base their core attack modes on an improved version called mangled wordlist attack or rule-based
attack. In this case, the attacker applies transformation rules to the words from wordlists. There are
a few variations such as concatenating words from multiple wordlists (i.e., combinator attack) and
combining wordlists with masks (i.e., hybrid attack). The number of available candidates increases
with the exploration of keyspace being still restrained, which makes this category of attack very
successful in practice.

Markov models. The Markov model was first introduced to the field of password cracking
by Narayanan et al. [11] as a template-based model. In that work, Markov chain was only used
for assigning probabilities to letter-based segments. Later, Castelluccia et al. [12] proposed to use
whole-string Markov models (i.e., n-gram models) for evaluating password strength and they do not
divide a password into segments. Ma et al. [13] studied many variations of Markov models under
different configurations and found that Markov models tend to be more efficient than other existing
methods for certain datasets.
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Probabilistic context-free grammar. To generate guesses in decreasing probability order,
Weir et al. [10] proposed to use a probabilistic context-free grammar (PCFG). They divided passwords
into different templates according to character category. For example, ‘password123’ belongs to the
8-letter-and-3-digit template, symbolized as L8D3. The probabilities of the templates are trained from
a large corpus. Additionally, Komanduri [14] proposed substantial improvements to Weir’s PCFG,
such as intelligent skipping and pattern compaction, to make guessing more effective.

Neural Networks. Melicher et al. [15] proposed to use artificial neural networks to model
text passwords’ resistance to guessing attacks. They showed that neural networks can often guess
passwords more effectively than state-of-the-art approaches, when beyond 1010 guesses and on
non-traditional password policies.

In addition to the above methods, there is research such as [16] which studied the impact of using
multiple well-configured attack algorithms in parallel. This can approximate passwords’ vulnerability
to a real-world expertized attacker. However, we would like to focus on PCFG. As Ref. [17] pointed out,
PCFG shows better performance in the short term (i.e., given limited guessing attempts), which fits the
situation of bcrypt recovery. Due to the slow nature of bcrypt, we can achieve much fewer attempts
within a limited time than traditional hash algorithms. Thus, other algorithms such as Markov models
and neural networks can barely handle the task.

2.2. Password Reuse

In this case, an attacker tries to guess the target account’s password using the passwords matched
(usually by email address) from other breached sources. This kind of attack has become quite common
in recent days and its power has been manifested and reinforced by recent studies. These studies
proposed to make the full exploitation of the source passwords by mangling them with rules related to
the victim’s personal information and personally identifiable information (PII).

Methods leveraging password history of the same website. Zhang et al. [18] provided an
algorithmic framework for predicting future passwords from expired ones due to a password expiration
policy. Their algorithm modeled users’ behaviors of password modification when they were forced to
change them, and their experimental results well verified the conjecture that users tend to generate
future passwords based on old passwords.

Methods leveraging leaked passwords in other websites. Das et al. [6] identified a few popular
rules users often use to transform a basic password between sites, by analyzing several hundred
thousand leaked passwords from eleven web sites. Using a fixed order of these rules, they are the first
to propose a cross-site guessing algorithm, which is able to guess 30% of the transformed passwords
within 100 attempts. Wang et al. [19] proposed to use the Bayesian model to generate a customized
order of rules to improve the performance of [6]. Han et al. [20] examined the state-of-the-art Intra-Site
Password Reuses (ISPR) and Cross-Site Password Reuses (CSPR) based on the leaked passwords of
668 million members in China. By utilizing the patterns used by the same user, they achieved a major
improvement in guessing success rate compared to John the Ripper.

Methods leveraging leaked passwords and personal information. Li et al. [21] extracted some
of the most popular password structures, which can be expressed by personal information (e.g., name,
birthdates, phone number, national ID, email address and user name). Based on the findings, they
proposed a semantics-rich algorithm, Personal-PCFG, to crack passwords by generating personalized
guesses. Wang et al. [7] proposed TarGuess, a framework that can characterize seven typical targeted
guessing scenarios with sound mathematical models. They used customized PCFG models to address
the issue of cross-site online guessing, when given the victim’s one sister password and some PII.

2.3. Bcrypt Recovery

As with offline guessing, the target passwords are typically stored in the hashed (and possibly
randomly salted) form of (s, h) = (salt,Hash(pwd, salt)). The salt is used to resist mitigations such as
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rainbow table [22]. Despite this, the hashed password still can easily be checked by re-computing the
hash and comparing it to h, as traditional cryptographic hash functions are fast to compute.

A widely used method to defend against that is using modern hash functions which are slow to
evaluate, for example, bcrypt [23], scrypt [24], PBKDF2 [25] and argon2 [26]. We focus on bcrypt in
this paper.

The bcrypt password hash. Being used as the default password hash algorithm in many
today’s services, bcrypt [23] was designed to be resistant to brute force attacks and to remain
secure despite of hardware improvements. The usage of expensive key setup with user-defined
cost setting makes this hash algorithm very slow. Rapid random 32-bit lookups using Blowfish’s
variable S-boxes typically require 4 KB of local memory per instance and make bcrypt unfriendly to
CPU- or GPU-based parallelization.

Famous bcrypt dumps and their difficulty. We mainly study the three famous public bcrypt
dumps, Dropbox, Ashley Madison (AM for short) and Edmodo (passwords in it were hashed with
MD5+bcrypt and then obfuscated). They are extensively studied by researchers, perhaps by attackers
as well. The difficulty to recover these data is well illustrated in the report presented by Jens [27].
The report summarized the performance of hashcat (v1.32, with a single GPU and the default settings
for configurable algorithms) for various hash algorithms. The hashing speed is 1–10 BH/s for MD5
and SHA1-512, while it sharply decreases to 10-100 KH/s for bcrypt, slowing down by five orders of
magnitude. In addition, the hashing speed does not necessarily correspond to the cracked accounts
per unit time, which could be much slower. Indeed, it is reported that a few passwords can be
recovered from these bcrypt dumps unless exploiting implementation bugs of the algorithm itself,
if they exist [1–3].

Special-purpose hardware based cracking. Despite the security enforcement of bcrypt against
common-purpose hardware improvements, it is possible to achieve much better performance
with bcrypt implementations on homogeneous and heterogeneous multiprocessing platforms.
Malvoni et al. [28] proposed one such implementation that was integrated into the John the Ripper
password cracker and resulted in improved energy efficiency by a factor of 35+ compared to heavily
optimized implementations on modern CPUs. Our work, however, concentrates on common-purpose
hardware, as it is cheap and readily available for a real-world attacker. Special-purpose hardware
implementations are orthogonal and complementary to our approach.

