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Abstract: In this paper, we solve a long-standing open problem in the field of fuzzy logics, that
is, the standard completeness for the involutive uninorm logic IUL. In fact, we present a uniform
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1. Introduction

The problem of the completeness of Lukasiewicz infinite-valued logic (L , for short) was posed by
Lukasiewicz and Tarski in the 1930s. It was twenty-eight years later that it was syntactically solved by
Rose and Rosser [1]. Chang [2] developed at almost the same time a theory of algebraic systems for L,
which are called MV-algebras, with an attempt to make MV-algebras correspond to L as Boolean
algebras to the classical two-valued logic. Chang [3] subsequently finished another proof for the
completeness of L by virtue of his MV-algebras.

It was Chang who observed that the key role in the structure theory of MV-algebras is not locally
finite MV-algebras but linearly ordered ones. The observation was formalized by Hajek [4] who showed
the completeness for his basic fuzzy logic (BL for short) with respect to linearly ordered BL-algebras.
Starting with the structure of BL-algebras, Héjek [5] reduced the problem of the standard completeness
of BL to two formulas to be provable in BL. Here and thereafter, by the standard completeness we
mean that logics are complete with respect to algebras with lattice reduct [0, 1]. Cignoli et al. [6]
subsequently proved the standard completeness of BL, i.e., BL is the logic of continuous t-norms and
their residua.

Hajek’s approach toward fuzzy logic has been extended by Esteva and Godo in [7], where the
authors introduced the logic MTL which aims at capturing the tautologies of left-continuous t-norms
and their residua. The standard completeness of MTL was proved by Jenei and Montagna in [8],
where the major step is to embed linearly ordered MTL-algebras into the dense ones under the
situation that the structure of MTL-algebras have been unknown as of yet.

Esteva and Godo’s work was further promoted by Metcalfe and Montagna [9] who introduced
the uninorm logic UL and involutive uninorm logic (IUL) which aims at capturing tautologies of
left-continuous uninorms and their residua and those of involutive left-continuous ones, respectively.
Recently, Cintula and Noguera [10] introduced semilinear substructural logics which are substructural
logics complete with respect to linearly ordered models. Almost all well-known families of fuzzy logics
such as £, BL, MTL, UL and IUL belong to the class of semilinear substructural logics.
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Metcalfe and Montagna’s method to prove standard completeness for UL and its extensions is of
proof theory in nature and consists of two key steps. Firstly, they extended UL with the density rule of
Takeuti and Titani [11]:

F»—(A—>p)v(p—>B)vC{D
r-(A-B)vC )

where p does not occur in I, A, B or C, and then prove the logics with (D) are complete with respect
to algebras with lattice reduct [0, 1]. Secondly, they give a syntactic elimination of (D) that was
formulated as a rule of the corresponding hypersequent calculus.

Hypersequents are a natural generalization of sequents which were introduced independently
by Avron [12] and Pottinger [13] and have proved to be particularly suitable for logics with
prelinearity [9,14]. Following the spirit of Gentzen’s cut elimination, Metcalfe and Montagna succeeded
to eliminate the density rule for GUL and several extensions of GUL by induction on the height of
a derivation of the premise and shifting applications of the rule upwards, but failed for GIUL and
therefore left it as an open problem.

There are several relevant works about the standard completeness of IUL as follows.
With an attempt to prove the standard completeness of IUL, we generalized Jenei and Montagna’s
method [15] for IMTL in [16], but our effort was only partially successful. It seems that the subtle
reason why it does not work for UL and IUL is the failure of the finite model property of these
systems [17]. Jenei [18] constructed several classes of involutive FL.-algebras, as he said, in order
to gain a better insight into the algebraic semantic of the substructural logic IUL, and also to the
long-standing open problem about its standard completeness. Ciabattoni and Metcalfe [19] introduced
the method of density elimination by substitutions which is applicable to a general class of (first-order)
hypersequent calculi but fails in the case of GIUL.

We reconsidered Metcalfe and Montagna’s proof-theoretic method to investigate the standard
completeness of IUL, because they have proved the standard completeness of UL by their method and
we cannot prove such a result by the Jenei and Montagna’s model-theoretic method. In order to prove
the density elimination for GUL, they prove that the following generalized density rule (D, ):

Go = {Ti, Aip = Ai}ict.n {Zx, (1) p = Plicro {11 = pliciom,

j=1-m j=1--m \Dl)
D1(Go) =Ty, AL = Ay K il =t

is admissible for GUL, where they set two constraints to the form of Gy: (i) n,m > 1 and A; > 1 for some
1<i<n; (il) p does not occur in I';, A;, IT;, 2y fori=1.-n,j=1-m,k=1--0.

We may regard (D7) as a procedure whose input and output are the premise and conclusion of
(Dy), respectively. We denote the conclusion of (D7) by D1(Gp) when its premise is Gy. Observe that
Metcalfe and Montagna had succeeded in defining the suitable conclusion for an almost arbitrary
premise in (Dj), but it seems impossible for GIUL (see Section 3 for an example). We then define the
following generalized density rule (Dy) for

GL ¢ {GUL,GIUL, GMTL, GIMTL}
and prove its admissibility in Section 9.

Theorem 1 (Main theorem). Let n,m > 1, p does not occur in G',T;, A, 1T or ijor alll<i<nl<j<m.
Then the strong density rule

Go=G'[{Ti,p= Ay {Ij = p, 5 }jzl,..m{D )
0
Do (Go) = G'{Ti, IT; = AL 5} icteomjctom

is admissible in GL.
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In proving the admissibility of (D; ), Metcalfe and Montagna made some restriction on the proof
T of Gy, i.e., converted T into an r-proof. The reason why they need an r-proof is that they set the
constraint (i) to Ggp. We may imagine the restriction on T and the constraints to Gy as two pallets of
a balance, i.e., one is strong if another is weak and vice versa. Observe that we select the weakest form
of Gg in (Dy) that guarantees the validity of (D). Then it is natural that we need make the strongest
restriction on the proof T of Gy. But it seems extremely difficult to follow such a way to prove the
admissibility of (Dy).

In order to overcome such a difficulty, we first of all choose Avron-style hypersequent calculi
as the underlying systems (see Appendix A.1). Let T be a cut-free proof of Gy in GL. Starting
with 7, we construct a proof 7* of G|G* in a restricted subsystem GLq of GL by a systematic novel
manipulations in Section 4. Roughly speaking, each sequent of G is a copy of some sequent of Gy,
and each sequent of G* is a copy of some contraction sequent in 7. In Section 5, we define the
generalized density rule (D) in GLq and prove that it is admissible.

Now, starting with G|G* and its proof T*, we construct a proof T of G¥* in GLq such that
each sequent of G¥ is a copy of some sequent of G. Then FGLy, D(G®) by the admissibility of (D).
Then FgL Dy(Gp) by Lemma 29. Hence the density elimination theorem holds in GL. Especially,
the standard completeness of IUL follows from Theorem 62 of [9].

G* is constructed by eliminating (pEC)-sequents in G|G* one by one. In order to control the
process, we introduce the set I = {Hf1 .+ Hj } of (pEC)-nodes of 7% and the set I of the branches

relative to I and construct GI“* such that Glﬁ does not contain (pEC)-sequents lower than any node
inl,ie, S;e€ G} implies HJ||H; for all Hf € I. The procedure is called the separation algorithm of
branches in which we introduce another novel manipulation and call it derivation-grafting operation
in Sections 7 and 8.

2. Preliminaries

In this section, we recall the basic definitions and results involved, which are mainly from [9].
Substructural fuzzy logics are based on a countable propositional language with formulas built
inductively as usual from a set of propositional variables VAR, binary connectives ®,—,A,v,
and constants 1, T, ¢, f with definable connective -A := A — f.

Definition 1. ([9,12]) A sequent is an ordered pair (T, A) of finite multisets (possibly empty) of formulas,
which we denote by I' = A. T and A are called the antecedent and succedents, respectively, of the sequent
and each formula in I and A is called a sequent-formula. A hypersequent G is a finite multiset of the form
I'1 = M|+ Ty = Ay, where each T; = A; is a sequent and is called a component of G for each 1 < i < n.
If A; contains at most one formula for i = 1---n, then the hypersequent is single-conclusion, otherwise it is a
multiple-conclusion.

Definition 2. Let S be a sequent and G = S1|-++|S,,; a hypersequent. We say that S € G if S is one of S1,-+-, Sp.

Notation 1. Let Gy and Gy be two hypersequents. We will assume from now on that all set terminology refers
to multisets, adopting the conventions of writing I', A for the multiset union of I and A, A for the singleton
multiset {A}, and AT for the multiset union of A copies of T for A € N. By Gy € G, we mean that S € Gy for
all S € Gy and the multiplicity of S in Gy is not more than that of S in Go. We will use G1 = Go, G1N Gy,

G1U Gy, G1\Gy by their standard meaning for multisets by default and we will declare when we use them for
n copies
——

sets. We sometimes write Sq|-++|Sy, and G| S|--+|S as {S1,-+-, Sm}, G|S™(or G|{S}"), respectively.

Definition 3. ([12]) A hypersequent rule is an ordered pair consisting of a sequence of hypersequents
G1, -+, Gy, called the premises (upper hypersequents) of the rule, and a hypersequent G called the conclusion
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Gy-Gu

(lower hypersequent), written by .Ifn =0, then the rule has no premise and is called an initial sequent.

The single-conclusion version of a rule adds the restriction that both the premises and conclusion must be
single-conclusion; otherwise the rule is multiple-conclusion.

Definition 4. ([9]) GUL and GIUL consist of the single-conclusion and multiple-conclusion versions of the
following initial sequents and rules, respectively:
Initial sequents

—(ID) ——— E —(t —
A5 A0 o™ Eroat) S S
Structural rules
GIl=Al= A EC G EW
Gl= A (EC) G|F:>A( )

G, Iy = X4, A1 Go|Ip, I = Xp, A
G1|Go|T1, T = Aq, Mp|TT4, 1T = X4, 2o

(COM)

Logical rules

Gl = A
I h= Al Gl = A
VA4 ﬁ ;
Gill1 = A, Ay Gl B= Ay A| =f
GGy T2, A= B =y, 0 ) GrA=BAs
GII[,A,B= A Gl =A~-B,A
Gl AoB= A Gill = A,y Gallz = B,
GI[,A=A G1|Gy[T1,Ta = A®B, A, A
G A~ES A GILp=a
' ST A ~p . A\
GiIT = A A G2|F:>B,A{ GI,AAB=A
GIGIT = ArBA ") Gr=as
G|l = B,A Gl = AvB,A
GIr= AvE,al Gl A=A GII,B=A

GG, AvB=aA !

Cut rule

Gill, A=A Glo =AM
G1|Ga|I'1, T = A1, Ay

(CUT)

Definition 5. ([9]) GMTL and GIMTL are GUL and GIUL plus the single conclusion and multiple-conclusion
versions, respectively, of:
Gl =A Gl =A
GT, A= AV, GIF = A,aWR)-

Definition 6. (i) (I) € {(tl)/ (fr)/ (_>1’)/ (Ql)/ (/\lr)/ (/\ll)/ (\/7‘1’)/ (Vrl)/ (WL)/ (WR)} and
(I1) € {(=1), (©r), (Ar), (V1), (COM) };

GI|SI GII|SII GI|SI
(IT) (or G
rule (I)) of GL, where S" and S"" are its focus sequents and H' is its principle sequent (for (=), (©;), (Ar) and
(v1)) or hypersequent (for (COM), (Arw) and (vyy,), see Definition 12).

(ii) By GG (I)) we denote an instance of a two-premise rule (II) (or one-premise
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Definition 7. ([9]) GLP is GL extended with the following density rule:

G, p=MTy = p,Asz)
Gl Ta= Ay, Ay

where p does not occur in G,I'1,T'p, A1 or Aj.

Definition 8. ([12]) A derivation T of a hypersequent G from hypersequents Gy, ---, G, in a hypersequent

calculus GL is a labeled tree with the root labeled by G, leaves labeled initial sequents or some Gy, -+, Gy, and for

/... !
m

each node labeled G, with parent nodes labeled Gj,---, Gy, (where possibly m = 0),
rule of GL.

— is an instance of a

0

GG

Notation 2. (i) = (T) denotes that T is a derivation of Gg from Gy, -+, Gp;

0
(ii) Let H be a hypersequent. H € T denotes that H is a node of T. We call H a leaf hypersequent if H is a

lc.o 4
1 m

leaf of T, the root hypersequent if it is the root of T. el
0
Gl Gly
(iii) Let H € T then T(H) denotes the subtree of T rooted at H;
(iv) T determines a partial order <. with the root as the least element. Hq|H, denotes Hy ¢ Hy and
H, €+ Hy for any Hy, Hy € T. By Hy =r Hp we mean that Hy is the same node as Hy in T. We sometimes write

STas§

€ T denotes that Gy € T and its parent nodes are

GI‘s}’l

G'|S
G'|S" is not a lower hypersequent of an application of (EC) whose contraction sequent is S, and G'|S not an
upper one in T.

(v) An inference of the form € T is called the full external contraction and denoted by (EC*), if n > 2,

Definition 9. Let T be a derivation of G and H € ©. The thread Th-(H) of T at H is a sequence Hy,---, H, of

H H !
node hypersequents of T such that Hy = H, H, =¢ G, H—k € T or there exists G’ € T such that k or
k+1 k+1
G'" Hi.
intforall0<k<n-1.
Hk+1

Proposition 1. Let Hy, Hp € T. Then

(i) Hy < Hp if and only if Hy € Th.(Hy);
(ii) Hy HHZ and Hy < Hz 1mply H2HH3,'
(iii) H; < Hz and H, < H3 zmply Hy 4 Ha.

We need the following definition to give each node of T an identification number, which is used
in Construction 3 to differentiate sequents in a hypersequent in a proof.

Definition 10. (Appendix A.5.2) Let H € T and Th(H) = (Hy,---, Hp). Let b, :=1,

.. G’ H;
1 if 77 €T,
by = k+1
¢ . Hy Hy G/
0 if €T or €T
k+1 Hk+1

forall 0 <k <n—1. Then P(H) = $.X=0 2%by and call it the position of H in T.
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Definition 11. A rule is admissible for a calculus GL if whenever its premises are derivable in GL, then so is
its conclusion.

Lemma 1. ([9]) Cut-elimination holds for GL, i.e., proofs using (CUT) can be transformed syntactically into
proofs not using (CUT).

3. Proof of the Main Theorem: A Computational Example

In this section, we present an example to illustrate the proof of the main theorem.
Let Gy == p,B|B = p,-Ae-Alp = C|C,p = A® A. Gy is a theorem of IUL and a cut-free
IA=A

I = -AA
Note that we denote three applications of (EC) in T respectively by (EC),(EC);,(EC)3 and three

(©r) by (®r)1,(®r)2 and (0;)3.

proof T of Gy is shown in Figure 1, where we use an additional rule (=) for simplicity.

p=>p A=A

(

p:>

P

= A
(

A=plp=>A

\

M)

A=

plp=A"

COM)

A=plA=plpp=>AcA

(@r)l
(

A=ppp=>AcA

\

EC)

=p-App=A0A

(=)

p=p A=A

(

p:>

p

A
(

A=plp=>A

\

M)

A:>p|p:>A\

COM)

A=plA=pppr=AcA

(©r)2
(

A=plpp=AcA

\

EC),

= p,-Alp,p=>A0A

(=r)

(continued)

=p,-Appr=A0A =p,-Alppr=A0A
P p.p P p.p

Hux == p,p,-A0-Alp,p=A0Alpp=A0A

(©r)3

B=B

Hx==p,p,-A0-Alp,p=>A0A

(EC)3

C=C

=p,BB=p -Ac-Alpp=>A0A

(COM)

=p,BB=p,-Ao-Ap=C|IC,p=>A0A

(COM)

Figure 1. A proof T of Gy.

By applying (D) to free combinations of all sequents in = p,B|B = p,~-A®-A and in p =
CIC,p= Ao A, wegetthat Hy== B,C|IC= A0 A,BB=C,-A0-A|C,B=A0A,-A0-A. Hyis
a theorem of IUL and a cut-free proof p of Hy is shown in Figure 2. It supports the validity of the
generalized density rule (Dy) in Section 1, as an instance of (Dp).
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A=A A=A A=A A=A
AA=>AGA AA=>AGA
A=-AA0A A=-AA0CA
B=B A A= -A0-AA0AAGA
C=C A B=>A0A -Aco-Al[A=AGA,B
Hi=A=C|A B=A0A-Ac-AIC=A0A,B

A=A A=A
T AA=AcA H=A=ClAB=AGA-A0-AC=AGA,B
A= -AAGA = -A,C[AB=AGA-A0-AC=AGA,B
B= B A= -A®-AAOACAB=AGA-AG-AC=AGA,B
C=>C = B,C|IA,B=-A0-A,AQA|AB=A0A-A0-AIC=A0A,B
C=C A= C|=B,C|IC,B=-A0-AAGAAB=AG0A-A0-AC=AGA,B
A=C|A=C|=B,C|C,B=-A®-AAGAIC,B=AGA -A0-AIC= AGA,B
HyzA=C|=B,CICCB=A0A-A0-AIC=AGA,B

A=A A=A
TTAASAoA | Hi=A=ClAB=AGA-A0-AC=AGAB
A=-AAGA A=CB=-A,A0A-A0-AIC=A0A,B
B=B A=CAB=-A0-AACA AQA -A0-AIC=A0A,B
c=cC BB= -A0-AAGA -AG-AA=Cl[A=AGABC=AGAB
C=C A=C|B,B=-A0-A,A0A,-A0-AIA=C|IC=A0ABC=A0A-B
A=CCB=A0GA -A0-AA=CB=C,-A0-AC— AGABIC=AGAB
Hi=A=CC>AOABB=C, -A0-AC,B= A®A -AG-A

Hy=A=C|=B,CCB=A0A-A0-AC=AOA,B
= A C=>BCCB=AGOA-A0-AC=AGA,B

H;=A=C|C=A0ABB=C-A®0-AICCB=A0A-A0-A
= -A,CIC=A0ABB=C-A0-AlCCB=A0A-A®0-A

B=B = -A®-A,C,Cl=B,C|IC,B= A0 A -A®-AC= AGA,B|
C=AGABB=C-A0-AC,B=A0A-A®-A
B=-A®-A,C|= B,C|=B,C|C,B=A®A -A®-AIC= AO®A,B|
C=>A®OABB=C-AG-AlC,B=A®A -A®-A
Hy==B,ClC=> A®ABB=C,-A0-ACB= AGA -AG-A

Figure 2. A proof p of Hy.

Our task is to construct p, starting from 7. The tree structure of p is more complicated than that of
7. Compared with UL, MTL and IMTL, there is no one-to-one correspondence between nodes in T
and p.

Following the method given by G. Metcalfe and F. Montagna, we need to define a generalized
density rule for IUL. We denote such an expected unknown rule by (Dy) for convenience. Then D, (H)
must be definable for all H ¢ 7. Naturally,

Di(p=p) ==t
Di(A=plp=>A)=A=A;
Dy(=p,-Alp,p=> A0 A) == -A,-A, A0 A;
Dx(=p,BB=p,~Ae0-Alpp=>A0A)-=
= B,B,A®A|B,B=A0A-A0-A-A0-AB=A0A,B,-A0-A;
Dx(Go) =Do(Go) = Ho.
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However, we could not find a suitable way to define Dy(Hxx) and Dx(Hx) for Hxx and Hy in
T, see Figure 1. This is the biggest difficulty we encounter in the case of IUL such that it is hard to
prove density elimination for IUL. A possible way is to define Dy(= p,p,~A©-Alp,p => A® A) as
=t,A®A,-A®-A. Unfortunately, it is not a theorem of IUL.

