

 symmetry-11-00445

symmetry-11-00445

Symmetry 2019, 11(4), 445; doi:10.3390/sym11040445

Article

A Proof of the Standard Completeness for the Involutive Uninorm Logic

SanMin Wang[image: Orcid]

Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; Tel.: +86-136-5581-2543

Received: 20 February 2019 / Accepted: 22 March 2019 / Published: 27 March 2019

Abstract

:

In this paper, we solve a long-standing open problem in the field of fuzzy logics, that is, the standard completeness for the involutive uninorm logic IUL. In fact, we present a uniform method of density elimination for several semilinear substructural logics. Especially, the density elimination for IUL is proved. Then the standard completeness for IUL follows as a lemma by virtue of previous work by Metcalfe and Montagna.

Keywords:

density elimination; involutive uninorm logic; standard completeness of HpsUL *; semilinear substructural logics; fuzzy logic

MSC:

03B50; 03F05; 03B52; 03B47

1. Introduction

The problem of the completeness of Łukasiewicz infinite-valued logic (Ł, for short) was posed by Łukasiewicz and Tarski in the 1930s. It was twenty-eight years later that it was syntactically solved by Rose and Rosser [1]. Chang [2] developed at almost the same time a theory of algebraic systems for Ł, which are called MV-algebras, with an attempt to make MV-algebras correspond to Ł as Boolean algebras to the classical two-valued logic. Chang [3] subsequently finished another proof for the completeness of Ł by virtue of his MV-algebras.

It was Chang who observed that the key role in the structure theory of MV-algebras is not locally finite MV-algebras but linearly ordered ones. The observation was formalized by Hájek [4] who showed the completeness for his basic fuzzy logic (BL for short) with respect to linearly ordered BL-algebras. Starting with the structure of BL-algebras, Hájek [5] reduced the problem of the standard completeness of BL to two formulas to be provable in BL. Here and thereafter, by the standard completeness we mean that logics are complete with respect to algebras with lattice reduct [0, 1]. Cignoli et al. [6] subsequently proved the standard completeness of BL, i.e., BL is the logic of continuous t-norms and their residua.

Hajek’s approach toward fuzzy logic has been extended by Esteva and Godo in [7], where the authors introduced the logic MTL which aims at capturing the tautologies of left-continuous t-norms and their residua. The standard completeness of MTL was proved by Jenei and Montagna in [8], where the major step is to embed linearly ordered MTL-algebras into the dense ones under the situation that the structure of MTL-algebras have been unknown as of yet.

Esteva and Godo’s work was further promoted by Metcalfe and Montagna [9] who introduced the uninorm logic UL and involutive uninorm logic (IUL) which aims at capturing tautologies of left-continuous uninorms and their residua and those of involutive left-continuous ones, respectively. Recently, Cintula and Noguera [10] introduced semilinear substructural logics which are substructural logics complete with respect to linearly ordered models. Almost all well-known families of fuzzy logics such as Ł, BL, MTL, UL and IUL belong to the class of semilinear substructural logics.

Metcalfe and Montagna’s method to prove standard completeness for UL and its extensions is of proof theory in nature and consists of two key steps. Firstly, they extended UL with the density rule of Takeuti and Titani [11]:

Γ⊢(A→p)∨(p→B)∨CΓ⊢(A→B)∨C(D),

where p does not occur in Γ,A,B or C, and then prove the logics with (D) are complete with respect to algebras with lattice reduct [0, 1]. Secondly, they give a syntactic elimination of (D) that was formulated as a rule of the corresponding hypersequent calculus.

Hypersequents are a natural generalization of sequents which were introduced independently by Avron [12] and Pottinger [13] and have proved to be particularly suitable for logics with prelinearity [9,14]. Following the spirit of Gentzen’s cut elimination, Metcalfe and Montagna succeeded to eliminate the density rule for GUL and several extensions of GUL by induction on the height of a derivation of the premise and shifting applications of the rule upwards, but failed for GIUL and therefore left it as an open problem.

There are several relevant works about the standard completeness of IUL as follows. With an attempt to prove the standard completeness of IUL, we generalized Jenei and Montagna’s method [15] for IMTL in [16], but our effort was only partially successful. It seems that the subtle reason why it does not work for UL and IUL is the failure of the finite model property of these systems [17]. Jenei [18] constructed several classes of involutive FLe-algebras, as he said, in order to gain a better insight into the algebraic semantic of the substructural logic IUL, and also to the long-standing open problem about its standard completeness. Ciabattoni and Metcalfe [19] introduced the method of density elimination by substitutions which is applicable to a general class of (first-order) hypersequent calculi but fails in the case of GIUL.