Recently, Blocki et al. [20,29,30] proposed theoretical, economic models to evaluate the economics
of offline password cracking for different slow-hash algorithms. However, they did not realize that
password reuse could be a major contribution to boost slow-hash recovery. Furthermore, their work,
which heavily relied on the idealized recovery metric, failed to answer the practical issues a real-world
attacker would face with limited computational resources. As far as we are concerned, there is no
previous study on developing a practical guessing algorithm specifically for slow hashes such as
bcrypt, by optimizing the entire system’s efficiency rather than improving the success rate for each
individual account.

2.4. Recovery Metric

Weir et al. [31] proposed a metric called guess-number graph to evaluate the performance of
guessing algorithms, which has then been adopted by most research works. The guess number of
a password is its rank in the sequence generated by a specific algorithm in the order of decreasing
probability. The graph plots the fraction of cracked passwords w.r.t. various guess numbers.

However, traditional guess-number graph cannot reflect the temporal and spatial performance of
slow-hash algorithms and the size of the target dataset, which are the major factors in our scenario
of massive-scale slow hash recovery. In addition, it is non-trivial work to calculate the guessed
number of passwords for all cross-site accounts, since the source passwords are so diversified that
transformation-rule sequences, which are applied, are likely to be different.
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The empirical metric we are to use should be different from their metric. Thus, we propose to plot
the average number of cracked accounts versus elapsed time, named recovery-speed graph, which
describes the wall-clock performance of offline cracking. The time of model training is not included,
as the training can be done before the data leakage happens. Identical cross-site password pairs are
also not considered.

3. Our Solution

Data and recovery model. Here, we will briefly describe the VeriClouds corpus, which is closely
related to our study. The total amount of credentials in the VeriClouds corpus is 9,118,017,411 by
1 March 2018, collected from more than 90% [9] of the leaked databases on the deep/dark web and
from paste sites such as PasteBin. This dump includes most of the recent famous breaches and
therefore is of perfect quality. For example, the fraction of overlapped Dropbox’ accounts is up to 59%
with the VeriClouds corpus. There are a large number of email addresses with upper-case letters in
VeriClouds dump, which may be caused due to implementation errors, since no widely used mail
systems are case-sensitive to email addresses. These email addresses are lowercased to increase chances
of matching cross-site accounts. Table 1 gives some typical sources of the dump. As it is merely a
combo list, it is hard to exactly count the overlapped credentials with the listed sources. This dataset
is larger in magnitude than the ones ever studied in previous works [6–8]. VeriClouds has made the
data private and reclaimed any personal or academic access since 2018, due to the policy change after
the Facebook–Cambridge Analytica data scandal. The fourth author of this paper is a co-founder
of VeriClouds, who exclusively maintains the dataset to guarantee data safety. Note that we do not
directly exploit the data in this paper and the other authors have no access to it, in case of moral issues.

Table 1. Typical sources of the VeriClouds dump.

Source #Accounts Year

Exploit.in Combo List 593,427,119 2016
Anti Public Combo List 457,962,538 2016

MySpace 359,420,698 2008
NetEase 234,842,089 2015
Linkedin 164,611,595 2012

Badoo 112,005,531 2013

System goal. Given fixed computational resources, we aim to maximize the speed of cracking.
It implies we can maximize the number of recovered accounts in a fixed time—in other words, we can
minimize the time to recover a fixed fraction of accounts.

We set out to build a system for efficient recovery of bcrypt-hashed passwords. We have
determined four design criteria that we felt such a system should satisfy so as to be useful:

1. Effective: Recover a substantial proportion of the target dataset.
2. Efficient: Make the more promising (account, password) pairs to be attempted earlier.
3. Parallelizable: Perform as many trials as possible per unit time.
4. Scalable: Handle a large dataset with restricted memory resource.

Previous recovery methods do not satisfy 1, 2. A naive global ranking method that prioritizes
candidates from all accounts, however, does not satisfy 3, 4.

Figure 1 depicts the system architecture. The work flow can be briefly described as follows.
PCFG Expansion: To meet the 1st criterion, we explore differentiated PCFG models for different

accounts. Each heap elements, once popped from the heap, is expanded (by Selecter) according to
the PCFG rules of the corresponding account. The derived results will be pushed back to the heap to
maintain the global order of priority.
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Global Ranking: Candidates of all accounts are dynamically inserted to or removed from a
max-min heap [32], which ensures that a candidate with higher probability will always be popped
before any other one with lower probability. This relates to our 2nd criterion. To settle the problem
described in the 4th criterion, a skiplist [33] is used (by Heapifier) to migrate some of the candidates
when the heap size becomes extremely large.

Bcrypt Trial: During the recovery, a candidate is hashed with bcrypt and compared with the target
hash. If both hashes are the same, the account is claimed to be cracked. In our design, the bcrypt-trial
procedures (Bcrypters) can be separated from PCFG expansion (Selecter), so that we can assign each
Bcrypter to a single core. The system works asynchronously such that maximal parallelization can be
achieved, and thus satisfies the 3rd criterion.

We will describe each component in detail in the following subsections.Symmetry 2019, 11, x FOR PEER REVIEW 7 of 20 
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3.1. PCFG Expansion

• Model formulation

We model the procedure of recovering multiple bcrypt-hashed accounts as a grammar bundle
(also can be called a grammar forest), which is defined as

F = {Gt} ∪
{

Γ(Gr, G′t)
}

.

The forest is a combination of two different types of PCFG models. The trawling PCFG
model [10–14] Gt is a tuple <Σ, V, E, λ, s>, where:

• Σ is the set of 95 printable ASCII codes.
• V = {s; Li, Di, Si} (i ∈ {1, 2, . . . , 16}), where Li, Di, Si each stands for an alphabetic/digital/symbolic

string of length i (called segment).
• s ∈ V is the start symbol.
• E is a set of rules in the form of v→ v’, where v ∈ V and v’ ∈ (V ∪ Σ)∗.
• λ:E→ [0, 1] assigns each rule to a probability and it fulfills the constraint

∀v ∈ V, ∑
{v′ |v→v′∈E}

λ(v→ v′) = 1

i.e., for each left-hand side variable (e.g., L8 →) of Gt, all the probabilities associated with its rules (e.g.,
L8 →password, L8 →aaaaaaaa, . . . . . . ) must sum to 1.

The password-reuse based PCFG model [7] Gr is a tuple <Σr, Vr, Er, λr, sr>. Er, λr, sr are defined
as the same with Gt, while:

Σr = Σ ∪ {src, C1, . . . , C4; R1, R2; L1, . . . , L5; Yes, No; No’}
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Vr = V ∪ {C, LT, R, SM; ti, td, hi, hd; ti’, td’, hi’, hd’}

In the above definition, src is a sister password of the same account from the source corpus. We
will explain the transforming rules shown up in Σr, Vr later.