Notice that two upper hypersequents = p,-Alp,p = A © A of (©,)3 are permissible inputs
of (Dy). Why is Hyx an invalid input? One reason is that, two applications (EC); and (EC), cut off
two sequents A = p such that two p’s disappear in all nodes lower than upper hypersequent of (EC);
or (EC),, including Hy. These make occurrences of p’s to be incomplete in Hy. We then perform the
following operation in order to get complete occurrences of p’s in Hyx.

G'|S'|S’
Step 1 (preprocessing of 7). Firstly, we replace H with H|S’ for all G|’|S|’(EC )k €T, H<G'|S
G'|s'|s"
then replace G’\S’|S’(Ec)k with G'|S’|S" for all k = 1,2,3. Then we construct a proof without (EC),

which we denote by 71, as shown in Figure 3. We call such manipulations sequent-inserting operations,
which eliminate applications of (EC) in 7.

p=2pA=>Ap=>2pA=>A p=>pA=>Ap=>pA=A

A=pp=A A=pp=A A=plp=>A A=>pp=A
A=plA=plpp=A0A A=pA=ppp=A0A
pop A=pl=p-App=>AcAA=pl=p-App=AcA
CoC H, ,=A=pl=pp-Aco-App=>AcAlA=>plppr=A0A
A=p/=pBB=p-Ao-Alp,p=>AcAlA=>plppr=A0A

A=p|=p BB=p -Ao-Alp=C|IC,p=>Ac0cAA=pppr=>A0A

Figure 3. A proof 3.

However, we also cannot define Dy (H., ) for H}, € 7 inthat = p,p,-A©-Alp,p = A0 Ac H],.
The reason is that the origins of p’s in H, are indistinguishable if we regard all leaves in the form
p = p as the origins of p’s which occur in the inner node. For example, we do not know which p
comes from the left subtree of 71 (HY, ) and which from the right subtree in two occurrences of p’s in
= p,p,~A©-A e H,. We then perform the following operation in order to make all occurrences of
p's in H, distinguishable.

We assign the unique identification number to each leaf in the form p = p € 7y and transfer these
identification numbers from leaves to the root, as shown in Figure 4. We denote the proof of G|G*
resulting from this step by 7*, where G == py, B|B = p4,~A ©-A|p; = C|C,p2 = A® A in which
each sequent is a copy of some sequent in Gy and G* = A = p1|A = p3|ps, p2a = A ® A in which each
sequent is a copy of some external contraction sequent in (EC)-node of 7. We call such manipulations
eigenvariable-labeling operations, which make us to trace eigenvariables in 7.

pr=pr1A=>Ap=>pA=A p3=>p3 A=>Aps=>ps A=A

A=pilpp=A A=mp=A A= palps=>AA= pylps= A

H{EA:>m|A:>p2|pl,p2:>A®A HEEA:pg\A:p4|p3,p4:>A®A

A:>p1|:>p2,—|A|p1,pzz>A®A A:>p3|:>p4,—|A|pg,p42A®A
A= pi|l= p2ps,~A0-Alp,pr = A0 A|A = p3|p3, ps = A0 A
H§=A = pi| = p2,BIB = ps,~A0-Alp1,p2 = A0 A|A = p3|p3, pa= AGA

B=B
C=C

A= pi|=p2,BB=ps,-A0-Alp1 = C|C,pr => A0 A|A = p3|p3,ps = AGA

Figure 4. A proof 7" of G|G*.
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Then all occurrences of p in T* are distinguishable and we regard them as distinct eigenvariables
(See Definition 18 (i)). Firstly, by selecting p; as the eigenvariable and applying (D) to G|G*, we get

G'=A=C|= py,BIB= py,-A@-A|C,pp = A® A|A = p3|ps, ps = A0 A.
Secondly, by selecting p, and applying (D) to G’, we get
G"=A=C|B=py,~-A0-A|C=B,A0A|A = ps3|ps3,ps = A A.
Repeatedly, we get
G"' =A=ClAB=A0A-~A0-AC= AoA,B.

We define such iterative applications of (D) as D-rule (See Definition 20). Lemma 10 shows that
gL D(G|G?) if Fgrur G|G*. Then we obtain +guL D(G|G*), i.e., +grur G

A miracle happens here! The difficulty that we encountered in GIUL is overcome by converting
H,, =A=pl =pp-Aco-App = A0AA = plp,p = A0 Ainto A = p1| = p,ps,-A®
-Alp1, p2 = Ao AlA = p3|ps, pa = A A and using (D) to replace (Dy).

Why do we assign the unique identification number to each p = p € 7;? We would return back to
the same situation as that of 77 if we assign the same indices to all p = p € 7y or, replace p3 = p3 and
P4 = paby pr = prin T*.

Note that D(G|G*) = Hy. So we have built up a one-one correspondence between the proof 7*
of G|G* and that of H;. Observe that each sequent in G* is not a copy of any sequent in Gy. In the
following steps, we work on eliminating these sequents in G*.

Step 2 (extraction of elimination rules). We select A = p, as the focus sequent in Hf in 7* and
keep A = p; unchanged from H{ downward to G|G* (See Figure 4). So we extract a derivation from
A = p, by pruning some sequents (or hypersequents) in 7*, which we denote by Tﬁi: Asp, 38 shown
in Figure 5.

p3=p3 A=A pi=>ps A=A

A=pslps=A A=pylps= A

A=py A= p3lA=palps, ps=A0A
p= P2 ~A A= ps|= py,-Alps, pa= A0 A
= P2, s, ~AC-A|A = p3lps, ps = A A
= P, B|B = py,~A®-AlA = ps3lps,ps = AGA

B>

Figure 5. A derivation Tf_}lc from A = p,.

A=p)

A derivation T/} from A = p; is constructed by replacing p, with p1, p3 with ps and ps
1

A=py

with pe in Ty, ., , as shown in Figure 6. Notice that we assign new identification numbers to new
(=

: *
occurrences of p in TH: Ay
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ps=ps A=A pe=>ps A=A
A=pslps=A A= pelpe= A
A = ps|A = pelps,pe = A0 A
BSB:pl,ﬁA A= ps| = pe,-Alps, ps = A0 A
= p1,Pe, ~A©-A|A = pslps, pe = A A
= p1,B|B = pe,~A©-A|A = pslps,pe = A© A

A:>p1

Figure 6. A derivation Tfj. 4, p, from A = py.
1

Next, we apply T;IC, Asp to A = p; in G|G*. Then we construct a proof Tﬁc(.lc)lc*, as shown
1° 1
in Figure 7, where G' = G|G*\{A = p1}.

ps=>ps A=A pg=>ps A=>A
A=pslps=A A= pslps=A
A = ps|A = pelps,pe = A0 A

B:BG’|3P1,—|A A = ps| = pe, -Alps, pe => A A

G'| = p1,ps,~A@-A|A = ps|ps,pe = A A
Gﬁiﬂac* =G| = p1,B|B= ps,~A®-A|A = ps|ps,pe = A A

G’|A = pl

. %(1 % (1
Figure 7. A proof T ]E(:G)|G* of GH;(:G)|G*’

However, G}_fc(.lc)lc* == p2,B|B = py,~A©-Alp1 = C|C,p2 = A A|A = p3|ps, ps = A0 Al =
¢
p1,B|B = pg, ~A ©-A|A = ps|ps, p6 = A ® A contains more copies of sequents from G* and seems

more complex than G|G*. We will present a unified method to tackle with it in the following steps.
Other derivations are shown in Figures 8-11.

A3p4
A= Pl‘ :PZI_‘A|P1/P2 =>A0A

:>p4,—|A

B=B
C=C A3P1|:>P2/P4/ﬂA®_‘A|P1/P2:>A®A
A= p1| = pQ,B|B =>p4,ﬂA®—\A|p1,P2 =A0A
A= p1|= p2, BIB=py,~A0-Alp1 = CIC,pp=> A0 A

Figure 8. A derivation Tf_};: A=p, from A = py.

A=p3
A = ps| = pe,~Alps,pe = AO A "
B=B p3,

CoC A = ps| = pe,p3,~A0-Alps,pe = A A
A = ps| = pe, BB = p3, A0 -Alps,ps => A0 A
A= ps5|=pe, BIB=p3,~A0-Alps=C|C,ps=>A0A

Figure 9. A derivation T;}; A=sp, from A = p3.
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A=py A=ps A=ps A=p;3
B:>B:>p2,—.A = py,-A :>B:>p5,—.A = p3,-A
3p2,p4,—|A®—|A :>p5,p3,—|A®—\A
:>P2,B|B:>p4,—\A®—|A =>p5,B|B:>P3,—|A@ﬂA

. * *
Figure 10. T{HE: A= po, H: A=y ) and T{HS: Ao s, HS: A= ps }

C=C pypp=>A0A C=C p3,ps=A0A
p1=CIC,pp=A0A p3=C|C,ps=A0A

C=C p5,p6=>A®A
ps = C|C,ps = AG A

. * * *
Flgure 11. TH;:pl,pZ:AQA’ THg:pg,p4=>A®A and THg:p5,p6=A®A'

% (2)

Step 3 (separation of one branch). A proof T &.GIG*
¢

is constructed by applying sequentially

* *
TH;:p3,p4:A®A’ TH§:p5,p6:A®A

% (1)

to p3,ps = A©A and ps5,ps = AG©A in G as shown in Figure 12, where G =

HE:G|G*
Ggi(:gm*\{m,m = AOA,ps pe= A0 A}
GE{(:2G)|G* == p2,B|B = ps,~A0-Alp1 = C|C,p2 = A0 A|[A = p3| = p1, B|
B = p,~A©-A|A = ps|ps = C|C,ps = A0 Alps = C|C,pe = AG A.
CocC C=C G"|ps,ps = A0 Alps,ps=> A0 A
=
G"|p3 = C|C,p4 = A®A|p5,p6 =A0A
%*(2
GH{(ZG)IG* =G"|p3=C|C,ps = A0 Alp5s = C|C,ps = AGA
Figure 12. A proof Tﬁffé)lc* of G;%%)‘ cr
Notice that

D(B = ps,~A©-AlA = p3|p3 = C|C,ps = A® A)
=D(B = ps,~A®-A|A = ps5|ps = C|C,ps = A@ A)
:A:>C|C,B:>A®A,—|A®—|A

Then it is permissible to cut off the part

B = pg,-A0-AlA = p5lps = C|C,ps = AG A

of Gﬁ{(:?l +» which corresponds to applying (EC) to D(G;%(:zc)' c+)- We regard such a manipulation as
a constrained contraction rule applied to G*3)  and denote it by (ECq). Define G¥, to be

H{:G|G* H{:G|G*

= p2,B|B = pyg,-A®-Alp1 = C|C,pp = AG A|
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A = p3| = p1,Blps = C|IC,ps = Ao A.

GEQ@)
HE¢:G|G*
Then we construct a proof of Gﬁf-qc* by Gﬂ{lil(ECQ), which guarantees the validity of
‘:
H{:G|G*

FGIUL D(GI{%:G‘G*)

under the condition
2
FGIUL D(Gﬁf(:c;)m* )-
A change happens here! There is only one sequent which is a copy of a sequent in G* in GE’C, GG+
<

It is simpler than G|G*. So we are moving forward. The above procedure is called the separation of
G|G* as a branch of Hf and reformulated as follows (See Section 7 for details).

G|G*
_ ——— T*C
Gﬁ(l) ( leA:m)

H¢:G|G*

: T/ T/
Gi}(z) HS:ps,pa=AGA’ "Hg:ps,pe=AGA
H¢:G|G*
1
H{:G|G*

The separation of G|G* as a branch of Hj is constructed by a similar procedure as follows.

GIG* |,
 ——— T
e (1) ( Hf:A:p3>
GH;:G|G* ? .
Gs&(z) <TH§:p3,p4:>A®A>
HS:G|G*
Gﬁ, <ECQ>
HS:G|G*

Note that D(GECA gl c+) = Hzand D(Gﬁ},cl c+) = Ha. So we have built up one-one correspondences
1 2°

between proofs of Gﬁ{:G|G*’ GE{:G\G* and those of H,, Hs.

Step 3 (separation algorithm of multiple branches). We will prove +gruL Do(Gp) in a direct
way, i.e., only the major step of Theorem 2 is presented in the following. (See Appendix A.5.4 for
a complete illustration.) Recall that

Gﬁ;:acs* == p2,B|B = py,~A 0 -Alp; = C|C,pp = A® A

A= p3|=p1,Blp3=C|C,ps = A0 A,
Gﬁ;:qc* = A= pi|= p2 B|B= ps,~A0-Alp;1 = C|C,pp = AG A]

B = p;3,~A0-Alps = C|C,ps = A0 A.

By reassigning identification numbers to occurrences of p’s in Gﬁc, GG+
5
Grecie = A = ps| = pe, BB = pg,~A @ -Alps = C|C,ps = A© Al

HS:G|G*

B=py,-Ao-Alp;=C|C,ps = A0 A.
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By applying T{*H?A='P5rH§:A=>P3} to A = ps3in GE;:G\G* and A = ps in Gggzc\c*' we get FgruL
G', where
G' == py,B|B = py,~A0®-Alp1 = C|C,pp = A0 A| = p1, B]
p3 = C|C,ps = A© A| = pg, B|B = ps, ~A 0 -Alps = C|C,ps = A® A
B = p7,~A®-Alp; = C|C,ps = A® A| = ps5, B|B = p3,-A 0 -A.

Why reassign identification numbers to occurrences of p’s in G§C~G|G*? It makes different
<
’ . . . il s . Ve P
occurrences of p’s to be assigned different identification numbers in two nodes GH?GI o+ and GH§:G| cr
of the proof of G'.

By applying (EC}) to G', we get -grur, GJ*, where
G == py, B|B = ps,~A©-Alp = C|C,po = A© A| = py, B|

p3 = C|C,ps = A0 A|B = p3,-A 0 -A.

A great change happens here! We have eliminated all sequents which are copies of some sequents
in G* and converted G|G* into Gf" in which each sequent is some copy of a sequent in Gy.
Then FgruL D(GI*) by Lemma 8, where D(Gf’) =Hy =

=C,BIC=B,A0AB=C,-A0-A|C,B=>A0A -Ao-A.

So we have built up one-one correspondences between the proof of Gi* and that of H, i.e.,
the proof of Hy can be constructed by applying (D) to the proof of GI’* . The major steps of constructing
Gf’ are shown in the following figure, where D(G|G*) = Hy, D(GI{%:G\G*) = Hj, D(GI§§:G|G*) = Hz and
D(Gy) = Hy.

G|G* == p2,B[B = ps,-A©-Alp1 = C|
Cpp=>A0AlA=p1|A=p3lps,ps = A0 A

G}}’E:G'G* = A= p|= py, B

B = py,~A0-Alpy = C|
C,p2=> A0 Alps = (|
B=>p3,—|A®—|A|C,p4=>A®A

.
GH;:G|G*
p1=C|C,po = A0 A|A = p3]

A=p,Blps=C|IC,ps=A0A

== Pz,B|B = p4,—\A® ﬂA|

Glﬂ’ == py,B|B = p4,~A©-Alp1 = C|C,pp = A0 4|
B=-A0-A,p3|=p1,Blp3=CIC,ps = A0 A

In the above example, D(Giﬁr ) = Dy(Gyp). But that is not always the case. In general, we can prove
that ~gr Do(Gp) if FgL D(Giﬁ ), which is shown in the proof of the main theorem in Page 42. This
example shows that the proof of the main theorem essentially presents an algorithm to construct a
proof of Dy(Gp) from .

4. Preprocessing of Proof Tree

Let T be a cut-free proof of Gy in the main theorem in GL by Lemma 1. Starting with 7, we
will construct a proof T* which contains no application of (EC) and has some other properties in
this section.
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Lemma?2. (i) Ifrgr 1 = A,AMand gL Iy = B, Ap
then ~GL T1 = A/\B,A1|T2 = A/\B,Az,’
(ii) IfI—GL Fl,A = Al and FGL rz,B = Az

then ~GL Fl,AvB = A1|r2,AVB = Ay.

Proof. (i)
A=>AA=A B=>B(COM)
A=BB= A
A= AABB=A ()
A= AABB=AAB e
I'1 = AAB,A|B=AAB
1"1 =>A/\B,A1‘F2=>A/\B,A2

(ii) is proved by a procedure similar to that of (i) and omitted. [

B=B

(Ar)
1"1 = A, Al

Iy = B,A

(CUT)

(CUT)

We introduce two new rules by Lemma 2.

Gill1 = A, A1 Gyl = B, Ay p
GilGalls = ANE, DTy = A~B, A, ")
GiII', A=Ay G2, B= A

Definition 12.

an GG, AVE = My, AVE = AZ(\/lw) are called the generalized (A,) and (v;) rules, respectively.
Now, we begin to process 7 as follows.
Step 1. A proof t! is constructed by replacing inductively all applications of
Gl = A,A GI'=B,A GiI,A=A GJJI,B=A
(Ar) (or (V1))
G1|Go[I = AAB,A G1|GoI,AvB = A
in T with

Gl =AM Gl=BA
Gmmr:AAaMrzAA&A“m)
G1|GoT = AAB,A

(EC)

GIl,A=A G, B=A
GiGaT,AvB = Al,AvB = A"
G1|G2|F,AVB = A

)
(accordingly

(EC) for (vq)).

The replacements in Step 1 are local and the root of 7! is also labeled by Gy.

/
Definition 13. We sometimes may regard — as a structural rule of GL and denote it by (IDq) for convenience.

The focus sequent for (IDq) is undefined.
G/|sm

G'lS
constructed by replacing each Hy in t* with Hy|S™! for all 0 < k < n. Then T’ is a proof of Go|S™ 1.

Lemma 3. Let

(EC*) €T}, Tha(G'|S) = (Ho, Hy, -+, Hy), where Hy = G'|S and Hy, = Go. A tree T’ is

rngm
Proof. The proof is by induction on n . Since t!(G’|S™) is a proof and W(I Dq) is valid
0
H B GII
n-1 (II)

in GL, then 7/(Hp|S™!) is a proof. Suppose that t/(H,_1|S"!) is a proof. Since — g
n
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Hy . 1 H‘rz—1|5m_l G" PIn—1|Sm_1 . ..
H, (I))in 7', then Hy 5T r 57 ) is an application of the same rule (II) (or (I)).

Thus T/(H,|S™!) is a proof. [

(or

Definition 14. The manipulation described in Lemma 3 is called a sequent-inserting operation.

Clearly, the number of (EC*)-applications in 7’ is less than T!. Next, we continue to process 7.
Gy|{s5)s GHY1{S5)™
G151 GNISK
{59 ym-1 |-~~|{Sf\,}m,N_1. By repeatedly applying sequent-inserting operations, we construct a proof of

Go|G¢ in GL without applications of (EC*) and denote it by 2.

Step 2. Let (EC*),-, (EC*) be all applications of (EC*) in 7! and Gy =

Remark 1. (i) T2 is constructed by converting (EC) into (IDg); (ii) Each node of > has the form Ho|H},
where Hy € T' and H is a (possibly empty) subset of Gj.

We need the following construction to eliminate applications of (EW) in 72.

Construction 1. Let H € 12, H' ¢ H and Tho(H) = (Hy, -+, Hy), where Hy = H, Hy = Go|G{.
Hypersequents (Hy) yy.py and trees T 1 ((Hi) ppopgr) for all 0 < k < n are constructed inductively as follows.
(i) (Ho) ppopgr = H' and .15, ((Ho) .y ) consists of a single node H';
Gl|sl G”|S” Gl|sl

(ii) Let W(H) (or G’|S”(I)) be in T2, Hy = G'|S’ and Hy,, = G'|G"|H" (accordingly

Hy,1 = G'|S" for (I)) for some 0 < k<n-1.
If S" € (H) p.pyr

(His1) g = (Hid g \{S"} G [H”
(accordingly (Hyi1)py.pr = (Hi) oy \{S'}S” for ()
and 712{: 1 ((His1) gy ) s constructed by combining trees

(Hidpwr G"IS”

T ((Hi) oy ), T2(G”S") wiith
(Hk+l )H:H’

(11)

Hi) .
(accordingly TIZJ:H,((H;()H:H,) with %(1) for (I))
(Hiat) e

otherwise (Hyy1) p.ppr = (Hi) gy and TIZJ:H’(<Hk+1>H:H’) is constructed by combining

<Hk)H;H'

Tt (i) with 2= (1Dq).
+ :H’

/

(iii) Let G’|S’(EW) € 72, H. = G and Hyy = G'|S' then (His) g = (Hi) g and
2 . L. 2 . (Hk>H:H’
Tip. i ((His1) g ) 18 constructed by combining Tgy. 1y ((Hg) g.pr) with W(IDQ).
+1/H:H’

Lemma 4. (i) (Hy) . € Hi forall 0 <k <n;
(i) 2.y ((Hi) ypopyy ) 18 @ derivation of (Hg) .y from H' without (EC).

Proof. The proof is by induction on k. For the base step, (Ho) .,y = H' and 17,5/ ((Ho) y.y/) consists
of a single node H’. Then (Hy)y.;;r € Ho = H, T2,/ ((Ho) .py/) is a derivation of (Hp) .y, from H’
without (EC).
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For the induction step, suppose that (Hy) .,y and 72,5/ ((Hi) .1 ) be constructed such that (i)

and (ii) hold for some 0 < k < 1 — 1. There are two cases to be considered.
G'|s’

Case 1. Let G’||S"(I) € 72, Hy = G'|S" and Hy,1 = G'|S". If S € (H}) 1.y then
(Hi) i \{S"} € G" by (Hi)y.pyr € Hye = G'[S. Thus (Hyey) e = ((Hie) e \{S"})IS” € G'IS” = Hr.
OtherWise S/ ¢ <Hk)HHI then (Hk>HH’ (_: Gl by (Hk>HH’ (_: Hk = GI|S/. Thus <Hk+l>H:H’ (_: Hk+1 by
(Hks1) gy = (Hk) g € G' € Hgyr T%I:H’((Hk-Fl)H:H’) is a derivation of (Hy1).;p from H' without

(Hy) s

(Hk+l ) H:H'
The case of applications of the two-premise rule is proved by a similar procedure and omitted.
!

(EC) since 2.1 ((Hi) ) is such one and (I) is a valid instance of a rule (I) of GL.

Case 2. Let (EW) € 12, Hy = G' and Hy,q = G'|S. Then (Hyy1) gy € Hie1 by (Hio1) gapyr =

G'|S’
(Hy) gy € Hi € Hgya- TI%I:H’(<H/<+1>H:H’) is a derivation of (Hy,1).;p from H' without (EC) since

H) oo
Th.pr ((Hk) pr.pv) is such one and M

O

Hit) (IDq) is valid by Definition 13.
k+1/H:H’

Definition 15. The manipulation described in Construction 1 is called a derivation-pruning operation.

Notation 3. We denote (Hy) .1 by Gyt Thopgr ((H) prapgr) by T2 and say that H' is transformed into
G%{: p in 2.

!

Then Lemma 4 shows that T(Téﬂ,), G%.. € Go|Gg. Now, we continue to process T
H:H'
as follows.
!
Step 3. Let W(EW) e 72 then Tcz;'|s':G'(<Hn>G'\S':G') is a derivation of (Hy) g/, from G’ thus

!
a proof of (Hy)¢(g.cr is constructed by combining 72(G") and T(23'|sf;c'(<Hn>G'|S':G') with E(IDQ).
By repeatedly applying the procedure above, we construct a proof 7> of G1|G} without (EW) in GL,
where Gy € Go, G] ¢ Gj by Lemma 4(i).

GI=A
Step 4. LetT,p,L = Aet (orT,p=T,A, | A(WL)) then there exists I' = A’ € H such

GI,p=
that pe I’ forall H e Ths(T,p,L = A) (according|1y FIa—I €eThas(T,p=71,A),HeThs(T,p=A)) thus
a proof is constructed by replacing top-down p in each I'” with T.

Gl = A
GrspA
that p e A’ for all H e Ths(I', L = p,A) (accordingly H € Th3(I = T,p,A) or H € Ths(I = p,A))
thus a proof is constructed by replacing top-down p in each I’ with 1.

Repeatedly applying the procedure above, we construct a proof T of G,|G; in GL such that
there does not exist occurrence of p in I or A at each leaf labeled by I', L = Aor I' = T, A, or p is not
Gl = A Gl = A
G = aaVRor e A
Define two operations ¢; and o on sequents by 0;(I',p = A) =TI, T=Aand 0:( = p,A) :=T = L, A.

Then G;|G; is obtained by applying ¢; and o; to some designated sequents in G1|G;.

Letl,1=pA(orI'=T,p,A (WR)) is a leaf of T3 then there exists I’ = A’ € H such

the weakening formula A in (WL) when (WR) or (WL) is available.

Definition 16. The manipulation described in Step 4 is called eigenvariable-replacing operation.

Step 5. A proof T* is constructed from t* by assigning inductively one unique identification
number to each occurrence of p in T as follows.
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One unique identification number, which is a positive integer, is assigned to each leaf of the form
p = p in T which corresponds to py = py in T*. Other nodes of T* are processed as follows.

o Let Gill' Ap = pp, A (I) e T. Suppose that all occurrences of p in G1|T, Ap = up, A are assigned
Gl|I‘I,Ap = ,”P A/\ pp p 1 p yp’ gn

identification numbers and have the form G/|T, P, Piy = Pjr s Plur A in T, which we often

write as G{|T, {p; }1_, = {p]«k y—1- A Then Gi[T",Ap = up,A’ has the form G{[T”, {plk}k | =

P2

e Let ——(Amw) € T, where G' = GI,Ap = up,AAN, G” = Gl[LAp = up,B,A,

nr
G" = G|GyT,Ap = up,AAB,Al,Ap = up,A A B,A. Suppose that G’ and G” have the
forms Gi|T, {pi, }1., = {pj]k}]i':l,A, AAand G£|F,{pi2k}£=1 = {ijk}]’:zl,/\B,A in T¥, respectively.
Then G" has the form G{|G3|T', {pi, }i_; = {Phk}lpclzl’A NB AU Apiy b = {szk}lil’A AB,A.
All applications of (vy,,) are processed by the procedure similar to that of (As).
GI G//
e Let———(0,) et where G’ = G|, A\ip = u1p, A, D,

nr
G" = Gy|T'y, Aap = map, B, Ay, G" = G1]Go|T'1, Ta, (A + A2)p = (1 + u2)p, A© B, Ay, M. Suppose
that G’ and G” have the forms G{|F1,{pi]k}£i1 = {pj]k}zil,A,Al and G£|1"2,{p,2k}£ 1
{pjzk}k 1B, &2 in 7%, respectively. Then G"’ has the form Gi|G; |F1,F2,{pllk i 1,{p12k =
{Pine k A Piy e 1,A ® B, A1, Ay. All applications of (—;) are processed by the procedure 51m11ar
to that of (o).

!/ 124

o Let e ————(COM) e t*, where G’ = G1|T1,TTy, Ay p = p1p, Z1, D1,

nr
G" = Gy|Tp, Iy, App = pap, Lo, Ny, G"' = G1|G|T'1, T, (A11 + A1) p = (p11 + p21)p, D1, As|
ITy, 1Ty, (M2 + Ao2)p = (p12 + p22)p, L1, 20, where A+ Aqp = A, Ap1 + A = Ao, pyg + 12 =
M1, M21 + H22 = H2.

Suppose that G’ and G” have the forms G{|r1/H1,{Pi}c}t1 = {Pj;}gilrszl and
G|, T, {pi% }251 = {pj,f};:il/ZZ'AZ in T, respectively. Then G”’ has the form

A
G1lGa[Ty, T, {ps }k Ape hi2 = fily{r]ﬁk}fferhA2|

Hl'Hz' {pl }k l’{pl :> {p] lell {Pjgk 1221/21/22,
where
Aw Hw Hw ,”w
{Pi;{”}k 1 {Pz‘” }k 1 U{PIZk k= 1/{ka {P]lk 1U{P]2k :
forw=1,2.

Definition 17. The manipulation described in Step 5 is called eigenvariable-labeling operation.

Notation 4. Let G, and G} be converted to G and G* in T*, respectively. Then T* is a proof of G|G™.

”’|{5C}m //|{ c}m
W(EC*% is converted into GrI(s C}m,(IDQ) in Step 2,
4 124

. G’|S’(EW) e 72 is converted into a(IDQ) in Step 3, where G ¢ G’ by
Lemma 4(i). Some G'|I”,p = A’ € T2 (or G'|[I" = p,A’) is revised as G'|I/,T = A’ (or G'|I” = 1,A) in
Step 4. Each occurrence of p in T is assigned the unique identification number in Step 5. The whole
preprocessing above is depicted by Figure 13.

In the preprocessing of T, each

where G/ ¢ G{’ by Lemma 3
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T Step 1: 7! Step 2: T2 Step 3: T°
% Go Go GolGy =225, Gy|G;
Arw,Viw EC EW
Step 4: T4 . Step 577 .
TP Gl =L Gl
T,0L,W ID numbers
Figure 13. Preprocessing of 7.
G"|{scymi ,
Notation 5. Let W(EC*),& < i < N be all (EC*)-nodes of t' and G!"|{S¢}™: be converted to
1 1

G!'|{S¢}™ in T*. Note that there are no identification numbers for occurrences of variable p in S € G |{Sf}mz{
: : ; 1" ; : " !
meanwhile they are assigned to p in S; € G;'[{S;}"™i. But we use the same notations for S; € G;"'|{S7}" and
c 1§ Qe m; ; P
S5 e G{'|{S7}™ for simplicity.
In the whole paper, let Hf = G|{S¢}" denote the unique node of T* such that H{ < G!'|{S{}™i and S¢ is
the focus sequent of HY in T*, in which case we denote the focus one Sf; and others S, |---|S¢, ~among {S{}™.

We sometimes denote H also by G!|{S5,}.", or G!|S5,[{S5,} oy We then write G* as {va}fj;’"‘

We call HY, S, the i-th pseudo-(EC) node of T* and pseudo-(EC) sequent, respectively. We abbreviate
pseudo-EC as pEC. Let H € T, by S} € H we mean that S}, € H for some 1 < u < m;.

It is possible that there does not exist H{ < G'[{S5}™i such that S¢ is the focus sequent of H{ in T*, in
which case {S{}™ ¢ G|G*, then it has not any effect on our argument to treat all such S{ as members of G. So

we assume that all H are always defined for all G{'|{S{}™i in T, i.e., Hf > G|G*.

Proposition 2. (i) {S{, }o-0...n; € H for all H < Hf; (ii)) G* = {va}fj&"’

!/
Now, we replace locally each 5(1 Dq) in T with G’ and denote the resulting proof also by %,
which has no essential difference with the original one, but could simplify subsequent arguments.
We introduce the system GL¢, as follows.

Definition 18. GLq, is a restricted subsystem of GL such that

(i) p is designated as the unique eigenvariable by which we mean that it is not used to built up any formula
containing logical connectives and only used as a sequent-formula.

(ii) Each occurrence of p on each side of every component of a hypersequent in GL is assigned one unique
identification number i and written as p; in GLq. Initial sequent p = p of GL has the form p; = p; in GLq.

(iii) Each sequent S of GL in the form I', Ap = up, A has the form

L, {pik}£=l = {pjk}Z:]/A

in GLq, where p does not occur in T or A, iy # iy forall 1 <k <1 <A, jp#jiforalll<k<I<pu
Define v;(S) = {i1,-, i} and v,(S) = {j1,",ju}. Let G be a hypersequent of GLq in the form Sq|---[Sy
then v;(Sx) Nvi(S;) = @ and v, (Sk)Nvr(S)) = @ forall 1 < k < I < n. Define v;(G) = Uj_; v1(Sk),
vr(G) = Uy_, vr(Sk). Here,  and r in v; and v, indicate the left side and right side of a sequent, respectively.

(iv) A hypersequent G of GLq is called closed if v;(G) = v,(G). Two hypersequents G’ and G" of GLq, are
called disjoint if v;(G") Nv;(G") = @, v)(G") Nv,(G") =3, v.(G") NV (G") = @ and v,(G") N v, (G") = @.
G" is a copy of G’ if they are disjoint and there exist two bijections oy : v;(G") — v;(G") and 0, : v,(G') -
vr(G") such that G" can be obtained by applying oy to antecedents of sequents in G" and o to succedents of
sequents in G, i.e., G = 0, 0 01(G").



Symmetry 2019, 11, 445 19 of 50

(v) A closed hypersequent G'|G"|G"" can be contracted as G'|G" in GLq under the condition that G"
and G"" are closed and G"" is a copy of G"'. We call it the constraint external contraction rule and denote it by

GI|GII|GIII
e (ECq).
Furthermore, if there do not exist two closed hypersequents H', H"" ¢ G'|G" such that H" is a copy of H' then
GI GII GIII

we call it the fully constraint contraction rule and denote by l;,|(|;” (EC;)).

(vi) (EW) and (CUT) of GL are forbidden. (EC), (A,) and (v;) of GL are replaced with (ECq), (Arw)
and (Vi) in GLq, respectively.

(vii) G1|S1 and G,|S; are closed and disjoint for each two-premise rule

GilS1 G2[Sz 4GNS is closed ., o rul G'ls’
W(H) of GLq, and, G'|S’ is closed for each one-premise rule G’|S”(I)'

(viii) p does not occur in I' or A for each initial sequent I', L = A or I = T,A and, p does not act as the
G =A WR GI=A
Gl = A, A ) or G, A= A

weakening formula A in (WL) when (WR) or (WL) is available.

Lemma 5. Let T be a cut-free proof of Gy in L and T be the tree resulting from preprocessing of T.

(i) If

G’|S"(I) e T then v;(G'|S") = v,(G'|S") = v,(G'|S") = v;(G'|S");
. G/|S/ G//|S/l
(ii) If W
Ur(G’|S’)UUr(G"|S”);
(ii)) If H e T and k € v;(H) then k ¢ v,(H);
(iv) IfHet* and k e v)(H) (or k e v,(H)) then H < py = py;
(v) T is a proof of G|G™ in GLq without (ECq);
(vi) IfH',H" e v* and H'|H" then v;(H") Nv;(H") = @, v,(H")Nv,(H") = @.

(II) € T* then v(G'|G"|H") = v;(G'|S"YUvi(G"|S") = v,(G'|G"|H') =

Proof. Claims from (i) to (iv) follow immediately from Step 5 in preprocessing of T and Definition 18.
Claim (v) is from Notation 4 and Definition 18. Only (vi) is proved as follows.

Suppose that k € v;(H') Nv;(H"). Then H' < py = px, H” < px = px by Claim (iv). Thus H' < H”
or H"” < H’, a contradiction with H'|H" hence v;(H")Nv;(H") = @.
v.(H")Nv,(H") = @ is proved by a similar procedure and omitted. [

5. The Generalized Density Rule (D) for GLg

In this section, we define the generalized density rule (D) for GLn and prove that it is admissible
in GLQ

Definition 19. Let G be a closed hypersequent of GLq and S € G. Define [S]o =N{H:Se Hc G,v;(H) =
vr(H)}, ie., [S]g is the minimal closed unit of G containing S. In general, for G’ ¢ G, define [G']; = N{H :
G'cHcG,vy(H)=0v.(H)}.

Clearly, [S]; = S if v/(S) = v,(S) or p does not occur in S. The following construction gives
a procedure to construct [S] for any given S € G.

Construction 2. Let G and S be as above. A sequence G1, Gy, -, G, of hypersequents is constructed recursively
as follows. (i) G = {S}; (ii) Suppose that Gy, is constructed for k > 1. If v)(Gy) # v,(Gy) then there exists
irs1 € U1(Gr)\vr(Gy) (or ixyq € vr(Gp)\vi(Gy)) thus there exists the unique Sy, € G\Gy such that i, €
0r(Sks1)\01(Skr1) (07 igy1 € 01 (Sk1)\vr(Sks1)) by 01(G) = v, (G) and Definition 18 then let Gyyq = Gy|Sks1
otherwise the procedure terminates and n := k.
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Lemma 6. (i) G, = [S];

(ii)Let S" € [S] then [S"] s = [S]c)

(iii)Let G' = G|H', G" = GIH" ,v;(G") = v,(G"), v)(G") = v,(G"), v;(H') e v,(H") = v;(H") o v,(H")
then [H'] o, \H' = [H" ] \H", where A © B is the symmetric difference of two multisets A, B;

(iv)Let v, (Gy) = v;(Gr) Nvr(Gy) then v, (Gy)|+1 2 |Gi| forall 1 <k < n;

@) |or([S]g)| +1 > |[S]g|-

Proof. (i) Since Gy € Gy,1forl<k<n-1landS e G;thenS e G, € G thus [S]; € G, by v;(Gy) = vr(Gp).
We prove Gy ¢ [S]; for 1 < k < n by induction on k in the following. Clearly, G; ¢ [S]. Suppose that
Gy € [S] for some 1 <k < n—1. Since iy,q € v;(Gg)\vr(Gg) (or iy € v, (Gp)\v1(Gk)) and iy € U (Sky1)
(or ix41 € U1(Sk41)) then Siiq € [S]c by G € [S]; and v;([S]) = v, ([S]) thus Gy € [S]. Then G, €
[S]; thus G, = [S].

(ii) By (i), [S]; = S1/S2|-+|Sn, where S = S. Then S’ = Sy for some 1 < k < n thus iy € v,(Sk)\v;(Sk)
(or ix € v;(Sk)\vr(Sk)) hence there exists the unique k’ < k such that i, € v;(Sg)\vr(Spr) (or iy €
vr(Sk)\vi(Sgr)) if k > 2 hence Sy € [Si];. Repeatedly, Sy € [Si]g, ie., S € [S']; then [S]; ¢ [S]c.
[8']c < [S)a by S € [S] then [8']¢ = [S]o.

(iii) It holds immediately from Construction 2 and (i).

(iv) The proof is by induction on k. For the base step, let k = 1 then |G| = 1 thus |v},(Gg)| + 1 > |G|
by [v;,(Gk)| = 0. For the induction step, suppose that |v,(Gy)|+1 > |G| for some 1 < k < n. Then
01 (Gis1)| > [01,(Gk) + 1 by g1 € 01(Gry1)\01r(G) and v;,(Gy) < 01, (Gyy1)- Then [vg, (Gyyr)| +1 2
|Gs1] by Gis1] = [Ge[+1 =k +1.