We use the function Γ: (Gr, Gt’) → Gr’ = <Σr’, Vr’, Er’, λr’, sr’> and the factor α to integrate
another trawling model Gt’ = <Σ’, V’, E’, λ’, s’> (using a similar definition with Gt) into Gr for cross-site
accounts, where

Vr
’= Vr

’∪ {sr
’},

Er
’= Er ∪ {sr

’ → s’, sr
’ → sr},

λr’(sr’→ s’) = 1 − α, λr’(sr’ → sr) = α, λr’(e) = λr (e)(e ∈ Er).

The factor α corresponds to those users who tend to use passwords transformed from
cross-site passwords.

This definition of grammar bundle makes our model differed from [7], since we manage to model
the behaviors of both cross-site password reuse and password trawling. The following theorem can
be proved.

Theorem 1. (Correctness of the grammar bundle) Each tree in the forest is a PCFG grammar.

Proof. Obviously, the sum of probabilities of all rules start with v (v ∈ Gt, Gt’ or Gr) equals 1. In addition,
for all rules beginning with sr’, we have Σe start with sr’ Pr(e) = Pr(sr’→ s’) +Pr(sr’→ sr) = (1 − α) + α =
1. Thus, for any specific left-hand side variable in the rules of Gr’, the sum of the probabilities of all of
its productions must sum to 1. �

• Training

We train λ, λ’ on 1 million passwords of a similar service (training site) with the target site. Each
password is divided into segments. For each segment, we add up the count of its occurrences. For
instance, 4abc$$ can be parsed as D1L3S2 and each of the occurrences of rules s→ D1L3S2, D1→
4, L3 → abc, S2 → $$ will be added by one. The probabilities of rules are calculated according to
their counts.

To train λr, we first collect password pairs (src_pw, train_pw) by matching the training site with
the source site w.r.t. email addresses. After filtering out the 10,000 most common passwords from
the training site, for each of the remaining pairs, both the source and target passwords are split into
segments. Then, we go through two phases of training, which is the same as the procedure described
in [7]. We sequentially apply cross-site transformation rules (capitalization (C1, . . . , C4), leet (L1, . . . ,
L5), reversal (R1, R2), sub-word movement (SM), structural manipulation (ti, td, hi, hd), segmental
manipulation (ti’, td’, hi’, hd’)) on src_pw, and count the occurrence of a rule if it makes the resulted
password src_pw’ closer to train_pw in terms of Levenshtein distance [34]. We here describe each rule
in detail. C1 capitalizes all letters; C2 capitalizes the 1st letter; C3 lowers all letters; C4 lowers all letters;
L1, L2, L3, L4, L5 each performs the substitution of ‘a’ <-> ‘@’, ‘s’ <-> ‘$’, ‘o’ <-> ‘0’, ‘i’ <-> ‘1’, ‘e’ <->
‘3’; R1 reverses all characters; R2 reverses each segment; SM moves sub-words within a password; ti
inserts a segment at the tail; td deletes the last segment; hi inserts a segment at the head; hd deletes the
first segment; ti’ inserts a character at the tail of a segment; td’ deletes the last character of a segment;
hi’ inserts a character at the head of a segment; hd’ deletes the first character of a segment. Since most
passwords are not longer than 16, only passwords within 16 characters are considered.

The α factor for Γ is trained in an approximate way. We simply count the fraction of accounts that
are not filtered out during the training of λr.

• Expansion

Starting from s and sr’, we can repeatedly apply transform rules to derive lists of guesses.
Candidates are generated in the descending order of probability according to their corresponding
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grammar tree. For example, the guessing list of Gt can be 123456 (Pr(s→ D6) Pr(D6→ 123456) = 0.016),
4abc$$4 (Pr(s → D1L3S2D1)·Pr(D1 → 4)·Pr(L3 → abc) Pr(S2 → $$) Pr(D1 → 4) = 0.008), etc.
The left-hand side of a rule in Gt is called a terminal if it only contains ASCII chars; otherwise, it
is called as a non-terminal. The parameterized model Gr’, when given the password princess, generates
princess1 (Pr(sr’ → sr)·Pr(sr → princess1)·Pr(sr → L8)·Pr(C→ No)·Pr(LT→ No) Pr(R→ No) Pr(SM→
No) Pr(L8→ ti) Pr(ti→ D1) Pr(D1→ 1) Pr(L8→ No0) Pr(D1→ No0) = 0.018), Princess1 (Pr(sr’→ sr)
Pr(sr → princess1) Pr(C→ C3) Pr(LT→ No) Pr(R→ No) Pr(SM→ No) Pr(L8D1→No) Pr(L8→ No’)
Pr(D1→ No’) = 0.012), etc.

3.2. Global Ranking

Weir et al. [10] and Komanduri [14] studied offline cracking without using leaked passwords
for matching accounts. As a consequence, all accounts will have identical trials, and a single priority
queue is the only choice. For the scenario we are studying, each matched account needs to have a
different trial. None of the works we have found so far uses a single global queue to perform the trials,
for this scenario [6,7].

According to criterion 2, we need to sort (acc, cand) pairs (where acc is the id of the account and
cand is the candidate password). Under the definition of F, we find the probabilities of candidates
generated by different grammar trees to be comparable with each other. Therefore, we can globally
sort all of them by probability and try the highest first instead of guessing within the local trees.
This prioritization is supposed to make fewer attempts to achieve the same number of successful
guesses, which means that the model will be updated sooner. Algorithm 1 outlines the global sort
algorithm. The kernel of the algorithm is to use the priority heap PQ to store generated candidates
from all accounts and perform global sort when dequeuing (PQ.PopMax()) or enqueuing (PQ.Push())
an element. The efficient sorting procedure is internally guaranteed by the well-known heap data
structure (binary tree) itself [35].

Algorithm 1. GlobalSort.

Input: PQ:max-min heap, EQ:expansion queue,
TQ:trial queue, IQ:insertion queue
Output: 4 updated queues
1 while True do
2 if EQ!=0 then
3 cand<-EQ.Get()
4 else
5 with PQ.lock do
6 cand<-PQ.PopMax()
7 if isPseudTerminal(cand) or isTerminal(cand) then
8 TQ.Put(cand)
9 else
10 cands<-IncTranse(cand)
11 foreach e in cands do
12 IQ.Put(cands)

We now dive deep into the optimization details in our global sort algorithm.

• Incremental transformation.