(v) It holds by (iv) and v}, ([S]) = v;([S]g). O

Definition 20. Let G = $1|---|S, and S; be in the form T, {pii};c\il = {p].};{};:l:l,Alfor 1<Igr.
(i) If S € G and [S]g be Sy, |-+|Sk, then Dg(S) is defined as
Fklz“'/rku = (’Ul([s]c)’ - ’[S]G‘ +1)t/Ak1/“'/Aku?
(i) Let U}_y [Sq.]c = G and [Sy]-N[Sq]s = @ for all 1 < k < I < v then D(G) is defined as

DG(5q1)|'“|DG(qu)-
(iii) We call (D) the generalized density rule of GLq, whose conclusion D(G) is defined by (ii) if its
premise is G.

Clearly, D(py = pi) is = t and D(S) = S if p does not occur in S.

Lemma 7. Let G’ = G|S and G" = G|Sl|52 be closed and [Sl]G" N [SZJG” =, where S] = rl,{pi;}l/c\il =

A A A
{p]’;}zierl; 52 = FZI{pi%}kil = {pjg}]}:ierZ/ S = FlrFZr {pi;}kil’{pii}kil = {p];}lpclil’{p]]%};;ilfAllAZ/
Dgr(S1) = T1,% = I, A1 and Dgn(Sy) = To,Xo = I, Ap. Then Der(S) = Tq,%,T2,X =
Hl/Al/HZ/A2'

Proof. Since [S1]¢» N[S2]er = @ then [S]g, = [S1]or \(S1} UlS2]er \{S2} ULS} by 01(5) = 01(S11S5),
v;(S) = v,(51/S2) and Lemma 6 (iii). Thus [v;([S]g/)| = [o1([S1]gn)| +[o1([S2])], [[S1a/| = [[S11gn| +
|[S2]g| - 1. Hence

7

+1.

[o1([816)] = (ST | + 1 = [or([S1]gm)] = [[S1lgn| + 1 + |or([S2] )| = [[S2] G

Therefore DG/(S) = 1"1,21,1"2, 22 = Hl,Al,Hz, Az by

+ Dt T\ ([0 ([S1]gn)

+ 1)t T\ (|01 ([S2]6n)
_|[S]G’ +1)t,

- |[S1]gn

- |[S2]gn

I = (o ([S1]g)| = [[S1)Gn

I, = ([ ([S2] )| - |[S2] 6
D (S) =T1,%1,T2, % = (|0 ([S]e)

+1)t

+1)t
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+ 1)t/ Al/HZ\(|Ul([52]G”)

I\ ([or([S1]gn) ~[[S2]6n
where At = {¢t,--,t}. O
A

- [[S11cn + 1)1 A

Lemma 8. (Appendix A.5.1) If there exists a proof T of G in GLq then there exists a proof of D(G) in GL, i.e.,
(D) is admissible in GLq.

Proof. We proceed by induction on the height of 7. For the base step, if G is py = py then D(G) is = ¢
otherwise D(G) is G then g D(G) holds. For the induction step, the following cases are considered.

Case 1 Let
G'|S’
Ger T
where
§'= AT Api i = {pj )by OB,
" =T, {pi}iar = ik A A~ B.
Then [S"]gisr = [S']gys \{S'HS" by vi(S') = vi(S”), v (S") = 0,(S”) and Lemma 6(iii).
Let Dgrgr(S') = A,T,T" = A", A, B then D¢y gn(S") =T, T" = A”,A, A — B thus a proof of D(G'|S")
D I\ qr S,
is constructed by combining the proof of D(G’|S") and D;S/((S”))(—)r)‘ Other rules of type (I) are
processed by a procedure similar to above.
Case 2 Let
G1|S1 G2|52(® Vet
GIGalS3
where

A

51= rl/{pj;}kil = {P]‘; }liliyA/ M
A

S2=To {pphi2 = {Pj;};’zin/ Ay

A A
S3= F1/F2/{pi;}ki1f {pii}ki = {p]‘%}]iz]/{pj}% ZiyA © B, A1, As.

Let
Dg,is,(51) =T1,T11 = Aqy, (

vl([51]61|51)| - |[51]Gl|sl‘ +1t, A, Ay,

D,|s,(S2) = T2, T21 = Ag1, ( Ul([SZ]G2|52)| - |[52]c2|52‘ +1)t,B, A.

Then DG1|G2‘53 (Sg) is

I'1,T5,T11,T21 = Aq1, 821, A® B, Ay, Ay,

(|Ul([51]c]|sl)‘+‘Ul([sz]cﬂsz)‘—‘[Sl]cﬂs] —|[52]c2|52‘+2)f

by [Sslg,ics, = ([S1lgys, {S11) U([S2]g,s, \{S2}) U{Ss}. Then the proof of D(Gi|G2[S3) is
constructed by combining g D(G1|S1) and

D S D S
Gits1(51) Doyl 2)(9,). All applications of (—) are processed by a procedure
Dg,G,/5,(S3)

similar to that of ®, and omitted.
Case 3 Let

~GL D(G2|52) with

GI GII
7(/\rw) €T

where
G'=G1lS1, G"=GyS:, G" =Gy|Gy|S1Ss,
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Sw= rw,{le}k 1= {P] }kwl/Aw/Aw/
St =Tw, {Pi;v}ki“l = {Pj;”}kfyAl A Az, Dy

for w=1,2. Then [ ]G'" = [S1] \{S1}IS1, [SQ]G,,, =[S2] g \{S2}|S; by Lemma 6 (iii). Let

DGw|Sw(Sw) =TIy, Ty = Awl/(

Ul([sw]Gw|Sw)‘ - ‘[Sw]cw|sw‘ +1)t, Aw, M

forw =1,2. Then

DG”’(S;;) =Ty, T = Awl/(

+1)t, A1 A A, Ay

Ul([sw]cw|sw) - ‘[Sw]cw\sw

for w = 1,2. Then the proof of D(G"") is constructed by combining +gr D(G’) and +gr D(G") with

Dg:(51) Dgr(S2),
Do (5]1)

(Arw) and omitted.
Case 4 Let

(Arw). All applications of (Vi) are processed by a procedure similar to that of

GI GII

— g (COM) et

where
G'=GilS1, G"=GySy, G" =Gi|Gy|S3/S4

S1= rl/Hl/{pi;}Qil = {P]‘;};P;iyzlell
S22 Tl {piy = {pphily 2o, 0o,

S3=T1, T2 {py 1l v 12k = (o Y (o 1o 1, B,

Sa=TI, T, {py 15, (P2 13 = {p 5 (pp 3 20, 2

where {pio 1% = {pi 1 Ulpin 102, {pp d e = (o Yot Udp }2 forw =1,2.
Case 4.1. S3 ¢ [54]G,,, Then [S3]lgm = [54]G,,, by Lemma 6(11) and

[S3]gm = [S1]gr | [S2]Gr 1S3|S4\{S1, S2} by Lemma 6(iii). Then

[/ ([S3]gm)| -

||:S3:|GIII + 1 = |vl( Sl G/

+12>0.

|Ul( SZ]G” —| Sl G’ _| SQ_ el

Thus |o;([S1]/)| - |[S1]e/|+1 > Lor [01([Sa]gn)| - |[S2]r| + 1 > 1. Hence we assume that, without
loss of generality,

DG'(Sl) = rllnllr, = A,/ t,Zl,A],
DG"(SZ) = r2/ HZ/ r” = A”/ ZZI AZ'
Then
D (S3]S4) =T, 111, T, Ty, I, T = A, 54, A1, A", 25, As.
DG’(Sl) DGII(SZ)
DG///(S3|S4)

Thus the proof of

is constructed by

FZ/ HZ/ r” = A”/ 22/ AZ (t
r2/ HZ/ r”r t= A”/ 221 A2\ l)
rl/ Hl/ 1—',/ rZ/ HZ/ I'"= A,/ Zl/ Al/ A”/ z'2/ A2

Fl/Hllr, = A,/ tl Zl/Al

(cur).
Case 4.2. 53 ¢ [84](3"" Then [S3:|GN/ N [S4]GIII =g by Lemma 6(11) Let

- Awl Hal
Saw =Tw, {pz;‘;(}kfl = {p]i‘;{ kglew/
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_ A
Sqw = o, {piw 1127 = {Pjg’k}g:]flzw/

forw =1,2. Then

[53]G'" = [531]G1\531|541 \{Ss1} U [532]G2\S32|S42 \{S32} U{S3},

[54](;/" = [541](;1\53”54l \{Sa1} U [542](;2|s32\542 \{Sa2} U{S4}
by v;(53) = v;(S311532), v1(S1) = v1(531/S41), v1(S2) = v1(S32/S42) and vy (Sy) = v;(S41/S42)- Let

DGy [S30lS30 (S3w) = T, Xa00 = V30, B,

DGw\S3w|S4w(54w) =TTy, Xgp = Yo, X

forw=1,2. Then
Der(S1) =T1,114, X531, X1 = Y31, Y41, 21, A1,

Dir(S2) =T, 11p, X3p, Xap = Y32, Y2, X2, Ay,
D (S3) =1, X31,T2, X350 = Y31, A1, Y32, A2,
D (Sq) =11, Xa1, I, Xag = ¥a1, 29, Vap, 2o

by Lemma 7, [S3]gw N[Salgm = @, [S311G,15y5, N[S41]6,(55 15 = D [S32]Gyisanls,, NS2GyIs505,, =
Then the proof of D¢ (S3/S4) is constructed by combing the proofs of D/ (S1) and D (S2) with
Dcr (S D (S

¢'(51) Den( 2)(COM).

Dgr(S3]54)
G/|GII|GIII
Case 5 W(ECQ) € 7. Then G’,G"” and G are closed and G" is a copy of G” thus

Derigricm(G") = D (G"') hence a proof of D(G'|G") is constructed by combining the proof of
D(G/|G//|G//I)

D(GI|GII)

D(G'|G"|G"") and (EC*). O

The following two lemmas are corollaries of Lemma 8.

Lemma 9. If there exists a derivation of Gy from Gy,---, G, in GLq then there exists a derivation of D(Gp)
from D(G1),---,D(G;) in GL.

Lemma 10. Let T be a cut-free proof of Gy in GL and T be the proof of G|G* in GLq resulting from
preprocessing of T. Then g D(G|G*).

6. Extraction of Elimination Rules

In this section, we will investigate Construction 1 further to extract more derivations from t*.

Any two sequents in a hypersequent seem independent of one another in the sense that they can
only be contracted into one by (EC) when it is applicable. Note that one-premise logical rules just
modify one sequent of a hypersequent and two-premise rules associate a sequent in a hypersequent
with one in a different hypersequent.

T (or any proof without (ECq) in GLn) has an essential property, which we call the
distinguishability of 77, i.e., any variables, formulas, sequents or hypersequents which occur at
the node H of T* occur inevitably at H' < H in some forms.

Let H = G'|S'|S" e T*. If §" is equal to S as two sequents then the case that 7};.¢, is equal to 77},
as two derivations could possibly happen. This means that both S” and S” are the focus sequent of one
node in 7* when G}, # S" and Gj;.¢» # S”, which contradicts that each node has the unique focus
sequent in any derivation. Thus we need to differentiate S’ from S” for all G'|S"|S” e T*.
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Define S’ € T* such that G’|S’|S” < S/, S’ € S” and S’ is the principal sequent of S’. If S has the
unique principal sequent, Ng/ := 0, otherwise Ny := 1 (or Ng/ = 2) to indicate that S’ is one designated
principal sequent (or accordingly Ng/ = 2 for another) of such an application as (COM), (Arw) OF (V).
Then we may regard S’ as (S’;P(S’), Ng/). Thus S’ is always different from S” by P(S’) # P(S”) or,
P(S") =P(S”) and Ngr # Ng». We formulate it by the following construction.

Construction 3. (Appendix A.5.2) A labeled tree T**, which has the same tree structure as T, is constructed
as follows.

(i) If S is a leaf T, define S = S, N = 0 and the node P(S) of T** is labeled by (S; P(S), Ns);

g’

(ii) Ifo(|35/|SN(I) e T and P(G'|S") be labeled by G'|(S’; P(S"), Ng) in T**. Then define S” = H,

Ngu =0 and the node P(H) of T** is labeled by G'|(S"; P(S"), Nsn);
G/‘S/ GH|SH * g/ ngr !/ /. Qr

(iii) If m(ﬂ) e T, P(G|S") and P(G"|S") be labeled by G'|(S’;P(S’),Ns/) and
G"|(S";P(S"),Ngr) in T**, respectively. If H' = S1|S; then define Sy = S, = H, N5, = 1, Ng, = 2 and
the node P(H) of T** is labeled by G'|G"|(S1;P(S1), Ns,)|(S2; P(S2), Ns,). If H' = Sy then define Sy = H,
Ns, =0and P(H) is labeled by G'|G"|(S1; P(51), Ns, ).

In the whole paper, we treat T as T** without mention of 7. Note that in preprocessing of
T, some logical applications could also be converted to (IDq) in Step 3 and we need fix the focus
sequent at each node H and subsequently assign valid identification numbers to each H' < H by
eigenvariable-labeling operation.

Proposition 3. (i) G'|S’|S" e t* implies {S"} N{S"} = @; (ii) H € v° and H'|H" ¢ H imply H NH" = &;
(iii) Let H € T* and S} € H then H < Hj or H; < H.

Proof. (iii) Let S¢ € H then S} = S} for some 1 < u < m; by Notation 5. Thus S? € Hf also by Notation 5.
Hence H < S¢ and H{ < 5¢ by Construction 3. Therefore H < H{ or Hf < H. [

Lemma 11. Let H € v and Th(H) = (Hy, -+, H,), where Hy = H, H, = G|G*, Gy € H for 1 <k < 3.
(i) If G3 = G1 N Gy then (H;) .6, = (Hi) g, N (Hid g, forall 0 <i<m;
(i) If Ga = Gr|Ga then (H)rc, = (i), | (b, for all 0<i < n.

Proof. The proof is by induction on i for 0 < i < n. Only (i) is proved as follows and (ii) by a similar
procedure and omitted.

For the base step, (Ho)p.g, = (Ho)p.g, N(Ho)p.g, holds by (Ho)p.c, = Gi, (Ho)pg, = Go,
<H0)H:G3 = G3 and G3 = G1 N Gz.

For the induction step, suppose that (H;) ., = (Hi) 1.6, N (Hi) ., for some 0 <i < n. Only is the

case of a one-premise rule given in the following and other cases are omitted.
g/

Let G’|SII(I) c T*, Hi — GI|SI and Hi+l — G’|S”.

Let §" € (Hi)p.g,- Then (Hisi)pc, = (Hidu, \{S'DIS", (Hi)ue, = (Hidpg, \{S1IS” by
§" € (Hi)p.c, and

(Hiv1) g, = ((Hi) g, \{S")IS” by §" € (H;) ., -
Thus
(Hi+1>H:G3 = <Hz'+1)H:G1 N{His1) ., by <Hi)H:G3 = <Hz‘>H:c;1 N{Hi) y:c,-
Let S’ ¢ (Hi)p., and S" ¢ (H;) ., Then (His1) g, = (Hidpig,/
(His1) b, = (Hi)p:g, and (Hi) g, = (Hidprg,-
Thus
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(His1)p, = (Hiv) g, N (Hiv) g, bY (Hid g, = (Hid g, N (Hi) prg, -
Let S"¢ (Hi)p.c, ,S" € (Hi)p.c,- Then (His1) g, = (Hidpg,
(His1)pig, = (Hidpig, and (Hist) g, = ((Hi) g, \{S"DIS”.
Thus
(His1) gy = (Hiv1) g, N (His1) e, BY (Hidmg, = (Hidpg, N(Hidpg, S” ¢ (Hiv1)prg, -

The case of S’ ¢ (H;)py,,, S’ € (Hi) ., is proved by a similar procedure and omitted. [

Lemma 12. (i) Let G'|S" € T* then G160 N GEngrgr = 20 Gnsrar|Grsrnsr = GIG™
(i) H e v, H'|H" ¢ H then Gy i = Gipopyr|Gp.pyor-

Proof. (i) and (ii) are immediately from Lemma 11. O
Notation 6. We write Tﬁfzsﬁ, Gﬁfszl as Ts*fl, Ggﬁ’ respectively, for the sake of simplicity.
Lemma 13. (i) G ¢ G|G*;

il

c

(ii) TSC is a derivation of G*C from S§,, which we denote by G;*l <T§C );
il

(ii1) G§ 5 = =S5, and TSC consists of a single node S5, for all 2 < u
(iv) Z)z(G"c Noi(Siy) = ZJr(G*c Nor(Siy
(v) (H >Sc ¢ TSC implies H < HC Note that (H >S(_:1 is undefined for any H > H{ or H|H.
(vi) S" € G*c lmplzes Hf £ HC
il

Proof. Claims from (i) to (v) follow immediately from Construction 1 and Lemma 4.
(vi) Since SJQ € G5 < G|G* then S]? has the form S]C.u for some u > 2 by Notation 5. Then G = S;? by
il ;

(iii). Suppose that Hf < H]C Then S]C. is transferred from H]C downward to Hj and in side-hypersequent
of Hj by Notation 5 and G|G* < H} < HC Thus {55 }ﬂ{SC} @ at Hf since S, is the unique focus
sequent of Hf. Hence S]? ¢ G by Lemma 11 and (iii), a contradlctlon therefore Hf £ HC O

il

G/|S/ G/I|S// . ) . . .
Lemma 14. Let m(ll) eT*. (i) IfS]C € Gy then H]? < Hor H/CHH, (ii) IfS]C € Gyp.qn then
H <Hor H]?HG’\S’.

Proof. (i) We impose a restriction on (II) such that each sequent in H' is different from S’ or S”
otherwise we treat it as an (EW)-application Since SC € Gy € G|G* then S has the form S,
for some u > 2 by Notation 5. Thus G* = C Suppose that HC > H. Then SC is transferred from

H; downward to H. Thus S7 € H' by Ggg = S]? € Gy and Lemma 11. Hence §; =5"or S5 = 5",
j
a contradiction with the restriction above. Therefore H? < H or Hf | H.
i1) Let 5% € e - > H then S € roposition 2(1) and thus 5% € emma and,
i) Let 57 € Gy, If Hi > H then S; € H by Proposition 2(i) and thus 5 G" by L 11 and
hence H; | G'|S" by H: > G"|s"”, G'|S"|G"|S". 1f H?|H then H; | G'|S’ by H < G'|S". Thus Hi <Hor
H]'?HG’|S’. O

Definition 21. (i) By Hj ~ H? we mean that S? € G;c for some 2 < u <mj; (ii) By Hf « H]C we mean that

Hj ~ Hc and HC ~ H ; (iii) Hc A HC means that s¢ é G*c forall2<u <

Ju nj.

Then Lemma 13(vi) shows that Hf ~ H]C implies Hf £ H]C
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GI|S/ G//|S//
Lemma 15. Let HfHH]C, Hf ~ H,

* A A C " " C
j W(H) € T* such that G'|S" < Hf, G"|S" < H;. Then
l4 € (G/‘S/>SC_1~

Proof. Suppose that S’ ¢ (G’|S’)51;1. Then (G’\S’)S’c_1 c G’ by (G,|S,)S§l cG'|S, (G’|G”\H’)SI¢1 = (G’|S’)51¢1

by Construction 1. Thus (G,|G”|H’>S§1 c G'. Hence G"|H'N (G’|G”|H’)S]¢] = @ by Proposition 3(ii).

Therefore S]C-u ¢ G*f forall 1 < u < m; by Lemma 11, i.e., Hf » H]?, a contradiction and hence
"e (G,‘S,)Sg . O

Lemma 13(ii) shows that TSC is a derivation of G*C from one premise Sf;. We generalize it by
introducing derivations from rnultlple premises in the followmg In the remalnder of this sectlon,
let I = {ch1’ v Hj } < {Hj, - Hy}, ka « qu forall 1 <k <g <m. Then Hj £ qu and H; £ H i, by
Lemma 13(vi) thus ka Hqu forall1 <k <g<m.