Due to the large number of accounts and potential guesses, we cannot perform ranking after all
the candidate passwords are generated for all accounts in the leaked source. Thus, the priority queue
only stores a subset of sorted (acc, cand) pairs which have been generated so far. When there is an idle
thread for bcrypt trial, the head of the queue, i.e., the most promising guess (acc, cand) can be fed to
that thread for trial.
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In a naive design of the password-reuse based PCFG Gr, only after sequentially extending a given
candidate using all six types of cross-site transformation rules in a round, we can then use the resulting
new candidates (called pseudo-terminals as they are still non-terminals) for guessing. After trying
the candidates by hashing them with bcrypt algorithm, they are enqueued again for next-round’s
expansion. Expanding the six classes of rules all at once will cause thread blocking due to exponential
blow-up of the size of resulted candidates.

To overcome that, we use a stepped expanding strategy for non-terminals of Gr. Once a
non-terminal is dequeued for expansion, it only takes one of the six classes of transformation rules, i.e.,
the successor of the last rule used along the sequence: C, LT, R, SM, structural rules, segmental rules,
C, LT, R, SM, structural rules, segmental rules. The resulting non-terminals will then be enqueued
in one batch. The space of alphabetic segments can be huge, which, however, can be resolved by
quantifization [14]. We can prove that the order of dequeuing the fully transformed passwords
remains correct.

Theorem 2. (Correctness of incremental transformation) The pseudo-terminal currently dequeued for guessing
always has a probability not lower than any pseudo-terminal that will be dequeued later.

Proof. Let P1 stands for the current pseudo-terminal dequeued from the priority queue. Assume that
there will be some pseudo-terminal P2 dequeued later, with Pr(P2) >Pr(P1). At the time when P1 is
dequeued, there must be some predecessor P2’ in the priority queue that will finally be extended into
P2 after l(l ≥ 0) steps of extension. Therefore, Pr(P2’) ≥ Pr(P2). However, the property of priority
queue ensures that all elements stored within are correctly sorted, and thus Pr(P1) ≥ Pr(P2’). Thus,
we have Pr(P1) ≥ Pr(P2), which violates the assumption. �

• Lazy generation

When a candidate is being hashed and verified in a bcrypt trial thread, the ranking algorithm
does not generate transformations for it until the bcrypt trial fails. This saves unnecessary enqueue
and dequeue operations.

• Collapsing common candidates

Different accounts share the same model (Gt for cross-site users and Gt
’ for the others) to generate

common candidates. Each common candidate is stored only once for all accounts in the queue, which
saves a large amount of space. In contrast, given distinct source passwords of different accounts, Gr

has to generate different candidates accordingly.

• Materializing passwords of lower probability

By using the notion of materializing, we mean to transfer certain data in the memory to the disk.
When the memory is full, system performance degrades. Previous optimizations such as intelligent
skipping and quantifization [14] do not fit into our scenario, as the probabilities of generated candidates
appear to be ‘flat’ (i.e., same or very close) due to the usage of global prioritization over very large
numbers of accounts. Unlike Gt, there can be different instances of expansion trees for different
cross-site accounts using Gr. To alleviate the situation, when the number of pseudo-terminals in the
priority queue exceeds a certain threshold l, we remove the elements at the tail. These elements have
lower probabilities and will not be tried earlier than the preceding l pseudo-terminals. In other words,
if we can only run the recovery procedure for d = l/r (r is the average recovered accounts per day)
days, they are unlikely to be used. Therefore, removing these unpromising pairs can make room for
other candidates with higher probabilities.

In practice, we relax the restriction by simply cut off the queue’s ‘tail’ beyond a threshold. To make
the removal operation efficient, we use a max-min heap [32] instead of traditional heaps, such that
both popping the maximal or the minimal element can be done in O(log n) time, where n ≤ N is the
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length of the queue. A max-min heap is a complete binary tree that is defined all the same as the one
defined in a traditional heap sort algorithm, except that each node at an even level in the tree is greater
than all of its descendants, while each node at an odd level in the tree is less than all of its descendants.

These non-terminals removed from max-min heap are not dropped but stored on the disk. We use
a customized skiplist [33] for incremental and efficient external sort, in which inserting an element
requires an expected time of O(log n) and dequeuing the max element only needs constant time.
A skiplist is built in layers, where the bottom layer is an ordinary ordered linked list and an element in
each layer i appears in layer i + 1 with some fixed probability p (p = 1/2 in this case). We introduces
duplicated keys for indexing elements, as the probabilities (i.e., keys) of some non-terminals can be
the same. Elements in the skiplist will be loaded back into memory once needed, as described in
detail in Algorithm 2. As for the concurrent race condition issue, we use a conservative and thus
more efficient strategy. For each shared queue, we use a fine-grained lock to avoid race conditions
caused by enqueue/dequeue operations. However, we do not strictly enforce the state consistence
of different queues. For example, we do not use a big lock to enclose the sequence of a dequeue
operation of the insertion queue followed by an enqueue operation of skiplist. Moreover, we do
not use a lock when reading the maximal or minima element in the heap. These optimizations may
introduce some inconsistence, but the performance gained will overwhelm the accuracy sacrificed
since the probabilities of candidates co-existing in the heaps in a short period of time are fairly close.

Other queues which are used for caching parallel tasks, i.e., trial queue, expansion queue and
insertion queue, also need to transfer overflowed data to the file system, to avoid too much memory
consumption. Unlike the method used for heaps, the materialization for these queues is intuitive since
they follow the first-in-first-out (i.e., FIFO) principle. Overflowed elements can be directly moved to
the disk without the need of sorting.

We use a toy example depicted in Figure 2 to describe all proposed algorithms in the paper. In this
case, there are 1,000,000 accounts in the target site to recover. Some are cross-site accounts (e.g., usr1,
usr999999), and the other are not (e.g., usr0). The sister passwords for usr1 and usr999999 from the
given source site are ‘princess’ and ‘monkeys’ respectively.
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Algorithm 2. Materialization.

Input: PQ:max-min heap, SL:skiplist, IQ:insertion queue
Output: 3 updated queues
1 while True do
2 if IQ!=0 then
3 cand<-IQ.Get() /* candidate to insert */
4 if cand.prob>=SL.ReadMax() then
5 with PQ.lock do
6 if Len(PQ)>=MAX_LEN then
7 if cand.prob<=PQ.ReadMin() then
8 SL.Push(cand)
9 else
10 pq_min<-PQ.PopMin()
11 SL.Push(pq_min)
12 PQ.Push(cand)
13 else
14 SL.Push(cand)
15 with PQ.lock do
16 if Len(PQ)<MAX_LEN then
17 sl_max<-SL.PopMax()
18 PQ.Push(sl_max)

Example 1. (Running of Algorithm 1 for the toy example) As with the toy example, the corresponding execution
trace of GlobalSort (i.e., the Selecter thread) can be explained as follows. Let’s only consider two accounts usr0,
usr999999 and use only two types of cross-site transform rules (capitalization and segmental transformation)
for simplicity. Given a previous state (Iter i) of the heap, trail queue and expansion queue, Selecter decides
where to fetch a new candidate and how to deal with it. Via this toy example, we can see how the global sort
algorithm prioritizes promising passwords and saves unnecessary computational cost for lower-probability
passwords. For example, vulnerable accounts like usr999999 can be tried much earlier in our algorithm than
traditional methods.

Let’s analyze the time complexity and space complexity. Let n be number of accounts, and
m be the maximal candidates we can generate for each account. The count of loops is O(n·m).
The most expensive operation in each loop is the PQ.PopMax() which can be done within O(lg(n·m)).
The costs of heap insertion and skiplist insertion are also O(lg(n·m)), but it can be reduced as the two
types of insertions can be done asynchronously via the Heapifier thread. The upper-bound memory
requirement is constant as we restrain the maximal heap size to MAX_LEN.

3.3. Bcrypt Trial

Unlike traditional PCFGs which can adopt embarrassing parallelization by simply dividing and
distributing the data for different threads, our model cannot be parallelized easily because of the
unified heap. The individual processes need coordination. We propose symmetrical multithread
collaboration to decouple the password hashing and expanding processes.

In our design, the bcrypt trial component Bcrypter takes a triplet (acc, cand, hash) as input (where
acc is the account id, cand is the candidate password and hash is the bcrypt hash to recover), hashes
the password and compares it with the leaked bcrypt hash. If they are identical, it reports a cracked
account. Otherwise, it pushes the candidate into the lazy generation task queue (i.e., expansion queue)
for the Selecter thread to expand. Likewise, Selecter will push a task into the trial queue for Bcrypter
to perform hashing when it gets a terminal or pseudo-terminal from the heap. In this way, Bcrypter is,
to a large extent, decoupled with heavy operations such as heap sorting.
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Since bcrypt hashing is the most time-consuming procedure, and one single bcrypt hashing
procedure cannot be accelerated using multiple cores due to the special design of the bcrypt algorithm,
we use multiple threads to allow running multiple bcrypt hashing instances. To maximize the
utilization of a multi-core system, we set the number of bcrypt trial threads to be the total number of
cores minus 2. The other two cores are reserved for the sort and expanding components, i.e., Heapifier
and Selecter.

Algorithm 3 outlines the algorithm. The cost of time and space of BcryptTrial is similar
to GlobalSort.

Algorithm 3. Bcrypt Trial.

Input: PQ:max-min heap, EQ:expansion queue,
TQ:trial queue, sets of recovered accounts
Output: Updated queues and sets
1 while True do
2 if TQ!=0 then
3 cand<-TQ.Get()
4 else
5 with PQ.lock do
6 cand<-PQ.PopMax()
7 if not(isPseudTerminal(cand) or isTerminal(cand)) then
8 EQ.Put(cand)
9 break
10 isCracked<-try(cand)
11 if isCracked then
12 Output: <cand.usr:cand.password>
13 if isTerminal(cand) and not isAllUsrTried(cand) then
14 TQ.Put(cand)
15 if not isCracked or not isTerminal(cand) then
16 EQ.Put(cand)

Example 2. (Running of Algorithm 3 for the toy example) We use the same data as that in Example 1. Only one
single Bcrypter thread is used for simplicity. The execution trace of Bcrypter can be longer than that of Selecter.
Note that the bcrypt trial can be much slower than that depicted in our example. There is only one non cross-site
account (i.e., usr0), so we can directly drop 123456 after trying it for usr0. We can observe that only terminals
and pseudo-terminals can be inserted into Trial Queue.

Combining Examples 1 and 2, Figure 3 shows an illustrative running trace of the entire
multi-thread system. After iter i + 1, Selecter’s decisions together with those of Bcrypter(s) will
cooperatively result in a new state (Iter i + 1). From the example, we can see that expansion queue
and trial queue, which act as candidate caches, are higher prioritized than the heap in every decision
procedure of Selecter and Bcrypter. Selecter and Bcrypter can directly fetch cached candidates without
accessing the heap, the cost of which is usually very expensive due to lock contentions and the
inserting/popping operations followed by sorting. Still, when trial queue is empty, Bcrypter will never
take breaks as it can continue to fetch candidates from the heap instead of the cache, which is similar
to Selecter.
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4. Experimental Evaluation

This section presents an experimental evaluation of the techniques proposed in this paper.
The goals of the evaluation are comparing the efficiency of the proposed solution with existing
works, and studying the impact of the two main techniques: global ranking and parallelization.

4.1. Experimental Setting

We study the recovery performance of the system for given target datasets, for a period of seven
days. As discussed in Section 2.4, we use the metric of recovery-speed graph instead of a guess-number
graph, in order to better evaluate the performance of slow-hash recovering algorithms.

Methods compared:

• oclHashcat. We use the default configuration of oclHashcat and pipe the output of trawling
PCFG [10] into it for guessing. In the default configuration, oclHashcat will not try the next
account until all candidates are tried or a correct guess is made for the current account. The PCFG
is trained on 1 million passwords randomly sampled from Linkedin.

• TarGuessII+Trawling PCFG. TarGuessII can be parallelized, naively but inefficiently, by
segmenting the data and assigning each segment to a core. The password-reused model is trained
on cross-site password pairs from the source site of Linkedin to the target site of 000webhost,
though it would be better to train distinctly for different target sites. We vary the number of trials
per account (k) by 100, 1000, and 10000. The trawling model is similarly trained as the one used
for oclHashcat.

• BcryptRecover. This implements our method. The training configuration is the same
with TarGuessII.

For the sake of privacy, we will not directly access the sensitive data for study. For each of the
data sources, we generate a password list whose data size, account coverage, hashing strategy and
password distribution are similar to the original source. We use a VeriClouds-styled list as the source
dataset, whose statistical features have been described in Section 3. To compare the effectiveness of the
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three methods above, we test them on several bcrypt datasets as the targets, whose statistics are as
shown in Table 2. The Dropbox-styled list is based on Dropbox, which is a famous service for providing
cloud storage. The related breach happened in July 2012 and half of the data is hashed with bcrypt. The
AM-styled list is based on Ashley Madison (AM), which is a massive dating site and suffered a breach
in July 2015. The Edmodo-styled list is based on Edmodo, which is an education platform hacked in
May 2017. Note that AM dump was found to contain a programming error of the hashing procedure,
which makes a large fraction of accounts faster to crack [36]. We do not exploit the bug though, for the
sake of fair comparison with other datasets. We also consider a CSDN-styled list, which is based on
csdn.net (CSDN). CSDN is known as a plain-text password dump, which is well-suited to being used
for comparing different hash algorithms by re-hashing the passwords. To evaluate the impact of global
ranking and parallelization, we deliberately compare different configurations of our algorithm on the
Dropbox-styled target list, still using the VeriClouds-styled list as the source dataset. Experiments are
performed in AWS EC2 SMP [37], configured as Ubuntu Server 14.04 LTS 64bit (HVM), SSD Volume
Type, with 16 cores/nodes (using the Amazon Compute hardware configuration [38]) and 64 GB RAM.
The master node hosts the Selecter, one slave is used for Heapifier, and each of the remaining 14 slaves
contains a Bcrypter. TarGuessII and BcryptRecover are written in Python. The number of threads
always equals the number of cores, if not explicitly declared in the paper.