Notation 7. H) denotes the intersection node of Hi -+ H; . We sometimes write the intersection node of H}
and H]C as Hl.v IfI = {H'}, HY = HY, i.e., the intersection node of a single node is itself.

G/|S/ G//|S/I

Let W(H) € 7% such that G'|G”|H' = H{. Then I is divided into two subsets
:{Hclf. }andlr—{ r’’’ 'r‘ m(r)
T (G"|S") OfT (G |G"|H"), respectwely
Let T = {5%1,...’ ST = {51611,..., Slc,,,(,)l}' 7, = {Sﬁll,..., Sﬁm(r)l} such that Z = Z;UZ,.

A derivation 77 of (G|G*) from Si1,°+Si,1 is constructed by induction on |I|. The base case of |I| =
has been done by Construction 1. For the induction case, suppose that derivations TI*Z of (G|G* >Iz
from §j -, Slc,,,(,)l and 77, of (G|G*), from S7 ;,--,S; , are constructed. Then 77 of (G|G*)7 from

. m(r)
Slll'

}, which occur in the left subtree 7*(G’|S”) and right subtree

-, Sfml is constructed as follows.
Construction 4. (Appendix A.5.2) (i)
(H)z = (H)g, forall G'|S" < H < Hj for some Hj ¢ I,

(H)z = (H)z, forall G"|S" < H < H; for some Hj ¢ Iy,
7 ({G18')) =7,({G'IS') ), 1 ((G"1S") ) = 17,({(G"IS") . );
(ii)
(G'IG"H) = (G,>I,| <G">I,, |H'
and
(G'IS")z, (G"IS")z

1 r *.
(e P

(iii) Other nodes of T7 are built up by Construction 1(ii).
The following lemma is a generalization of Lemma 13.

Lemma 16. Let Th(Hj ) = (H; g, H, iy,
O<uxg i,

(i)

), where 1 <k <m, Hfo = HC and HY = G|G*. Then, for all

zkn

( W) ﬂ{( zku>50. felHS, < HY;
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(ii)
{S¢ +H e HS < HS}
: ]< . =(w(H5),));
iulr
(iii)

o((Hiu) NUi(Sj1) + H € LH}, <Hf} =

o (Hu) NUHor(S51) + Hf € LH, < Hy);

(iv) (H)7 € T7 ifand only if H < Hf for some HY e 1. Note that (H) is undefined if H > H{ or H| HY for
all Hf € I.
1

Proof. (i) is proved by induction on |I|. For the base step, let |I| = 1 then the claim holds clearly. For the
induction step, let |I| > 2 then |[;| > 1 and || > 1. Then S’ € (G’|S’)5g1 for all Hf ¢ I; by Lemma 15 and
Hf ~ Hjc for all H]‘? €l (G'S"), = NHeel, (G’|S’)Sf1 by the induction hypothesis then S € (G'|S’) 7, thus
(GIG|H')y, = (G'), |G"|H by G'[S' < H

(G'|G"|H")z, = (G") 1, |G'|H" holds by a procedure similar to above then

<GI|GII|HI)I — <GI>II |(GII>Ir |HI

- (€) IG"IH) (G”)y, IG1H')
— <GI|GII|HI>I m (GI|GII|HI>I
by (G')z, € G"and (G”)7, ¢ G". Other claims hold immediately from Construction 4. [

Lemma 17. (i) Let G7 denote (G|G* ) then GT = Npeer G&c ;
€ S8 !
11 Im *
(iif) Uz(Gz)\ Unger vi(Sjy) = 0r(G)\Upcer 0r(S5;);

(iv) S]C. € G7 implies Hf £ H]‘?for all HY e 1.
Proof. (i), (ii) and (iii) follow immediately from Lemma 16. (iv) holds by (i) and Lemma 13 (vi). O

Lemma 17 (iv) shows that there exists no copy of ka in G} for any 1 < k < m. Then we may regard
them to be eliminated in TI* We then call 77 an elimination derivation.
LetZ' = {S¢ fuyr ., be another set of sequents to I such that G’ = ; Syl 1S5,u,, 1s @ copy of
G"=¢5¢ 1| 155 1 Then G’ and G" are disjoint and there exist two bijections 07 : v;(G’ ) - v;(G") and
vr(G ) —> vr(G’ ") such that 0; 0 0;(G") = G”. By applying o; o 07 to T}, we construct a derivation

from Sty Si o, and denote it by 77, and its root by G7,.
Letl’ = {Gb1|51 w7 G, IS5, } e a set of hypersequents to I, where Gy, |S{, be closed for all
1<k <m. By applylng 7 t0 57 s Sp Gy IS5 o G, |S] L, - We construct a derivation from
Gbl |Sll uy’ Ghm |Szmum

and denote it by 77, and its root by Gy,. Then Gy, = {Gy, }}*,|GZ..

Definition 22. We will use all 7y, as rules of GLq and call them elimination rules. Further, we call
f]ul, =, 8, focus sequents and, all sequents in G, principal sequents and, Gy, , -, Gy, side-hypersequents
of Ty,
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Remark 2. We regard Construction 1 as a procedure F, whose inputs are T2, H, H' and output T2, ;,. With
such a viewpoint, we write T4y, as Fr.p(T2). Then T can be constructed by iteratively applying F to T*,
i, 7 = Fhe wsc | ("'folzsgll (T%)+)-

!/

We replace locally each E(I Dq) in T with G" and denote the resulting derivation also by T. Then each

non-root node in T; has the focus sequent.

Let H € T7. Then there exists a unique node in T*, which we denote by O(H) such that H comes from
O(H) by Constructions 1 and 4. Then the focus sequent of O(H) in T* is the focus of H in 7 if H is a non-root
node and, O(H) = H or H ¢ O(H) as two hypersequents. Since the relative positions of any two nodes in
T* are kept unchanged in constructing t;, Hy <z Ha ifand only if O(Hy) <+ O(Ha) for any Hy, Hy € 7.
Especially, O(kal) = ka for kal €T,

Let H € 7. Then H' = 0, 00y(H) € T3, and H" = {Gy : H Sz Si1andl <k <m} | H' e ;. Define
O(H") = O(H") = O(H). Then O(G},) = G|G* and O(Gbk|kauk) = kafor all Gbk|51?kuk €Ty

Since G} = (G|G*) € G|G*, then each (pEC)-sequent in G7 has the form S]?U forsome1<j<N,
2 < v <mj by Proposition 2(ii). Then we introduce the following definition.

Definition 23. (i) By S]C. € GJ we means that there exists H € T7 such that S]C. €eH O(H) = H]C So is S]C- € GT.
(ii) Let S]Q e GI. By H]C Sz Hf we means that there exist H,H' € 7 such that S; e H O(H) =
H]?,C’)(H’) = Hf and H]? <o+ Hf. We usually write Sgz 08 <.

7. Separation of One Branch

In the remainder of this paper, we assume that p occur at most one time for each sequent in Gy
as the one in the main theorem, T be a cut-free proof of Gy in GL and 7* the proof of G|G* in GLn
resulting from preprocessing of 7. Then |v;(S)| + |v,(S)| < 1 for all S € G, which plays a key role in
discussing the separation of branches.

Definition 24. By S’ €. G’ we mean that there exists some copy of S’ in G'. G’ <. G" if S" €. G" for all
S'eG. G = G"ifG'c. G" and G" ¢, G'. Let G11,-+, G1,yy be m copies of Gy then we denote G'|Gy1|-++|G1p,
by G'{Gu}ysy or G'{Gi}™.

Definition 25. Lef [ = {Hl.cl,---, H; }c{Hj,- Hy}, ka HHfl forall1<k<I<m. [ka]l is called a branch of
ka to I if it is a closed hypersequent such that

(i) 18 1 < GIG*,
(ii) S; €[S; 11,
(iii) S]? € [ka]l implies Hf < ka or H]?HHffor all HY € 1.

Then (i) S} ¢ [ka]l forall1<k,I<m, k#1I; (ii) S]‘f € [ka]l and H]” £ Hj imply H]C ¢l
In this section, let I = {H}, I = {[S7];}, we will give an algorithm to eliminate all S]C. € [SF1r
satisfying H]? < Hj.

Construction 5. (Appendix A.3) A sequence of hypersequents Gf*’ D and their derivations Tf @ from [S{];
for all g > 0 are constructed inductively as follows.

For the base case, define Gf © to be [Sﬂ 1 and, Tl’ﬁ’(o) be For the induction case, suppose

Gi‘z(O) ’
1

that Tlﬁ(q) and Gf(q) are constructed for some 0 < q. If there exists no S]C- € Gf“’(q) such that H]? < Hj,

then the procedure terminates and define i to be q; otherwise define qu such that qu € Gf (q), qu < Hf

and H; < qu for all S e G;ﬁ’(q),HjC < Hj. Let qul,---,qumq be all copies of qu in Gf(q) then define
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Gf(qﬂ) ﬁ(q)\{Sl u} |{G*C }m_” and its derivation le(qﬂ) is constructed by sequentially applying
Tee ,Tee  t0SY 177 Sf zn G #(7) , respectively. Notice that we assign new identification numbers to new
ig1 igmg
occurrences of p in g for all 0<g<i-1,1<u<m,
lqll
Lemma 18. (i) Hfo = Hf and quﬂ < qu forall0<qg< J1—
(ii) G*(q) c. G|G* isclosed forall 0 < g < Ji;

50 | 561,
1) v (1)
(iif) =) ( )for all 0 < q < Jy, especially, G ( ),

Gy
(iv) S € Glﬁ(h) implies H |H; and, S « Gsfqu for some Téblsfq € Tf(h) or §; € [Si]1, Hj & Hj,

where Gy, = Gf(q)\{qu 1|{G*c }U 1 Gb|S isclosedand 0<q < J1-1,1<u <my.
Proof. (i) Since S¢ ¢ GI'” by 5¢ € [5¢1, = G*” and, HS < H for all S¢ € GI'”), HE < H then H{, = HE.
£S5 € GIFO\(SE bty then HY | < HE by 8¢ e GFP, HE | < HE thus HY | < HY by all copies
of SC in Gﬁ(q) being collected in {Sl u} CIf SC € {G’*;u}ﬁ1 then qu £ quﬂ by Lemma 13(vi)

+1

#(g+1) _ ~%(9) My g ax M
thus Hf | < Hf by Hf < Hf, H  <H. Then Hf < Hf by Gj = G\ S HGs Yoty

lqu

Note that HC is undeflned in Constructlon 5.
(ii) vl(Gﬁ(O)) = vr(Gf(O)),Gf(o) c. G|G* by GI*(O) = [S7];. Suppose that vl(G*(q))
0, (GFD),GFD . GIG* then o(GFU*V) = 0(GFT),GFID <. GlG* by G
*W\{slqu}u (HGE ity 0i(GE \S5,)) = 0r(GE \(S7,}) and G < G|G* forall 1 <u <my.
l 1‘,714 lqu Iqll

Sili [Sil1
*() — [ %(0) : [Si %*(q) 1 % (g+1)
(i) T G*(O) (TI ) Given G{r(q) (T ) then G*(‘”l) <T >
I I I

linking up the conclusion of previous derivation to the premise of its successor in the sequence
of derivations

is constructed by

¥ (q) c g1 * =1
[Sil1 ( #( )) GO, % O B B, G fu}u=1
; I <)
Glﬂ’(q) sﬁr(Q)\{S 1}|G* igl Gﬁ(ﬁ*’ ) _ G?(ﬁ)\{s; }u 1|{G*c u}ztil igmy
as shown in Figure 14.
(561, .
(TI (q))

G D = GFU\(SE I [(SE  Ju IS ( )
GE NS Juty S Futal¢ 2G5

-1
G NS5, G5 Hih

%) _ % ) <T5 " >
G = G O\gse yulGs 1 i
qu

Figure 14. A derivation of Glﬂr @) from GI*(IJ)_
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(iv) Let S¢ € G*Y. Then HE ¢ HE by the definition of Jy. If S¢ € [S¢]y, then HE|HS by HE £ H
and the definition of [S{];. Otherwise, by Construction 5, there exists some Tébl g in TI*(I D such that
S]? € G;?qu. Then Hl-cq g H]C by Lemma 13(vi). Thus H ¢ H]? by Hl-cq < Hf. Hence H]CHHlC O

Lemma 18 shows that Construction 5 presents a derivation TI* U1 of GI* U0 from [S7]r such that
there does not exist S; GI’* () satisfying H; < Hf, i.e., all 57 € [S7]; satisfying H; < H are eliminated
by Construction 5. We generalize this procedure as follows.

% (Ju: 2 (Jn:
Construction 6. Let H € 7%, Hy ¢ H and Hy <. G|G*. Then GH:(I{[[H‘HZ) and its derivation TH:ng'H’)forl =1,2
pid .
are constructed by procedures similar to that of Construction 5 such that H]C & H for all S]C- € GH:(P]I?'H’ ), where

G§=(131) = Gippy s Tﬁgl) = Tfp.py,» Which are defined by Construction 1.

We sometimes write J1, [p.p, as | for simplicity. Then the following lemma holds clearly.

H
Lemma 19. (i) G*EI) <T§:g1)>/ H]C & H for all SJC' € GI{;:(ITIII)'
HZH]

(ii) If S¢ € H and HC > H then G={J) = s¢.

(iii) If S ec G or, S €c G* is a copy of S5, and Hf & H then ng(sj) =5.

(iv) Let H'|H" ¢ H € t*. Then GEE)lH” = GﬁzgﬂGﬁg% by suitable assignments of identification
and V)

; o () *(J)
numbers to new occurrences of p in constructing Thhy|Hrr TH:H H-H

(0) GF - U{ijf{% S e [S51y, HE < HE}ULSS < S¢ € [S511, HE & HEHU{S : S €[S711,S e G-
Proof. Part (i) is proved by a procedure similar to that of Lemma 18(iii) and (iv), and omitted.

(ii) Since Sj; is the focus sequent of Hj then it is revised by some rule at the node lower than H;.
Thus S € H is some copy of S5, by Hf > H. Hence S has the form S} for some u > 2. Therefore

it is transferred downward to G|G*, i.e., S; € G|G*. Then GxO -

Hese = Gjj.gc = S7. Since there exists no
i i

s Gx©® H¢ < H then ] = 0. Thus GEU _ g,

H:S¢ 7 H:S¢
] i
(iii) is proved by a procedure similar to that of (ii) and omitted.
(iv) Since H'|[H"” ¢ H e 7%, then H'NH" = @ by Proposition 3. Thus Gﬁflg?lm = Gy =

Giy |Gy = GE&%G;&??,. Suppose that GE:SZ?I = GﬁgﬂGg@,, for some g > 0. Then all copies
N Gﬁ(q) Thus we

{quu}umjl of qu in GE:%I p are divided two subsets {qu u}Zzl N Gﬁz(ﬂl? and {qu W) e

Ii(l_"}:r‘g,,,Gﬁgfl) and Gﬁz(ﬁ;l) simultaneously and assign the same identification

s (g+1)
H:H'|H""

my
u=1
can construct G

. 1 1 . .
numbers to new occurrences of p in GE’:(I? ) and G;;:(IZ; ) as the corresponding one in G

*(g+l) _ ~%(g+l) ~%(q+1) w()  _ ~x()) %)

Hence Gy g = Gy G- Then Gy = Gy (G-

Note that the requirement is imposed only on one derivation that distinct occurrence of p has
a distinct identification number. We permit GE:(IZ#) = Gliﬁ?, or Gﬁfﬂ;l) = Gﬁ:(IZ? in the proof above,
which has no essential effect on the proof of the claim.

(v) is immediately from (iv). O
% (])

I,E:S]C.

S]? € [S{ ] satisfying Hj‘? < Hj. Thus the requirement HiCqu1 < qu in Construction 5 is not necessary,

Lemma 19 (v) shows that Gf ) could be constructed by applying T sequentially to each

but which make the termination of the procedure obvious.
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Construction 7. Apply (EC{)) to Gf" ) and denote the resulting hypersequent by GI* and its derivation by

TI{{ . It is possible that (EC(,) is not applicable to Gf*’ o

the derivation.

in which case we apply (IDq) to it for the regularity of

[Sili
i’fr
I

Lemma 20. (i) ( *), GI* is closed and H]?HHffor all S]C. € GI*;

I
GolS;,

(ii) Tl’ﬁ’ is constructed by applying elimination rules, say, W
bi~se
lqu

<Téb|sfqu ), and the fully constraint

isclosed for0<q<J-1,1<u<mg.

Gy
contraction rules, say, == G (ECQ> where HC Gb|Sl "

Proof. The proof follows immediately from Lemma 18. O

Definition 26. Let G’ ¢ G*), H' ¢ G' and S’ ¢ H'.

(i) For any sequent-formula A of ', define A to be the sequent S of Gf D such that A is a sequent-formula
of S or subformula of a sequent-formula of S.

(ii) Let S’ be in the form Ay,--, Ay = By, By, define S to be the hypersequent which consists of all
distinct sequents among A, Ap, By, B (iii) Let H' be in the form Sq|-- |Sm, define H' to be Sl| |S

(iv) We call H' to be separable if H' c. G and, call it to be separated into H',

Note that TI*(] ) is a derivation without (ECq) in GLn. Then we can extract elimination
derivations from it by Construction 1.

Notation 8. Let H ¢ G ¢ Tf{(] ), Tﬁé],:)H,} denotes the derivation from H', which extracts from Tﬁ(] ) by

¥ (J)

Construction 1, and denote its root by GI (GrHn

The following two lemmas show that Constructions 5 and 6 force some sequents in [S{]; or H' to
be separable.

Gl|sl Gll|sll
Lemma 21. Let m(l I) e T*. Then
(i) H' is separable in T ;;I({],)
G{C8")s:  GS"” »

.o q
(ii) If iy = Gy (G |G”|H’\H) €T S € TI , then H' is separable in 7
lqu

and there is a unique

copy of§W|Gﬁgl):G,,} in GI*.

Proof. (i) We write < x(j) and <+ respectively as <y and < for simplicity. Since GEU) <. G|G*,

H:H'
H H'
we divide it into two hypersequents GH(:QI, and G*U ) such that Gﬁ;g? %Q,JG*(Q,, G?{(g, c. G,
*(]) G*.
Gy S

Let SC. € G;(Q, then H? ¢ H by Construction 6. We prove that H]CHH’ in T§ g,) as follows.
If SC € Gpp.pp then HC||H’ in /., by Lemma 14(i), 7/ € TH(]) and HC £ H. Thus we assume that
SC ¢ Gip.p in the followmg
Then, by Lemma 18(iv), there exists some Téb‘ g in T;;: g,) such that H < H, S]‘f € G&c. Then Hf £ H;
GilS1 GalS2

—————— "(II) € T*, where
G1|Go|Ha (I

by Lemma 13(vi). H]-C £ Hf by Hf < H, H]C ¢ H. Thus HfHT*H]‘?. Let
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GilGo|Hy = HY, Gil$1 < HE, GolS, < HE. Then Sy € (GilS1)s:, Gol (GalS1)se € gl GalSa € )
by Sf € G& < GylGE; ¢ Tit). Thus H[ 4 H' by Gol(GilS1)se < GolS; <x H', GolS2 <x H and
Gyl (G1|51)sc 4 GalSo-
N ¥ (]) *(J) N7 - T c ) ¢ . s
Thus H] |IH" in 7/;};/. Therefore G, .1, NH' = @. Then H' ¢ G}y, S G, i.e., H' is separable
% (])

in Ty
* %
(ii) Clearly, G, {I({)quHr} H;gf)q H I{QI)G,,lH, has no difference with 7 (GI’)’I I

except some applications of (IDq) and identification numbers of some p’s. Then H' is separated

is a copy of G , and,

into H’ in Gﬁg) Y by the same reason as that of (i). Then S’,S" are separated into 5’ and 57 in

Tf D, respectively. Then §W|Gﬁg) oy € 0(] ) (e “() is closed since G| is closed. Thus all copies of
§ﬁ|G;§g]):G,,} in T;ﬁ(] ) are contracted into one by (EC{) in G O

Lemma 22. (i) All copies of S} in [ S5 |1 are separable in TI*(I)

(i) Let He %, H' ¢ H, Hc <Hor HCHHfor all SC € Gfy.pyr- Then H' is separable in TH(I).

Proof. Parts (i) and (ii) are proved by a procedure similar to that of Lemma 21 and are omitted. [

GolS7,u

Definition 27. The skeleton of TI*, which we denote by Tlﬁ,is constructed by replacing all G|GZ<TGb c )e
b c "I“

Siq
* it S0 e, Gy|S¢ , is th t node of Gy|GZ: in T
T with = G (TGbIS? ), i.e, Gp| i,u 1 the parent no eof Gp|Gge in T
bIse g iqu
fql/l

Lemma 23. The parameter TI* is a linear structure with the lowest node GI’:’ and the highest [ S{ ;.

Proof. It holds by all Tébl ¢ and ECg in TI* being one-premise rules. [
lqu

Definition 28. We call Construction 5 together with 7 the separation algorithm of one branch and, Construction
6 the separation algorithm along H.

8. Separation Algorithm of Multiple Branches

In this section, let [ = {H1C1”H1Cm} ¢ {Hf,---, Hy} such that ka HH,C, foralll1 <k<Ilg<m
We will generalize the separation algorithm of one branch to that of multiple branches. Roughly
speaking, we give an algorithm to eliminate all S]‘? € G|G* satisfying H]-C < Hii for some Hl‘; el.

Definition 29. I := {H; : Hi <H for some Hf eI}.

Theorem 2. ([A4,A.54]) Let 1={[S] 11, [S] 11} Then there exist one closed hypersequent Gf" c. G|G*
and its derivation T * from [SC 11, -, [S;, 11 in GLq such that

(i) TI is constructed by applying elimination rules, say,

Gy, IS, GuylS5, -+ belsfw :
T. ),
Gi = {GyJiLilG, g
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G
and the fully constraint contraction rules, say :2(EC* ), where 1 < w < m, H]?k o H]CI foralll<k<I<w
G

I = {H]i,..., H](’w} €I = {S;:‘l,. ]w} I = {Gb1|S ,be|5}?w} and Gbk|S]C'k is closed for all 1 < k <
Then Hj & H]?for all S]C- € G}i and Hf € I.
(ii) For all H e 77,

G|G* H is the root of T or Gy in %(EC* or IDq) € X
E)T;k(H) = I G Q I

H]?k His Gbk\S]C-k in T e 7?1* for some 1<k<w,
]

where, TI* is the skeleton of TI* which is defined as Definition 27. Then
aTﬁ (Gl*j) < E)Tlﬁ (Gbk|S]¢k)for some 1<k <win TI*

(iii) Let H € TI*, G|G* <9« (H) < HY, then G*(I) € Tli} and it is constructed by applying the separation
1

algorithm along HY to H and, is an upper hypersequent of either (EC},) if it is applicable, or (IDgq) otherwise.
(iv) S]C. € GI* implies H].CHHffor all HY e I and, S]¢ € G}j for some Tf; € TI* or S]C- €[S} |1 for some H; eI
satisfying H]C ¢ He

Note that in Claim (i), bold j in [;, Z; or I; indicates the w-tuple (i, j») in Sc»l, e, SJQH}. Claim (iv)
shows the final aim of Theorem 2, i.e., there exists no S]C- € GI* such that H]? < Hj for some Hj € I. Itis

almost impossible to construct TI* in a non-recursive way. Thus we use Claims (i)—(iii) in Theorem 2 to
characterize the structure of Tf" in order to construct it recursively.

Proof. TIsﬁr is constructed by induction on |I|. For the base case, let |I| = 1. Then Tlﬁ is constructed by
Construction 5 and 7. Here, Claim (i) holds by Lemma 20(ii), Lemma 18(i) and Lemma 13(vi), Claim (ii)
by Lemma 18(i), (iii) is clear and (iv) by Lemma 18(iv).

GI|SI GII|SH
W(II) € T* Where G,|G”|H, = H}/

Then {Hf ;- Hj }is divided into two subsets I; = {Hl s Hf (1)} I, ={H{ ,--,H }, which occur in

v Tm(r)
the left subtree T*(G’|S") and right subtree T*(G”|S") of T* (H{), respectively. Then m(l) +m(r) =m.
Let I = {[S} 11, [5] (l)]l} L= {[S}, 11, [Scm(r)]l} Suppose that derivations TI of G*’ and Tl‘* of

GSﬁr are constructed such that Claims from (i) to (iv) hold. There are three cases to be Con51dered in
the following.
Case 1. S ¢ (G'|S' ) for all TI € ’l’I . Then 7" = TI and G} := G{"

For the induction case, let |I| > 2. Let

e  For Claim (i), let TI € ’L'I and SC € G* By the induction hypothesis, Hf £ HC for all Hf € I;. Since
¢ (G'S") . I, then G"|H’ (G |G”|H') = @. Thus GHV G| NG 7, =9 by Lemmas 11 and 12.

!
Then SC ¢ GHV Gl Thus G”|S" £ H]C by Propositlon 2(i). Hence, for all Hf € I,, Hf £ H]? by
G"|S" < Hf. Then Hf £ Hj‘? for all Hf ¢ I. Claims (ii) and (iii) follow directly from the induction

hypothesis.
¢  For Claim (iv), let S]? € Gf . It follows from the induction hypothesis that H]? |Hf for all Hf € I;

* * LA 14
and, S]? € GIiz for some T, € T, OF SJQ € [Slck]l for some chk € Il,H]? £ chk Then H]C £ H/ by
HS|Hf, HY < Hf .

LT L

If SC [SC 11 for some HC € Il,HC £ HC then HCHHC for all Hf € I by the definition of branches to
I. Thus we assume that SC € G* for some TI € TI in the following. If G'|S" < HC then HCHHC for all
Hf e I, thus HCHHC for all HC € I Thus let G’ |S’ e HC in the following. By the proof of Claim (i) above,
G"|S" & H;. Then HY ¢ H; by G'|S" ¢ H; and G"|S” £ H;. Thus H]CHHV Hence H;|H for all Hf € .
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Case 2. 5" ¢ (G"|S")I, for all TI € TI Then TI* = TI and Gﬁ' G*’ This case is proved by
a procedure similar to that of Case 1 and omltted
Case 3. §' € (G'|S’ ) for some TI € TI and §" € (G"|S") .« for some Tl € TI‘*

lr

Given
Gp,, ‘S]C‘,l Gp,, |S]‘r; - Gy, |S¢

Gr = {G, JalG,,

such that §” ¢ (G"|S”)I] and Hj > HY forall 1 < k < v, where, 1 < v < m(r), G, |S;, is closed
forall 1 <k < { H; .- Hj - L,z {S =5 ~~-,S]C-w}, I]-, = {Gbr1|S]C-’ Gbrv|5]w}.
Then H}]/r > G"|S" by L, < Ir and H]Crk > HV foralll1<k<w. Thus H; ~ Hj for all H; ¢ I; and Hj ¢ I,
by S” € (G"|S") 1. z, and Construction 4.

For each TI € TI above, we construct a derivation T, (TI ) in which you may regard TI as

a subroutine, and 7. asits inputin the following stage 1. Then a derlvatlon Tfﬁ’( T (7. )) is constructed
jr r 1 jr

Jro « ¥
€
<Tlir ) T,

r

by calling (TI ) in Stage 2, in which you may regard Tff (TI?(TI);Y )) as a routine and TI?(TI’;F) as
its subroutlne

Before proceeding to deal with Case 3, we present the following property of Tl‘* which are derived
from Claims (i) ~ (iv) and applicable to Tl’f’ or TI’:“’ under the induction hypothesis.

Notation 9. Let
Gy i= s~|GHI§{g;,,|GHI§{;I,\{5'|5~} and

G 1= (G, a STIG 1 L, 1732 ST

HV (G”) HV H/

be two close hypersequents, G ¢ H for some H e Tff and G\{Gy,, }{_; € H for some H € Tl’f.

Generally, S ¢ Gy is a copy of 57 ¢ Gy, i.e., eigenvariables in S7 ¢ Gy have different identification
numbers with those in 5”7 ¢ Gy, soare H',G",S'.

Lemma 24. S]C. € Gy implies H]? | G'|S".

* .
Proof. Let 5¢ ¢ Gy € GH‘%,,‘ .- Then HY ¢ HY by Lemma 19(i). Thus H¢ > HY or HE|HY . If HE | HY

then H; || G'|S" by HY < G'|S’ and Proposition 1 (ii). If H; > HY then SHE HY by Proposition 2(j).
Thus 5 e G" by Lemma 11, Lemma 14(i). Hence H; | G'|S" by H; > G"|s"”, G'|s"|G"|s". O

Lemma 25. (1) TI is an m-ary tree and, TI* is a binary tree;
(2) Let H € T} thena (H)<Hcforsomel<k<m
(3) Let H € TF then HV }o ,ﬁ,(H)
(4)Letw>1 ll’lTI €T thenHV <H]?kforalll <k<w.
(5) Let TI € TI O (Gbk|5C ) < H}/for some 1<k <w. Thenw =1.

Proof. (1) is immediately from Claim (i). (2) holds by G|G* < ? and HC Hl.ck for some ka € I by
I c I. (3) holds by Proposition 1(iii), (2) and H}/ < ka.

For (4), let w > 1. Then H]-C1 HH]Ck foreach2 <k<w, Hjc1 < Hfg and HC < HC for some HC HC € I by
(2). Thus HC HHC and HC HHC by Proposition 1(ii). Hence H]C1 ¢ H’. by HV < HC and HC %Hl i by

llh ll;

HY. <Hf. Thus HY < H” and HY < H¢ by (3), HY < HXjk. Hence H{ < H¢ for all1 <k <w. (5)is

loly

g'h lg
from (4). O
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Hi; - H

Lemma 26. Let %h; 4 ) € Tlﬁforall 1<i<nsuchthatd_»(Hy1) = G|G* andd_x(H,1) < HY .
Hi—l,l ](l) T ! T !

Then 3. (H;1) < HY and w; =1 forall 1<i<n.

Proof. The proof is by induction on 1. Let n = 1 then w; = 1 by Lemma 25(5) and 9_x (Hi1) < H.
I
For the induction step, let d_»(H;1) < HY for some 1 < i < n then w; = 1 by Lemma 25(5).
1

H.,1 H-, :

Since %(Tﬁ (l.)) e 77 then _«(Hi_11) < 0_«(Hiy) for some 1 < k < w; by Claim ().
i-1,1 I I

Then aTIﬁ (Hi11) < aTlﬁ (H;1) < HY by w; = 1. Thus w;_; = 1 by Lemma 25(5). [

G
Definition 30. Let G:j (ECH) € Tl’ﬁf . The module of Tl’ﬁ’ at G, which we denote by TI’?’GZ, is defined as follows:

Hy-H, | . . CHy,
(1) Gy € TI’:“’GZ; (2) TO(TIi> € TI%}GZ if Hy € TfG2; (3) Hy ¢ TI?{GZ #?O(ECQ) € Tf", Hj e TfG

o

Each node of TI%GZ is determined bottom-up, starting with G,, whose root is G, and leaves may
be branches, leaves of 7% or lower hypersequents of (EC},)-applications. While each node of 1}/
is determined top-down, starting with H’, whose root is a subset of G|G* and leaves contain H' and
some leaves of T*.

Lemma 27. (1) TIi:}Gz is a derivation without (ECf) in GLq.

(2) Let H' € TI’?GZ and an(H') > HY. Then an (H) > HY forall H € TI’f’GZ and H > H'.

Proof. Part (1) is clear and (2) immediately follows from Lemma 26. O

Now, we continue to deal with Case 3 in the following.
Stage 1 Construction of Subroutine TI?(TI); ). Roughly speaking, TIT(TI); ) is constructed by

replacing some nodes Tf; € TI’?’ with Tf; U in post-order. However, the ordinal postorder-traversal
! 120
algorithm cannot be used to construct Tfﬁ’(rff ) because the tree structure of Tfﬁ’(rl*, ) is generally
l jr I jr
different from that of Tfl\*’ at some nodes H ¢ Tlif satisfying d_« (H) < Hl‘z/ . Thus we construct a sequence
I

1
T;f{ @ of trees for all g > 0 inductively as follows.

hAe

For the base case, we mark all (EC{,)-applications in 7y, as unprocessed and define such

marked derivation to be Tf?(o). For the induction case, let T;?(q) be constructed. If all applications

of (EC) in T;}ﬁ(q) are marked as processed, we firstly delete the root of the tree resulting from the
procedure and then, apply (EC{)) to the root of the resulting derivation if it is applicable otherwise
add an (IDq)-application to it and finally, terminate the procedure. Otherwise we select one of the

% (7) Cgr1

outermost unprocessed (EC}, )-applications in T, 8aY 1 ( EC;));H, and perform the following
q+
¥ (g+1) Goil o G‘;+l .
steps to construct 7 7% in which (EC})  berevised as =—=(EC{,) . such that
! G1(;+1 g+l G:;+1 g+1

(a) ,L_Ii&(qﬂ) is constructed by locally revising T:ﬁ gl,)o and leaving other nodes of TI?(q) unchanged,
g+l

particularly including G; 1
(b) TI?(qH) (G"7'+1) is a derivation in GLg;
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(©) Gy = :;31 if S’ ¢ (G'|S’ ) for all TI € Tlﬁ(G;jil) otherwise

G-

m
i1 = Gt \Gy '”1|G¢ ™! for some mq+1 > 1.

Remark 3. By two superscripts o and - in (EC6>;+1 or <EC6>;7+1’ we indicate the unprocessed state and
processed state, respectively. This procedure determines an ordering for all (EC}, )-applications in TI’?’ and the
subscript q + 1 indicates that it is the q + 1-th application of (EC},) in a post-order transversal of Tff . G;jl and
G;+1 (GQ{+1 and Gf;+1) are the premise and conclusion of(EC;));+l (<EC6);}+1), respectively.

Step 1 (Delete). Take the module 7, ((;Q) out of Tlﬁ(q). Since (EC&):1 is the unique unprocessed

q+1
%*(q)

4 {ele]
I Gq+1

(EC} )-applications in T, #(1) (G;,,) by its choice criteria, T, is the same as TI G2, by Claim (a).

q+1

Thus it is a derivation. If d_» (H) < Hj Vforall H € Tﬁ(q) delete all internal nodes of Tﬁ(q) Otherwise

o 1:Go2, G2,
there exists
C
Gb[/1|sjl, Gb1/2|s Jirn Gb[/ ,|S]l’u’ < . *(q)
/ TI € T Goo
Gy = {Gbuk k |G* w q+1

such that 9 1} (Gh],k|SC» ) > HV forall1<k<u’ and arﬁ(Gl,) < H}/ by Lemma 27(2) and BT (G;f:l =

G|G* € HY I then delete all H ¢ Tfé@, , G;ﬁl H < Gp. We denote the structure resultlng from the

deletion operation above by T, I*gl)c ) Since aTﬁ (Gp) < HY ; then ngz,)o ) is a tree by Lemma 26. Thus
I
it is also a derivation.

G;
Step 2 (Update). For each G, € Tf’é‘l,l (1y Which satisfies == oo (ECQ> ?(q) and S’ € (G’|S')Ij
q+1 1

q

for some TI €Ty (G°°) we replace H with H\G4|Gy for each H € 7 ((;o)o [y Gr<Hg G;’,.
G",

=
Gq,

Since EC* ) c T;ﬁ’(‘i)( 321) and (EC&);+1 is the outermost unprocessed

(ECE,)-application in Tlil!r(q) then g’ < g and <EC6)'q, has been processed. Thus Claims (b) and (c) hold
G“; Goo qu/
; is a valid (EC, )-application since = Gq/ G

for TIT @ (G;,) by the induction hypothesis. Then ——and

nm_r
G q
1 . . 00 m.r mr . °
7Gi are valid, where G, = Go”\G, I |Gi T, Gy = Go\Gt[Gy.

Lemma 28. Let Gy < H< Gy,. Then 8 (H) > G'|S".

Proof. Since Gy < H then Gbl,k|SC < Hforsomel<k<u' Ifd *(H) HI then 8 «(H) > G'|S".

Otherwise all applications between G;» and H are one-premise rules by Lemma 26. Then H ¢ < o (H)
4

by Claim (ii). Thus d_x (H) > G|S" by HY < HjC;/k’ d_«(H) < Hlk/ for some 1 <k’ < m(l) by C1a1m @@. O
I I

Since 9 ,g, (H) > G'|S’ by Lemma 28 and HCHG |S” for each SC € Gt by Lemma 24, then G+ ¢ H as
81de—hypersequent of H. Thus this step updates the revision of G downward to Gyr.
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Let m’ be the number of G°, satisfying the above conditions, Tf gQ, ) Gy and Gbl,k|SC-Z,k for all

x@

162, ()7 is a derivation and

1 < k < u’ be updated as T, G, G |SC

i respectively. Then T
Gll/ = Gl/\G.’i/.n |G£ﬂ .
Step 3 (Replace). All TI € TI*((;O)O @
g+

H]? € Ij, it proceeds by the followmg procedure otherwise it remains unchanged. Let Tf; be in the form
1

are processed in post-order. If Hf ~ H]? for all Hj € Ijz and

ConlSjy GoolSj, - CnlS;,

G = {Gblk }k=1|G%]-l

Then Hj‘flk > G'|S' for all 1 < k < u by Lemma 28, Gh1k|S]‘?lk > Gy,
Firstly, replace Tf;[ with Tf;z o, - We may rewrite the roots of TI’;l and Tf;[ o, 8

{Gblk}k 1|GHV G’ |GHV :G"|H’ and

Gl}' = {Gh]k}k 1|GHV G') |{Gh,k}k 1|GHV GII> |H"

respectively.

Let G» < H < G;. By Lemma 28, 8 «(H) > G'|S’. By Lemma 14, HC <H/ <G'|S'or HCHG |S’ for all
S € GHV NG Thus GHV e € CH. Secondly, we replace H with H\GHV G"|H'|{Gbrk}k:1|GHIV: ("), I
for all Gy < H < G;. Let m" be the number of TI € TQ(G@O @ satisfying the replacement conditions
above, Tﬁé")"l(Z)’ Gy and G’ |SC forall 1 <k < u’ beupdated as T I éo)o 3y Gy, G b, |SC , respectively.
Then 7, (%1(3) is a derivation of Gy and Gy = Gln\{GHv G”|H’}m |{{Gbrk}k 1|GHV G”) |H’}m .