Table 2. The statistics of bcrypt dumps and recovery results after one week.

Target Cost #Accounts %Overlap %Recovered

Dropbox-styled list 8 31,862,436 59.1% 20.1%
AshleyMadison (AM)-styled list 12 30,653,460 46.7% 19.4%

Edmodo-styled list 12 43,488,310 21.4% 8.1%
csdn.net (CSDN)-styled list (re-hashed) 12 6,428,630 39.2% 24.9%

4.2. Comparison of Various Approaches

This section presents the overall performance of the various approaches on several bcrypt dumps.
Table 2 displays the target dataset, the fraction of overlapped accounts with the source corpus, and the
cracked fraction after seven days.

The fractions of cross-site accounts in the target dumps are much larger than previous reports.
Let’s pick the CSDN-styled list for an illustration, since it appeared in most datasets used for earlier
works. For instance, Das et al. [6] only ended up with 6077 unique users of CSDN (which only accounts
for 0.1% of the total CSDN dataset) by analyzing a data collection of 10 sites with 7,962,678 records.
As with Wang et al. [7], the maximal overlapped CSDN accounts are just the 3.4% accounts from the
Dodonew breach in their experimental corpus.

Figure 4 plots the recovery-speed graphs for the three methods to be compared on the three bcrypt
datasets, the Dropbox-styled list, the AM-styled list and the Edmodo-styled list. For the Dropbox-styled
list, the top speed of BcryptRecover is about 18,000 hashes recovered per hour. The speeds of oclHashcat
and TarGuessII + Trawling PCFG remain steadily below 500 (28 and 498 for k = 100, respectively),
while BcryptRecover stays at a much higher speed of 7200 than the other methods for the entire seven
days. Our method slows down with time, since the most promising passwords can be recovered have
been efficiently cracked in a short period of time. To reach the same cracked fraction of 20.1%, our
approach takes one week, while the other approaches are unlikely to be feasible for real-world attackers
since they would need several months of recovery. For the AM-styled list and the Edmodo-styled list,
we see similar trends. The cracked fraction of the Edmodo-styled list is smaller than the Dropbox-styled
list and the AM-styled list, since it is an education site used by young children who account for at least
two thirds [3] of the total accounts and do not often use MySpace, LinkedIn and other online services
that have been breached.
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Figure 4. Overall recovery performance for non-identical passwords (each of the subfigures (a), (b)
and (c) corresponds to the recovery-speed graph of the Dropbox-styled list, the AM-styled list and the
Edmodo-styled list).

In summary, our solution is faster with orders of magnitude, when the same number of accounts
is recovered. The cracked rate of our approach is not worse than existing approaches, which means the
quality of the attempts is not sacrificed for the purpose of efficiency.

4.3. Impact of Global Ranking

To evaluate the impact of global ranking, we compare BcryptRecover to two alternative methods
using the Dropbox-styled list:

• LocalFullTrans. This is exactly TarGuessII + Trawling PCFG, in which we consider a typical value
1000 for k. All the candidate passwords of a single round are generated and sorted at once before
the bcrypt recovery begins, instead of being generated step by step according to the types of
transformation rules.

• GlobalFullTrans. It replaces the incremental transformation strategy of BcryptRecover (alias
GlobalIncTrans) with the expanding strategy of LocalFullTrans.

The temporal performance is depicted as a recovery-speed graph, and the spatial performance is
plotted as number of accounts of the target site vs. the space required by each method.

From Figure 5, we can see again that the usage of a global heap indeed makes promising
accounts to be cracked earlier, which gives GlobalIncTrans and GlobalFullTrans a big advantage of
cracking speed over LocalFullTrans. However, the full transformation strategy results in a significant
delay of the recovery—the average number of accounts cracked per hour of GlobalFullTrans falls far
below GlobalIncTrans.



Symmetry 2019, 11, 450 17 of 20

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 20 

 

heap length limit of MAX LEN. LocalFullTrans needs much less memory as compared with the other 

two methods, since it only uses a small local heap for each account. 

 

Figure 5. Temporal impact of global ranking. 

 

Figure 6. Spatial impact of global ranking. 

4.4. Impact of Parallelization 

This section evaluates the impact of multi-thread technique in our solution. We compare the 

performance with varied number of threads on the Dropbox-styled list. Besides Bcrypter threads, 

two other threads should be reserved for Selecter and Heapifier. 

From the results in Figure 7, it is clear that the performance becomes worse when we reduce the 

number of threads, but our solution always outperforms the baseline, as shown in Figure 4a. When the 

total #threads exceeds the #cores, little gain is achieved by increasing #threads. The reason lies in the fact 

that bcrypt hashing requires a lot of memory per instance thus making it hard for CPU-based 

parallelization. Moreover, the lock contention also becomes severe when the number of threads scales up. 

 

Figure 7. Multi-thread performance. 

,

,

,

,

,

,

,

,

,

,                          ,       ,                                       ,       , ,       , ,       , 

,

,

,

,

,

,

,

,

,

,

Figure 5. Temporal impact of global ranking.

To compare the memory consumptions of these methods, we randomly sampled from the
Dropbox-styled list a group of test data with varied number of accounts (from 100,000 to 2,600,000 with
an incremental step of 500,000). Figure 6 shows that GlobalFullTrans requires 12 GB more space than
GlobalIncTrans for the data size of 600,000 accounts and is infeasible for our VM when the number of
accounts grows to more than 1,100,000. GlobalIncTrans also uses a huge global heap, but it saves the
memory needed for enumerating candidates within a whole round. The memory footprint won’t ever
grow after a certain threshold, as GlobalIncTrans manages to materialize extra elements beyond the
heap length limit of MAX LEN. LocalFullTrans needs much less memory as compared with the other
two methods, since it only uses a small local heap for each account.
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4.4. Impact of Parallelization

This section evaluates the impact of multi-thread technique in our solution. We compare the
performance with varied number of threads on the Dropbox-styled list. Besides Bcrypter threads, two
other threads should be reserved for Selecter and Heapifier.