Step 4 (Separation along H)'). Apply the separation algorithm along H} to Gjm and denote the
resulting derivation by T*é@o @ whose root is labeled by G, ;. Then all GHV (G, I in Gy are

G/‘S/ G//|s/l
: () ) : %

transformed into GHyf(G")zjr\H in7. 1G22, (4)° Since HY - G’|G”|H’(H) €T’

(Gl (G5, {Gu,Jial (61",

() et o €T ('i)o ,
{Ghlk}zleGbrk}lz(]:ﬂ<G,>I]-l |<G">Iiy |H' \ 5,y I G )
H', S" and S” are separable in T 1 é@, @ by a procedure similar to that of Lemma 21. Let S" and S” be

separated into 5’ and 57, respectively. By Claim (iii), G H‘S] (); =G
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G:;;S{él” = Gq+1\GT/|G'¢”I by Lemma 19(iv),

S
Gq+l - GHV'G[/II

=GED \GED A (G, i IGE) )"

4

HY:Gyr \\ T HY:G"|H' HY{G")z

= Gl MESTIGEYL |G D M1
HG, HalSTBTIGE R, |G§Ié{;,\{§'|@}}m”
= Grivle, \GI 16"

_{Gq+1\G+ |G£n }\Glr11 |G§1
q+1\Gm +m |Gg’l +m

_ G;i1\G:1q+l |G;”q+l

where mg1 = m' +m".

Gy
Step 5 (Put back). Replace 1. 7:7((;1)0 in Tlﬁ(q) with Tfé?il @ and mark GZ 1 (ECY )O as processed,

q+
i.e., revise <EC6)O+1 as <EC6) . Among leaves of T, g{,l ,all G, are updated as G, and others keep
unchanged in T, I*g{,)o @) Then this replacement is feasible, especially, G;?; be replaced with G,

Define the tree resulting from Step 5 to be Tﬁ(q”). Then Claims (a), (b) and (c) hold for g + 1 by the
above construction.

Finally, we construct a derivation of GI’?’ \G#|Gy from [S] |1, [S]

Cc c 3
lm(l)]I’ Ghﬂ|S]'r1’ ’ Gh’U|SjVU m

GLq, which we denote by 7 (TI ).

Remark 4. All elimination rules used in constructing TFI} are extracted from T*. Since TI* is a derivation in

GLq, without (ECq), we may extract elimination rules from TI which we may use to construct Ty (TI Ybya

procedure similar to that of constructing Tl’f with minor revision at every node H that 0_x (H) <H V. Note that
I

updates and replacements in Steps 2 and 3 are essentially inductive operations but we neglect it for simplicity.
We may also think of constructing ) (’L’I ) as grafting TI* in Tlﬁ by adding TI* to some

TI* € Tl’f. Since the rootstock TI of the gmftmg process is invariant in Stage 2, we encapsulate
[
T, (TI ) as an rule in GLq whose premises are Gbr1|5j,1' br2|5j,2""'Gbm|Sjw and conclusion is

*(J) () \ 31T %
/(G }.1IG  IGHDNMSTETGE e

HY:(G")] HY:H'
c c
Ghrl|s]'r1 Gbr2|sjr2 Gh,L S]rv (Tﬁ(’r* ))
cii % e R LA
Gt 2alCh o, G MSTETHGE
Jr

where, Gf"l\ = Gii[Sr \Gy+ is closed.

e (q)

Stage 2. Construction of routine 7" (TI (TI ))- A sequence ;" of trees for all g > 0 is

e]e)

Go
constructed inductively as follows. Tf © Iﬁ((q), GT (ECE )o

q+1

., are defined as those of Stage 1.
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GOO
Then we perform the following steps to construct 7’ *(*1) in which Gq+ (ECE )o be revised as
q+1
Gq+1 e i B 0o
G;+1 (EC ) g+l such that Claims (a) and (b) are same as those of Stage 1 and (c) Gq = Gq 0 if
S"¢ (G”|S”) ](t y for all TI €Ty (Gqﬂ) otherwise G, ,; = G;il\{§’|G§y),}mﬂ+l\{Gf’[\r}mﬂ*l for some
Mgy1 2 1.
Step 1 (Delete). T, ((gqo)o and Tlﬁéqo)o (1) are defined as before.
g+1 LA/ ES |
1SS, Gu,lS¢, Gy, IS

r’l

1 ol ]r/v/ <TI* ) . Tﬁ(q)
/ . ele}
Gy ={Gp,, }Z:1|G%]_ ’ oo 1:Go2y

satisfies d_ (Gb,k|SC )> H{ forall1<k<o' and d_ (G /)< HY.

G,

Step 2 (Update). For all G, « T;ﬁrgo)o ) which satisfy Gq (ECY )., € Tf(q) and §" € (G"|S") .

q+1 r

q
fele) 79‘\7 o
for some TI €T (G ), we replace H with H\{S’|G;§‘S:]();,}|G* forall H et T, ((quz, Q) Gy < H <Gy

Then Claims (a) and (b) are proved by a procedure as before. Let m’ be the number of G, satisfying the

above conditions. Tl‘k go)o Q) G, and Gy, ,k|SC for all 1 < k < v’ be updated as T, I*gl)c @ G,r, Gb » S;,,k

y
Step 3 (Replace). All TI € TIQ 530)0 [(2) e processed in post-order. If Hf ~ H]" for all Hf € [;, and
H]? € I; it proceeds by the followmg procedure otherwise it remains unchanged. Let Tf; be in the form

respectively. Then Tﬁ(q) is a derivation and G, = G,/\ {5’ |Gﬁ?(] ) }m {G¥

riGety (2) HY:G! In,

Gi,, IS¢, Gi,lSS, -+ Gy, ISE
Gr ={Gb,, 144167,

]rv

Then there exists the unique 1 <k’ <o’ such that G,» < Gy, ,[S¢ < G-

Firstly, we replace TI. with T, (TI ). We may rewrite the roots of Tf;r, Tffr(‘rf;) as

Gr = (G, JialG o, IqumWf@v—{thklwwcﬁ”’ |G*“)w§mﬁﬂcf,mamaWdy

/ !

HY GII) HY:H'
Let G < H < G,. Then d_»(H) > G"|S” by Lemma 28 Thus Ggéoé,lH, < H/{S; : €
Iy
* ¥ *k
Gipon, > G'IS") = (5] : 5 Graiam, H; > GVlS"). Define Gif = (5] - s]c. c
G’ ,S¢ be the focus sequent of some H' e Tﬁ?(q) H<H' <G}

HV (G”) /, j
Then we replace H with

Goo (2)/

HWWM\GQWWM@ﬂWW}W%@W%R

forall G, IS,  <H<Gy.

k!



Symmetry 2019, 11, 445 40 of 50

Let m"' be the number of TI €T, ((?o)o @ satisfying the replacement conditions as above, T, (G{i’)" @)
q+1

Gy and G ,k|SC forall 1 < k < v’ be updated as Tﬁga 3y Gy, G/ ,k|SC , respectively. Then Tﬁ’(qo)o 3)
T r +1

is a derivation and G, = ,u\Hi" |H " where

HO = (:r>(-)e | sc
br’k Irk
Hl = HV G// \H0|GHV GllH//

<
- s"|GH§fg,, \Ho G TG .

Step 4 (Separation along H/'). Apply the separation algorithm along H} to G, and denote the

7 (q)
Goo (4)

By Claim (iii), cg;fg = G2y

resulting derivation by 7; whose root is labeled by G

q+1*

Giivle, = GGV L IE Y G ™,

GFD _ G\ GE(D) |G%()

HY:Hp ~ HV:(G”) HY:H3'~HY:G'|H"
e T~ %
G, =5 |GHV“33,,> \GHé’; G \(STBTHGE: .
Then
i\i’ i\f " —_— i:’ o~ — "
Giifle 0 = G, MGl 1STIG D MSSTHGH
ﬁ * " "
= Ghv MGRI% I lGE 1
Then
- * oo e
Gro1=Gpyile, = GraMFIGHI Y et {GHy o
where mg 1 = m' +m".
# (1) #(4) #(7) Gyt
Step 5 (Put back). Replace 7, quo in 7 1" with T, C%’il @) and revise Co 1(]:"C0>q+1 as
q+
Gii .
G° (ECQ) . Define the resulting tree from Step 5 to be TI?(W ) then Claims (a), (b) and (c) hold for

q + 1 by the above construction.

Finally, we construct a derivation of GI’A:’ \{5 |G§‘S{();,}|G* from [S} 11,...,[S; 11in GLq. Since the
I m

major operation of Stage 2 is to replace Tl’f with Tff (t (tr)) for all TI. € TI satisfying 5" € (G"|S")_),
jr

then we denote the resulting derivation from Stage 2 by T (TIZ (TI ).
In the following, we prove that the claims from (i) to (iv) hold if ’L'I =T (TI (‘L'I )) and G*

GESIGH LG

HY:G Iy

o 3 Hi - Hop o\ & .
e  For Claims (i) and (ii): Let T(le) €7 and S]‘? € GIJ" Then d_x (Hy) & H]C forall1<k<w
0 I

by Lemma 17(iv).
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If 0_x (Hy) < HY for some 1 < k' < w, then Hf & H]C for all Hf € I by d_»(Hy) < HY < HE.
1 1

Thus Claim (i) holds and Claim (ii) holds by Lemma 25(5) and Lemma 19(i). Note that Lemma 25(5)

is independent of Claims from (ii) to (iv).

: * : * w * * W (% : :
Otherwise T, is built up from T, € Tr, o T, OF TIj] oy € T, (Tlir) by keeping their focus and

principal sequents unchanged and making their side-hypersequents possibly to be modified, but
which has no effect on discussing Claim (ii) and then Claim (ii) holds for TI* by the induction

hypothesis on Claim (ii) of Tf‘;" or Tl’f.

If Tf; is from Tl*i o then S’ ¢ (G’|S')Ij and S” € (G"|S”)Ij by the choice of Tf; and Tf; at Stage 1.
i r 1 r i r
By the induction hypothesis, H £ Hj for all 57 € G}i’, H; eIy and H; £ Hj for all 57 G}jr, Hf e I,.
* * * * *
Then Hj ¢ H]C for all S]C- € GIi = GIi; Uz, Hj e I by GIiz uz;, = GIi; NG » I=Tul.

If TI* is from Tff then S’ ¢ (G’|S’)I]_ by Step 3 at Stage 1. Then (G’|G”|H’)Ij N(G"|H") = @
! 1

Thus SC ¢ GHV e Hence G"|S" & H]C Therefore Hf ¢ H]C for all Hf € I, by G"|S" < HS.

Thus H-C e HC for all Hf € I by S‘? € G}" = G} and the induction hypothesis from TI* € TI“:".

The case of 7 built up from ’L’I is proved bya procedure similar to above and omitted.

¢ (Claim (iii) holds by Step 4 at Stages 1and 2. Note that in the whole of Stage 1, we treat {G,,, }{_; as
a side-hypersequent. But it is possible that there exists S]C € {Gyp,, }{_; such that H]C HY . Since we
have not applied the separation algorithm to {Gy, }{_; in Step 4 at Stage 1, then it could make
Claim (iii) invalid. But it is not difficult to find that we just move the separation of such S¢ to
Step 4 at Stage 2. Of course, we can move it to Step 4 at Stage 1, but which make the discussion

complicated.
e  For Claim (iv), we prove (1) HfHH]C for all SJQ € GI‘:’]\ and Hj € I, (2) HfHH]C for all S;f €

Gﬁ \(§ |G§}S]é,} and Hf € I. Only (1) is proved as follows and (2) by a similar procedure

and omitted.

—_— 79‘, ﬁ i . g
Let S;f € Gﬁ\r. Then S/? € GI’T and S;f ¢ S”|GH}S{();,,|GHI‘S{I){,\{S’|S”} by the definition of sz\r.
By a procedure similar to that of Claim (iv) in Case 1, we get H]C £ HY and assume that S]C» € G}j for
1
some Tf; € TI?’ and let G'|S” & H¢ in the following.
1

Suppose that G”|S"” < HC Then SC eG* and S’ € (G'|S’ ) by SC € G* Hence SC e G¥{)

HV G HV Neld
by H]C > G"|S"” > HY. Therefore S]C» € S”|G§Ié{();,,|G§;S{IL,\{S’|S”}, a Contradlctlon thus G”|S" « H]C

Then HY ¢ Hf by G'|S' & Hf and G"|S" £ H. Thus H;HH}’. Hence Hf||Hf for all Hf € I. This completes
the proof of Theorem 2. [

Definition 31. The manipulation described in Theorem 2 is called a derivation-grafting operation.

9. The Proof of the Main Theorem
Recall that in the main theorem Go = G'{T}, p = A }ict. {T1; = 1,5} j=tom

Lemma 29. (i) If Gp = Go\{T'1, p = A1} and ~gL Do(Gy) then ~grL Do(Go);
(i") If Go = Go\{I11 = p, %1} and gL Do(G2) then gL Do(Go);

(ii) If G = Go|[{T'1, p = A1} and gL Do(G2) then gL Do(Go);

(ii") If Go = Gol{ITy = p, %1} and -G Do(G2) then -1 Do(Go);

(iii) If Gy = Go\{rl,p = A1}{T1, T = A1} and +gL Do(Gy) then —gr Do(Go);
(iii") If Gp = Go\I'T; = p, Zq|ITy = L, %4 and gL Do(Gz) then g Do(Go).
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Proof. (i) Since Dy(Gz) = G’|{1—'1,H = A, ]}1 =2.mj=1m S G’|{F1,H = Al/Z]}] 1 m|{ri/Hj =
A, Zj}izo.mj=1..m = Do(Go) then gL Do(Go) holds. If n = 1, we replace all p in I1; = p,X; with 1.

Then gL Do(Go) holds by applying (CUT) to I'y, 1= Ay and G'{T1; =1, %} j-1..u-

(ii) Since Dy(Gp) = GI|{F1,H]' = Al/Zj}jzln-eri/Hj = A, ]}1 Lettjj=1eem then g1 Dy(Gp) holds
by applying (EC*) to Dy(G3).

(iii) Since Do(Gy) = G'[[1, T = AHTLTL = AjXi}ico.pyjm1..m then kgL G = G'[Ty, 1T =
A1, Zq|{T;, IT; = Aj, Ej}icp..;j=1..m holds by applying (CUT) to I'y, T = A1 in Dp(Gz) and Iy = T,X;.
Thus g1 Do(Gp) holds by applying (EW) to G”.

(i"), (ii") and (iii") are proved by a procedure respectively similar to those of (i), (ii) and (iii)
and omitted. O

Let= {Hfl,,Hfm} ¢ {Hj, -, Hy}, G| denote a closed hypersequent such that G; ¢, G|G* and
H]CHHf for all S]C. €eGrand Hf € I.

Lemma 30. There exists Gy such that ~gyr,, Gy forall I ¢ {HY,---, Hy }.

Proof. The proof is by induction on m. For the base step, let m = 0, then I = @ and G; := G|G* and
kgL, Gr by Lemma 5 (v).

For the induction step, suppose that m > 1 and there exists Gy such that g, Gy for all [I| <m - 1.
Then there exist GI\{ka} for all 1 < k < m such that g, GI\{ka} and H]CHHZC for all S]C. € GI\{ka} and
Hf el \{ka}.

If H]‘? l ka for all S]? € G H. ) then Gy := G HY ) and the claim holds clearly. Otherwise there
exists SC- € GI\{H;} such that H‘? < H»C or H? > H-C then we rewrite GI\{H_C} as [S, ]{Hc JUIN(HE }/
where we define HC such that S i € GI\{HC} and, S € GI\{HC} implies HC HC or HCHHC for all
Hf e {HC tu I\{HC} If we cannot define GI to be GI\{HL y for each 1<k<m,let I’ = {Hi{, . ’Hf%,}'
Then Gy is constructed by applying the separation algorlthm of multiple branches (or one branch if
m=1) to [Sf{]p,-n, [Sf},ﬂ]p. Then +gr, Gy by gL, [Sl‘?i]p,m, FGLq, [Sf;n]p, Theorem 2 (or Lemma 20(i)
for one branch). Let G; := Gy then g, Gy clearly. O

The proof of Theorem 1: Let [ = {HY,---, Hy } in Lemma 30. Then there exists G such that ~gr, Gy,
Gr S G|G* and H]CHHf for all S;? € Grand Hf € I. Then gy, D(Gr) by Lemma 8.

Suppose that S]? € G;. Then H]C |Hj for all Hf € I. Thus H]CHH]C by H]C € I, a contradiction with
H]C < H]? and hence there does not exist S]C. € Gj. Therefore Gy ¢ G by G; ¢ G|G*.

By removing the identification number of each occurrence of p in G, we obtain the
sub-hypersequent G, of G,|G5, which is the root of 7 resulting from Step 4 in Section 4. Then g
Dy(G2) by —gL D(Gp) and Gy ¢ G. Since G, is constructed by adding or removing some I';, p = A;
or l—I]- = p,Z]- from Gy, or replacing I';, p = A; with I';, T = A;, or I_I]- = p,Z] with H :>i,Z], then
FcL Do(Go) by Lemma 29. This completes the proof of the main theorem. [

Theorem 3. Density elimination holds for all GL in {GUL, GIUL, GMTL, GIMTL}.

Proof. It follows immediately from the main theorem. O

10. Final Remarks and Open Problems

Recently, we have generalized our method described in this paper to the non-commutative
substructural logic GpsUL” in [20]. This result shows that GpsUL” is the logic of pseudo-uninorms
and their residua and answered the question posed by Metcalfe, Olivetti, Gabbay and
Tsinakis in [21,22].

It has often been the case in the past that metamathematical proofs of the standard completeness
have the corresponding algebraic ones, and vise verse. In particular, Baldi and Terui [23] had given
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an algebraic proof of the standard completeness of UL. A natural problem is whether there is an
algebraic proof corresponding to our proof-theoretic one. It seems difficult to obtain it by using the
insights gained from the approach described in this paper because ideas and syntactic manipulations
introduced here are complicated and specialized. In addition, Baldi and Terui [23] also mentioned
some open problems. Whether our method could be applied to their problems is another research
direction.

On 21 March 2014, I found the way to deal with the example in Section 3. Then I finished the one
branch algorithm in Section 7 on the late April 2014. I devised the multi-branch algorithm in Section 8
on early November 2014. Since I submitted my paper to Transactions of the American Mathematical
Society on 20 January 2015, it has been reviewed successively by Annals of Pure and Applied Logic,
Fuzzy Sets and Systems and, the Journal of Logic and Computation. As a mathematician, the greatest
anxiety is that his work has never been taken seriously by his academic circle during his career, but after
his death, someone would say; sir, your proof is wrong.

Funding: This research was funded by the National Foundation of Natural Sciences of China (Grant No: 61379018
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Notations

G1=Gy The symbol G; denotes a complex hypersequent G, temporarily for convenience.
X:=Y Define X as Y for two hypersequents (sets or derivations) X and Y.

Go The upper hypersequent of strong density rule in Theorem 1, page 2

T A cut-free proof of Gy in GL, in Theorem 1, page 3

P(H) The position of H € 7, Def. 10, Construction 3, pages 5, 24

(Hy) .5y and TIZi:H’ ((Hx)p.pr)  Construction 1, page 15

G2 and Th. g

Notation 3, page 16

T The proof of G|G" in GLq resulting from preprocessing of 7, Notation 4, page 17
GIG* The root of T* corresponding to the root Gy of T, Notation 4, page 17

Hf The i-th (pEC)-node in T*, the superscript 'c’ means contraction, Notation 5, page 18
Si The focus sequent of Hj, Notation 5, page 18

S or S5, S¢, or one copy of S§;, Notation 5, page 18

{Hi, H§ The set of all (pEC)-nodes in T*, Notation 5, page 18

GLg A restricted subsystem of GL, Definition 18, page 18

(Slc.[G']s The minimal closed unit of S and G’ in G, respectively, Definition 19, page 19
(D) The generalized density rule of GL(, Definition 20, page 20

Tglcl and GE;'] Notation 6, Page 25

Hj ~ Hj, Hj « H;j Definition 21, page 25

I= {H,»Cl, -, I-Cm} A subset of {Hf, -, Hy;}, Notation 7, page 26

H}/, Hi‘]( The intersection nodes of I and, that of Hf and H]?, Notation 7, page 26

7' = (S50 St} A subset of (pEC)-sequents to I, Definition 22, page 27

U = {Gp,1S; 1,/ G, IS5, ) A set of closed hypersequents to I, Definition 22, page 27

(H)z,77 and G The elimination derivation, Construction 4, Lemma 17, pages 26, 27

T The elimination rule, Definition 22, , page 27

fk I
G;}(q),G?UI),TF(q)
cE0) ()

Abranch of H; to I, Definition 25, page 28
Construction 5, page 28

1 THEH, Construction 6, page 30
G;A“’ , TI* Construction 7, Theorem 2, pages 31, 32
?f The skeleton of TI*, Definition 27, page 32
E)Tf (H) Theorem 2 (ii), page 33

¥
TI:Gz

The module of TI* at Gy, Definition 30, page 35
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Appendix A.

Appendix A.1. Why Do We Adopt Avron-Style Hypersequent Calculi?

A hypersequent calculus is called Pottinger-style if its two-premise rules are in the form

f Gls”_Gls™ 11 d, A tyle if in the f f cls” c7Ist
o W( ) and, Avron-style if in the form o GG
Avron-style systems, each application of two-premise rules contains implicitly applications of (EC) in

(II). In the viewpoint of

Pottinger-style systems, as shown in the following.

oS’ Gls”
Gls’ G|S”/H) corresponds to W( )/Ec*)
G|H/ ' in Avron—style system G|H’ \

The choice of the underlying system of hypersequent calculus is vital to our purpose and it gives
the background or arena. In Pottinger-style system, Gy in Section 3 is proved without application of
(EC) as follows. But it seems helpless to prove that Hy is a theorem of IUL.

p=p A=A p=>p A=Ap=>p A=A p=>p A=A

A=plp=A A=plp=A A=plp=A A=plp=>A

A=plpp=A0A A=plpp=A0A
B=B =p-Alpp=>A0A =p-Alp,p=>A0A
C=C B=Blp,p=>A0A =p,p,~A0-Alp,p=>A0A
C=C|=pBB=p-A0-A =p,BB=p, -A0-Alp,p=A0A

=p,BB=p -A0-Alp=C|IC,p=A0A

The peculiarity of our method is not only to focus on controlling the role of the external contraction
rule in the hypersequent calculus but also introduce other syntactic manipulations. For example,
we label occurrences of the eigenvariable p introduced by an application of the density rule in order to
be able to trace these occurrences from the leaves (axioms) of the derivation to the root (the derived
hypersequent).

Appendix A.2. Why Do We Need the Constrained External Contraction Rule?

We use the example in Section 3 to answer this question. Firstly, we illustrate Notation 5 as
follows. In Figure 4, let S{; = A = p2;S{, = A = p1;55, = A= ps; 55, = A= p3;S5, = p1,p2 = AQ A;
S =P3pa=>A0AG, =p1,pr=>A0AG,=p3,pa=>A0A G,=A= pi1|= p2,BB=ps,-A0®
-~A|A = p3. Then Hj = G||S5,|S¢, fori =1,2,3. Hf are (pEC)-nodes and, 5%, and S, are (pEC)-sequents.

Let G;—{C'A=>pz == pp,B|B = py,-A©-A|A = ps3|p3, ps = A A. We denote the derivation
¢
A= p2
T Amp, Of GRecpmsp, from A = p) by 0:<TQC.A:W2). Since we focus on sequents in G* in
v v HS:A=p, v
1
. . A=p 511 1
the separation algorithm, we abbreviate ———— <Tf_}c: A p2> to =———— <TS*C > and further to — (7).
He:A=p, ! 5plS5 \ 7 23
Then the separation algorithm Tﬁi: GG+ 18 abbreviated as
123
T*
2/|3/|2|3( 1 ) .
2/|2 ( 37 3’>
7 (ECa)
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where 2" and 3’ are abbreviations of A = ps and ps, ps = A © A, respectively. We also write 2’ and 3’
respectively as 2 and 3 for simplicity. Then the whole separation derivation is given as follows.

s ) s tE)
M(T* ) M(T*>
2|2 3 (EC ) 1|1—3<EC )
2 = 1 QL
o (T{1,2}>

where @ is an abbreviation of G” in page 14 and means that all sequents in it are copies of sequents in
Go. Note that the simplified notations become intractable when we decide whether (ECq,) is applicable
to resulting hypersequents. If no application of (ECq,) is used in it, all resulting hypersequents fall into
the set {1|2| 3|---[3, 2|2| 3|--+|3, 1|1| 3]---|3 : I >0,m > 0,n > 0} and & is never obtained.

~—— ~—— ~——
1 m n

Appendix A.3. Why Do We Need the Separation of Branches?

pLp2=>A0A

In Figure 11, p; and p; in the premise of (Ts*f ) could be viewed as being
31

p1=ClC,pp=A0A
tangled in one sequent p1, p2 = A ©® A but in the conclusion of <T§’C > they are separated into two
31

sequents p; = C and C, p = A ® A, which are copies of sequents in Gy. In Figure 5, p, in A = p, falls

into = py, B in the root of 77} and = py, B is a copy of a sequent in Gy. The same is true for p4 in

]:A=>p2
A = p4 in Figure 8. But it’s not the case.
SC
. . T 11 o
Lemma 13(vi) shows that in the elimination rule T <TS*C ), S; € Gg. implies H]? < Hj or H ]C | Hj.
S 11 11

11
If there exists no Sj‘f' € Gg such that H]C < Hj, then S]C- € Gg. implies H]C | Hf and, thus each occurrence
11 11

of p's in 5, is fell into a unique sequent which is a copy of a sequent in Gy. Otherwise there exists

S]C- € Ggﬁ such that HjC < Hj, then we apply (ng) to S]C. in Ggh and the whole operations can be

St
%(0) _ ~x cvjqe <TSil>
Gsiy = C5;, \5)IS)

written as

%) _ e \focr|or <T%>
Cs:, = g, USjHGS

#*()) #(])
Repeatedly we can get GSil such that S]C. € GSil

*())
St

implies H]C | Hi. Then each occurrence of

p's in S{; is fell into a unique sequent in G which is a copy of a sequent in Gy. In such case,

we call occurrences of p's in S{; are separated in G;:Z(] ) and call such a procedure the separation

11
algorithm. It is the starting point of the separation algorithm. We introduce branches in order to tackle
the case of multiple-premise separation derivations for which it is necessary to apply (ECq) to the
resulting hypersequents.

Appendix A.4. Some Questions about Theorem 2

In Theorem 2, TI* is constructed by induction on the number |I| of branches. As usual, we take
the algorithm of |I| - 1 branches as the induction hypothesis. Why do we take TI? and TI? as the
induction hypothesises?

Roughly speaking, it degenerates the case of |I| branches into the case of two branches in the
following sense. The subtree T*(G"|S") of T* is as a whole contained in TI*jl or not in it. Similarly,
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T(G'|S") of T* is as a whole contained in 1'1*j or not in it. It is such a division of I into [; and I, that

makes the whole algorithm possible.
Claim (i) of Theorem 2 asserts that Hf & H]C for all 5]‘:' € G}]_ and Hj ¢ I. It guarantees that TI*]_ is not

far from the final aim of Theorem 2 but roughly close to it if we define some complexity to calculate
it. If H < H]‘-", the complexity of GI*j is more than or equal to that of [S¢| ; under such a definition
of complexity and thus such an application of TI*], is redundant at least. Claim (iii) of Theorem 2
guarantees the validity of the step 4 of Stages 1 and 2.

The tree structure of the skeleton of T, (TI ) can be obtained by deleting some node H ¢ TI*

satisfying d_» (H) < V. The same is true for ’L'I 1f T, (TI ) is treated as a rule or a subroutine whose
Ul
premises are same as ones of TI]_ . However, it is incredibly d1ff1cult to imagine or describe the structure

of TI{} if you want to expand it as a normal derivation, a binary tree.
All syntactic manipulations in constructing TI* are performed on the skeletons of Tl’f or ’L'I’f.
The structure of the proof of Theorem 2 is depicted in Figure Al.

|{Gb k}k l‘GZV,)GH) |
G¥ grafting Fir
Gﬁ ‘I, L, Giﬁf(/) \{S IS"}IGII\
(Target) T.’A’ into Tlil}
lmk Induction. hypothesis TI[l T (le, )
: gifts us o T call
w
T Iy —~
1 : . " ¥ ()
(Route) {( grafting rl‘if (Tf;r ) Gy, \{S'|GHV el }‘Gll\
TIY >
;i *
into T, ( ( TI ))

Figure A1. The structure of the proof of Theorem 2.

Appendix A.5. lllustrations of Notations and Algorithms

We use the example in Section 3 to illustrate some notations and algorithms in this paper.

Appendix A.5.1. [llustration of Two Cases of (COM) in the Proof of Lemma 8

/ "

Let O S (comybe PL=P A=A com,
G A:>P1|P1 = A \

A, 53 = A = p1, 54 = p1 = A and G,” = S3|S4. Then [53]G”’ = [S4]GIII; DG/(Sl) == t,
D¢ (S1) Dgr(S2)

where G' = S =py = p; G" =5 =A =

Dgn(Sy) = A = A; Dgm(S3|Ss) = A = A. Thus the proof of is constructed
Dgr(Ss/S4)
, A=A A=4 0
= l
At=A
b (Cur).
Y A=A )

Bo B (3 pz,p4,—\A®—|A|p1,p2 = A®A|
G G" A=p|A=> 1= AGA
Let = (COM) be pilA = palps, pa
G ( = pz,B|B = P4, -A® —|A|A = P1|
P p2= AGAIA = p3lps, py= A0 A
where G’ =S1 =B = B; Gy = p1,p2 = A® A|A = p1|A = p3|ps, ps = AG A;
Sy == po, pa,~A©-A; G = Gy|Sy; S3 == p2,B; Sy = B = py,~A®-A and G = G;|S3/Ss. Then
DG’(Sl) =B = B; DGH(Sz) =AA=>A0A-A0-AA0A DG///(Sg,) =A=B,AGA; DG///(S4) =
A,B = A ® A, —\A ® ﬂA,’DGIH(S3|S4) = DGIH(S4)|DGIII(S4).

)(COM),
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Dg(S1) Dgi(S2)
Dgr(S51S4)

Thus the proof of is constructed by

BB AA=A0A-Ao-AA0A
(COM).
A=B,A0AA B=>A0A -Ao-A

Appendix A.5.2. Illustration of Construction 3
Let T* be

HgEBDBHgEADA H105B2>BH115A:>A
(COM) (

Hy=A=BB= A Hs=A=BB= A
Hy=A=B|A=B|B,B=>A0A (=)
Hy=A=B|=B,-ABB=A0A N

By Construction 3, T** is then given as follows.

(B=B;8,0) (A= A;9,0){COM) (B= B;10,0) (A= A;11,0)
(A= B;4,1)|(B= A;4,2)" (A= B;5,1)|(B = A;5,2)
(A= B;4,1)|(A = B;5,1)|(B,B= A0 A;2,0) =)
(A= B;4,1)|(= B,-A;1,0)|(B,B = A0® A;2,0) N

(COM)

(or)

As an example, we calculate p(Hg). Since Th(Hg) = (Hs, Hy, Hp, H1), then b3 =1, by = by =by =0
by Definition 10. Thus p(Hg) = bp2° + b1 2! + 22 + b323 = 8.

Note that we cannot distinguish the one from the other for two A = B’s in H, € T*. If we divide
H, into H'|H", where H' = A = Band H" = A = B|B,B = A® A, then HHNH" = {A = B} in the
conventional meaning of hypersequents. Thus only in the sense that we treat 7% as 7**, the assertion
that H' NH" = @ for any H'|H" ¢ H in Proposition 3 holds.

Appendix A.5.3. lllustration of Notation 7 and Construction 4
Let I ={H{,H;}, I ={H{}, I, = {H5},Z = {591, 55, },Z1 = {S51 }, Zr = {55, },

GI|SI GII‘SII

7G/|G”|H/ (@r) € T*,

where G'|G"|H' =HY;G' = A= p1|p1,pa = A A;S == py,-A;G" = A= ps|ps, ps = A0 A;S" ==
pa,-A; H == py, ps, ~A ©-A (See Figure 4).
(G'1S")g, == p2,~Ai(C)g, = @i(GIG"|H )z, = A = p3| = p2,ps,~A©-Alps,ps = A0
A;(GIG*), = G%I = G;il == py, B|B = p4,-A © -A|A = p3|p3, ps = A © A (See Figure 5).
(G"S")z, == pa,~A;(G|G"|H )7, = A= p1] = p2, ps,~A©-Alp1,pr = AG A;
(GIG*)z, =G, = G§§1 = A= p1| = p2,B|B = ps,~A©-A|p; = C|C, p» = A © A (See Figure 8).
(G'IG"|H')g == pa,pa,~A@=A(GIG")1 = GF = G & ) = G, NGF, == p2, BB = py,~A©-A
(See Figure 10).

Appendix A.5.4. [llustration of Theorem 2

Note that sequents in [] are principal sequents of elimination rules in the following. Let I, I, I; be
the same as in Appendix A.5.3 and, I = {[Sﬂl, [SE]I},II = {[Sﬂl},lr = {[SE]I},
[SE]I = GﬁECGlG* =A== p5| = pé,B|B = P8/_|A © —|A|p5 = C|
C,pe=A0A|B=p;,-A0-Alps=C|C,ps=> A0 A,

[S5], = Gﬁgzac* == py,BIB = py,~A®-Alpy = C|C,pr = A A
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A= p3| = p1,Blps = C|IC,py = A0 A.

[Sﬂl <

*
THg:A:%)

Glfr(l)
! *
cx (@) (TH§=P9IP10=>A®A)
I
w ! *
T, = ¥ (ECQ)f
1 GI’
where
Gﬁ(l) = [= ps, B|B = p10,~A ©-A|A = po|p10, po = A® A] [ = ps, B|
B = ],98,—|A® —\A|P5 = C|C,p6 = A®A|B = p7,—|A®—|A|
p7 =CIC,ps = A0 A,
Gi'® == ps, BIB = pro,~A ©~AJA = psl[ps = CIC, pro = A0 A]|
= p6,B|B = Ps, -AQ® —|A|p5 = C|C, Pe = A0® A|
B=p;,-A0-Alpy=C|C,ps = A0 A,
G;”;{ == p5,B|A = P9|P9 = C| = p6/B|B = pg,—\AG—!A|
ps = C|C,ps = A®A|B = p7,-A0-Alp; = C|C,ps = A A,
GE}E{();" = A= polpg = CIC,p1o = A® A; 57 = B= p1g,~A©®-A; 5 == ps, B;
7% * cICrr
GHIVI){ = Ghyor =5'18" Gr = A= polpg = CIC, 1o = AG A|B = p1o, ~A © - A.
S50,
o+ <TH§:A=>p3>
w Ir *
= ECq),
I, Gf: < Q>
where

Gy == p, B|B = ps,~A©-Alp1 = C|C,p2 = Ao A
= p1,Blps = C|C, py = A © A|[A = p1| = p12, B
B = p3,~A®-Alp11 = C|C,p2 = A0 A],
Gy’ == p2,B|B= py,~A©-Alp1 = C|C,py = A0 Al
= p1,Blp3 = C|C,ps = A0 A|A = p11|B = p3, A0 -A|py1 = C.

. . c. . . % % .
Since there is only one elimination rule in 5 the case we need to process is TH? Amspyr 1€
c
LISl
d ==t ).
Ijr Gﬂ,(l) HZ.A:p3
Hy: S5,

Thenv =1, S]C}1 = A= p3; Gy, == p2,B|B = py,~A©-Alpy = C|

C,p2:>A®A|=>p1,B|p3:>C|C,p4:>A®Aian;.

*

TH{:A:p5>

[Sﬂl (

cxM

% (2) (Tﬁ§¢P9,P103A®A>
% (0) Gy, o
T = (ECah
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_ *(1)y _ 1% *(2)y _ Yoy _ % oo _ ~A%(2) ~o _ %
wherearﬁ([sg]l)_Hg,aT;f(GIl ) = H < Hy ’afff(clz )—BTI?(GIZ)—G|G ,Gi°=G, G} =Gy

511,

% (0) ij(l) <TH§:A:p5)
TG = cx@ (TH?PWN:’A@A) ’
L
[55]
Tﬁ(O) ¥ (0) I

_ _ *
I:Go(1) — TIﬁGfO(Z) - cxM (TH?A:%)'
I

Since there is only one elimination rule in TI{; g?, @)
1

[sil, | .
;, = Gx® (THT:A:P5>'
1

Thenu =1, SJC.(f,l) = A = ps; Gy, == pe, B|B = pg,~A © - A]
1

1

ps = C|C,ps = A© A|B= py,-Ao-Alpy = C|C, ps :>A®AinTI’]f.
I

Tl*jl is replaced with Tf}lull_r in Step 3 of Stage 1, i.e.,

[Si]l [SE]I ‘A’(O)

where

Gl,r == p5,B|B = P3, -A0® _'Alcbﬂ'Gbll =

= p2,B|B = py,~A®-Alpy = C|C,ps = A® A| = py, B
p3 = C|C,py = A©® A| = ps, B|B = pg, ~A © -A]
ps = C|C,ps = A® A|B = p7,~Ae-Alpy = C|

=C,pg = A0 Alps, BB = p3,-A0-A.

. #*(0) . %*(0 : % (0
Replacing le=éi’?’ in 7 © with Tllzéil(él),

and keeping Gj,, unchanged, we get

[Sﬂ[ [S§]1<

T*
{Hf:A:>p5,H§:A:'p3}

(7 =T -+
Gl,r {H{:A:>p5,H§:A:>p3} I,:Gi’°(3) I:G}° (4)’

Gl,r
o (W) = = *(]) *()) \ &
571G, 1, IGETLMTETHGE,
Jr
¥ (J) _ % _ . QI _ .
where GH;/:(G")Iir = GHY’<GN)I]-, =g; S" == ps5, B;

§7=B=p3,-A0-A;Gy =G, |57 G -G

HY:H' HY:H'
Gfl\ == ps5,B| = pe, B|B = p7,-A®-Alps = C|C,ps = A® A]
p7 = C|C, ps = Ao® A|B = Ps, -A®e-A.
Stase2 #O0 _ 2 s _ 1%l
A8€ 2 T1,:690 = Traceo(1) = Geo(2) = FD THS:A=ps |/
I

= §’|§ﬁ;

- .
the case we need to process is The: A= s 1€

then deleting Gﬁ" and after that applying (EC{) to G,
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c c
O () . [5il, 551, (Tﬁ(ﬁ* ))
1:G°(3) ~ "1:G°°(4) T =5 *(]) () \ senaiv~e VIV
i 516G o, ICahMTTIGE,
Replacing T;’*’.(G?,Z, in TI*(O) with Tﬁg]o)o(@, then deleting GI’* and after that applying (EC) to
T 1 r re 1 r

571Gy, |G, 16ED) (TGS , we get 77"

HIV:(G”)Ij HY:H'
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