From the results in Figure 7, it is clear that the performance becomes worse when we reduce
the number of threads, but our solution always outperforms the baseline, as shown in Figure 4a.
When the total #threads exceeds the #cores, little gain is achieved by increasing #threads. The reason
lies in the fact that bcrypt hashing requires a lot of memory per instance thus making it hard for
CPU-based parallelization. Moreover, the lock contention also becomes severe when the number of
threads scales up.
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5. Conclusions

In this work, we attack the problem of speed boost for massive-scale slow-hash recovery.
We largely increase the number of accounts can be recovered within a limited period of time,
by prioritizing weak accounts in a concurrent manner. Several optimization methods are proposed to
make this global prioritization parallelizable and scalable. Our method can also serve as a better metric,
among others, for evaluating the strength of the credential storage policy taken by web services.

The VeriClouds corpus mentioned in our study, however, is still a small part of the whole
corpus that the hacker community can gather with the ever-growing number of breaching incidents.
The potential fraction of a target dump that can be recovered, hence conjecturally, could be far beyond
the results presented in this paper. Our result has a very practical implication of real-world threats.
Generally, an attacker needs to make a trade-off between the recovery profit and the cost. For example,
given t days to recover u accounts on an AWS VM rent by r dollars per day and the profit gained per
account as p, the total profit versus total cost becomes u·p vs. t·r. The attacker has to crack as many
accounts as possible within the same time for more gains. In the service providers’ view, on the other
hand, by accurately modeling the attacker’s behavior, they can better manage the risk of the database.
One policy he can conduct is to carefully determine the work factors by balancing the load of servers
and the strength of dataset, which can be evaluated using metrics like our proposed recovery model.
Another countermeasure is to proactively detect and supervise weak accounts before financial and
reputational damage to the organization become reality.

Future works on this topic may include mining deeper into the source data. Firstly, we can match
accounts using some kind of correlational analysis [39–43] instead of simply using email addresses.
Secondly, other TarGuess models [7], which utilize PII info, can also be used to improve the result of
the proposed guessing algorithm.

Author Contributions: T.W., implemented the proposed method and composed the paper; Y.Y., revised the paper;
C.W., provided the idea and helped with the composition of the paper; R.W., contributes partially to the idea and
maintains the dataset used in the paper.

Funding: This research was supported by the Mobile Research Funding of the Chinese Education Ministry (MCM)
under Grant No. MCM20170404.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Why You Shouldn’t Panic about Dropbox Leaking 68 Million Passwords. Available online: https://www.
forbes.com/sites/thomasbrewster/2016/08/31/dropbox-hacked-but-its-not-thatbad/#675839355576
(accessed on 8 May 2017).

https://www.forbes.com/sites/thomasbrewster/2016/08/31/dropbox-hacked-but-its-not-thatbad/#675839355576
https://www.forbes.com/sites/thomasbrewster/2016/08/31/dropbox-hacked-but-its-not-thatbad/#675839355576


Symmetry 2019, 11, 450 19 of 20

2. Lessons Learned from Cracking 4000 Ashley Madison Passwords. Available online: https://arstechnica.com/
informationtechnology/2015/08/cracking-all-hacked-ashleymadison-passwords-could-take-a-lifetime/
(accessed on 15 December 2017).

3. Deep Dive into the Edmodo Data Breach. Available online: https://medium.com/4iqdelvedeep/deep-dive-
into-theedmodo-data-breach-f1207c415ffb (accessed on 22 November 2017).

4. Hashcat. Available online: https://hashcat.net/oclhashcat/ (accessed on 1 September 2017).
5. John the Ripper. Available online: http://www.openwall.com/john/ (accessed on 1 December 2017).
6. Das, A.; Bonneau, J.; Caesar, M.; Borisov, N.; Wang, X. The tangled web of password reuse. In Proceedings of

the NDSS 2014, San Diego, CA, USA, 23–26 February 2014.
7. Wang, D.; Zhang, Z.; Wang, P.; Yan, J.; Huang, X. Targeted online password guessing: An underestimated

threat. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2016), Vienna, Austria, 24–28 October 2016; pp. 1242–1254.

8. Han, W.; Li, Z.; Ni, M.; Gu, G.; Xu, W. Shadow attacks based on password reuses: A quantitative empirical
view. IEEE Trans. Depend. Secur. Comput. 2016. [CrossRef]

9. VeriClouds Whitepapers & Resources. Available online: https://www.vericlouds.com/resources/
(accessed on 3 March 2018).

10. Weir, M.; Aggarwal, S.; de Medeiros, B.; Glodek, B. Password cracking using probabilistic context-free
grammars. In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, Berkeley, CA, USA,
17–20 May 2009; pp. 391–405.

11. Narayanan, A.; Shmatikov, V. Fast dictionary attacks on passwords using time-space tradeoff. In Proceedings
of the 12th ACM Conference on Computer and Communications Security (CCS 2005), Alexandria, VA, USA,
7–11 November 2005; pp. 364–372.

12. Castelluccia, C.; Durmuth, M.; Perito, D. Adaptive password-strength meters from Markov models.
In Proceedings of the 2012 Network and Distributed Systems Security Symposium, San Diego, CA, USA,
5–8 February 2012; pp. 23–26.

13. Ma, J.; Yang, W.; Luo, M.; Li, N. A study of probabilistic password models. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014; pp. 689–704.

14. Komanduri, S. Modeling the Adversary to Evaluate Password Strengh with Limited Samples. Ph.D. Thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 2016.

15. Melicher, W.; Ur, B.; Segreti, S.; Komanduri, S.; Bauer, L.; Christin, N.; Cranor, L. Fast, lean and accurate:
Modeling password guessability using neural networks. In Proceedings of the 25th USENIX Conference on
Security Symposium, Austin, TX, USA, 10–12 August 2016; pp. 1–17.

16. Ur, B.; Segreti, S.M.; Bauer, L.; Christin, N.; Cranor, L.F.; Komanduri, S.; Kurilova, D.; Mazurek, M.L.;
Melicher, W.; Shay, R. Measuring real-world accuracies and biases in modeling password guessability. In
Proceedings of the 24th USENIX Conference on Security Symposium (USENIX SEC 2015), Washington, DC,
USA, 12–14 August 2015; pp. 463–481.

17. Wang, D.; Wang, P. On the implications of Zipf’s law in passwords. In Proceedings of the European
Symposium on Research in Computer Security, Heraklion, Greece, 26–30 September 2016; pp. 1–21.

18. Zhang, Y.; Monrose, F.; Reiter, M. The security of modern password expiration: An algorithmic framework
and empirical analysis. In Proceedings of the 17th ACM conference on Computer and Communications
Security (CCS 2010), Chicago, IL, USA, 4–8 October 2010; pp. 176–186.

19. Wang, C.; Jan, S.T.K.; Hu, H.; Wang, G. Empirical analysis of password reuse and modification across online
service. arXiv 2017; arXiv:1706.01939.

20. Harsha, B.; Blocki, J. Just in Time Hashing. In Proceedings of the 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), London, UK, 24–26 April 2018; pp. 368–383.

21. Li, Y.; Wang, H.; Sun, K. A study of personal information in human-chosen passwords and its
security implications. In Proceedings of the 35th Annual IEEE International Conference on Computer
Communications (INFOCOM 2016), San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

22. Oechslin, P. Making a faster cryptanalytic time-memory trade-off. In Proceedings of the Annual International
Cryptology Conference (CRYPTO 2003), Santa Barbara, CA, USA, 17–21 August 2003; pp. 617–630.

23. Provos, N.; Mazières, D. A future-adaptable password scheme. In Proceedings of the USENIX Annual
Technical Conference 1999 (FREENIX Track), Monterey, CA, USA, 6–11 June 1999; pp. 81–91.

https://arstechnica.com/informationtechnology/2015/08/cracking-all-hacked-ashleymadison-passwords-could-take-a-lifetime/
https://arstechnica.com/informationtechnology/2015/08/cracking-all-hacked-ashleymadison-passwords-could-take-a-lifetime/
https://medium.com/4iqdelvedeep/deep-dive-into-theedmodo-data-breach-f1207c415ffb
https://medium.com/4iqdelvedeep/deep-dive-into-theedmodo-data-breach-f1207c415ffb
https://hashcat.net/oclhashcat/
http://www.openwall.com/john/
http://dx.doi.org/10.1109/TDSC.2016.2568187
https://www.vericlouds.com/resources/


Symmetry 2019, 11, 450 20 of 20

24. Percival, C. Stronger Key Derivation via Sequential Memory-Hard Functions. Presentation at BSDCan 2009.
Available online: http://www.tarsnap.com/scrypt/scrypt.pdf (accessed on 10 May 2018).

25. Kaliski, B. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC 2898. 2000.
Available online: http://tools.ietf.org/html/rfc2898 (accessed on 6 April 2018).

26. Biryukov, A.; Dinu, D.; Khovratovich, D. Argon2: New generation of memory-hard functions for password
hashing and other applications. In Proceedings of the 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), Saarbrucken, Germany, 21–24 March 2016; pp. 292–302.

27. Steube, J. PRINCE: Modern Password Guessing Algorithm. Presentation at Passwords 2014. Available online:
https://hashcat.net/events/p14-trondheim/prince-attack.pdf (accessed on 16 December 2017).

28. Malvoni, K.; Designer, S.; Knezovic, J. Are your passwords safe: Energy-efficient bcrypt cracking with
low-Cost parallel hardware. In Proceedings of the 8th USENIX Workshop on Offensive Technologies
(WOOT 2014), San Diego, CA, USA, 19 August 2014.

29. Blocki, J.; Harsha, B.; Zhou, S. On the economics of offline password cracking. In Proceedings of the 2018
IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018.

30. Blocki, J.; Harsha, B.; Kang, S.; Lee, S.; Xing, L.; Zhou, S. Data-Independent Memory Hard Functions:
New Attacks and Stronger Constructions. 2018. Available online: https://eprint.iacr.org/2018/944
(accessed on 10 May 2018).

31. Weir, M.; Aggarwal, S.; Collins, M.; Stern, H. Testing metrics for password creation policies by attacking large
sets of revealed passwords. In Proceedings of the 17th ACM Conference on Computer and Communications
Security (CCS 2010), Chicago, IL, USA, 4–8 October 2010; pp. 162–175.

32. Min-Max Heap. Available online: https://en.wikipedia.org/wiki/Min-max_heap (accessed on
10 May 2018).

33. Skip List. Available online: https://en.wikipedia.org/wiki/Skip_list (accessed on 3 April 2018).
34. Levenshtein Distance. Available online: https://en.wikipedia.org/wiki/Levenshtein_distance (accessed on

10 May 2018).
35. Heapsort. Available online: https://en.wikipedia.org/wiki/Heapsort (accessed on 3 April 2018).
36. Once Seen as Bulletproof, 11 Million+ Ashley Madison Passwords Already Cracked. Available online:

https://arstechnica.com/informationtechnology/2015/09/once-seen-as-bulletproof-11-million-ashley-
madison-passwords-already-cracked/ (accessed on 11 December 2017).

37. AWS EC2. Available online: https://aws.amazon.com/ec2/?ft=n (accessed on 22 August 2017).
38. Amazon EC2 Instance Types. Available online: https://aws.amazon.com/ec2/instance-types/?nc1=h_ls

(accessed on 10 May 2018).
39. Ding, Z.; Jia, Y.; Zhou, B.; Han, Y. Mining topical influencers based on the multi-relational network in

micro-blogging sites. China Commun. 2013. [CrossRef]
40. Wang, P.; Lu, K.; Li, G.; Zhou, X. DFTracker: Detecting double-fetch bugs by multi-taint parallel tracking.

Front. Comput. Sci. 2018, 1–17. [CrossRef]
41. Wu, Z.; Lu, K.; Wang, X.; Zhou, X. Collaborative technique for concurrency bug detection. Int. J.

Parallel Program. 2015, 43, 260–285. [CrossRef]
42. Wu, T.; Yang, Y. Detecting android inter-app data leakage via compositional concolic walking. J. Autosoft.

2019. [CrossRef]
43. Wu, Z.; Lu, K.; Wang, X.; Zhou, X.; Chen, C. Detecting harmful data races through parallel verification.

J. Supercomput. 2015, 71, 2922–2943. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.tarsnap.com/scrypt/scrypt.pdf
http://tools.ietf.org/html/rfc2898
https://hashcat.net/events/p14-trondheim/prince-attack.pdf
https://eprint.iacr.org/2018/944
https://en.wikipedia.org/wiki/Min-max_heap
https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Heapsort
https://arstechnica.com/informationtechnology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://arstechnica.com/informationtechnology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://aws.amazon.com/ec2/?ft=n
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
http://dx.doi.org/10.1109/CC.2013.6457533
http://dx.doi.org/10.1007/s11704-016-6383-8
http://dx.doi.org/10.1007/s10766-014-0304-y
http://dx.doi.org/10.31209/2019.100000079
http://dx.doi.org/10.1007/s11227-015-1418-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Offline Password Guessing 
	Password Reuse 
	Bcrypt Recovery 
	Recovery Metric 

	Our Solution 
	PCFG Expansion 
	Global Ranking 
	Bcrypt Trial 

	Experimental Evaluation 
	Experimental Setting 
	Comparison of Various Approaches 
	Impact of Global Ranking 
	Impact of Parallelization 

	Conclusions 
	References