We reconsidered Metcalfe and Montagna’s proof-theoretic method to investigate the standard completeness of IUL, because they have proved the standard completeness of UL by their method and we cannot prove such a result by the Jenei and Montagna’s model-theoretic method. In order to prove the density elimination for GUL, they prove that the following generalized density rule (D1):

G0≡{Γi,λip⇒Δi}i=1⋯n|{Σk,(μk+1)p⇒p}k=1⋯o|{Πj⇒p}j=1⋯mD1(G0)≡{Γi,λiΠj⇒Δi}i=1⋯nj=1⋯m|{Σk,μkΠj⇒t}k=1⋯oj=1⋯m(D1)

is admissible for GUL, where they set two constraints to the form of G0: (i) n,m⩾1 and λi⩾1 for some 1⩽i⩽n; (ii) p does not occur in Γi, Δi, Πj, Σk for i=1⋯n, j=1⋯m, k=1⋯o.

We may regard (D1) as a procedure whose input and output are the premise and conclusion of (D1), respectively. We denote the conclusion of (D1) by D1(G0) when its premise is G0. Observe that Metcalfe and Montagna had succeeded in defining the suitable conclusion for an almost arbitrary premise in (D1), but it seems impossible for GIUL (see Section 3 for an example). We then define the following generalized density rule (D0) for

GL∈{GUL,GIUL,GMTL,GIMTL}

and prove its admissibility in Section 9.

Theorem 1 (Main theorem).

Let n,m⩾1, p does not occur in G′,Γi,Δi,Πj or Σj for all 1⩽i⩽n,1⩽j⩽m. Then the strong density rule

G0≡G′|Γi,p⇒Δii=1⋯n|Πj⇒p,Σjj=1⋯mD0G0≡G′|{Γi,Πj⇒Δi,Σj}i=1⋯n;j=1⋯m(D0)

is admissible in GL.

In proving the admissibility of (D1), Metcalfe and Montagna made some restriction on the proof τ of G0, i.e., converted τ into an r-proof. The reason why they need an r-proof is that they set the constraint (i) to G0. We may imagine the restriction on τ and the constraints to G0 as two pallets of a balance, i.e., one is strong if another is weak and vice versa. Observe that we select the weakest form of G0 in (D0) that guarantees the validity of (D). Then it is natural that we need make the strongest restriction on the proof τ of G0. But it seems extremely difficult to follow such a way to prove the admissibility of (D0).

In order to overcome such a difficulty, we first of all choose Avron-style hypersequent calculi as the underlying systems (see Appendix A.1). Let τ be a cut-free proof of G0 in GL. Starting with τ, we construct a proof τ* of G|G* in a restricted subsystem GLΩ of GL by a systematic novel manipulations in Section 4. Roughly speaking, each sequent of G is a copy of some sequent of G0, and each sequent of G* is a copy of some contraction sequent in τ. In Section 5, we define the generalized density rule (D) in GLΩ and prove that it is admissible.

Now, starting with G|G* and its proof τ*, we construct a proof τ☆ of G☆ in GLΩ such that each sequent of G☆ is a copy of some sequent of G. Then ⊢GLΩD(G☆) by the admissibility of (D). Then ⊢GLD0(G0) by Lemma 29. Hence the density elimination theorem holds in GL. Especially, the standard completeness of IUL follows from Theorem 62 of [9].

G☆ is constructed by eliminating (pEC)-sequents in G|G* one by one. In order to control the process, we introduce the set I={Hi1c,⋯,Himc} of (pEC)-nodes of τ* and the set I of the branches relative to I and construct GI☆ such that GI☆ does not contain (pEC)-sequents lower than any node in I, i.e., Sjc∈GI☆ implies Hjc||Hic for all Hic∈I. The procedure is called the separation algorithm of branches in which we introduce another novel manipulation and call it derivation-grafting operation in Section 7 and Section 8.

2. Preliminaries

In this section, we recall the basic definitions and results involved, which are mainly from [9]. Substructural fuzzy logics are based on a countable propositional language with formulas built inductively as usual from a set of propositional variables VAR, binary connectives ⊙,→,∧,∨, and constants ⊥,⊤,t,f with definable connective ¬A:=A→f.

Definition 1.

([9,12]) A sequent is an ordered pair (Γ,Δ) of finite multisets (possibly empty) of formulas, which we denote by Γ⇒Δ. Γ and Δ are called the antecedent and succedents, respectively, of the sequent and each formula in Γ and Δ is called a sequent-formula. A hypersequent G is a finite multiset of the form Γ1⇒Δ1|⋯|Γn⇒Δn, where each Γi⇒Δi is a sequent and is called a component of G for each 1⩽i⩽n. If Δi contains at most one formula for i=1⋯n, then the hypersequent is single-conclusion, otherwise it is a multiple-conclusion.

Definition 2.

Let S be a sequent and G=S1|⋯|Sm a hypersequent. We say that S∈G if S is one of S1,⋯,Sm.

Notation 1.

Let G1 and G2 be two hypersequents. We will assume from now on that all set terminology refers to multisets, adopting the conventions of writing Γ,Δ for the multiset union of Γ and Δ, A for the singleton multiset {A}, and λΓ for the multiset union of λ copies of Γ for λ∈N. By G1⊆G2 we mean that S∈G2 for all S∈G1 and the multiplicity of S in G1 is not more than that of S in G2. We will use G1=G2, G1⋂G2, G1⋃G2, G1\G2 by their standard meaning for multisets by default and we will declare when we use them for sets. We sometimes write S1|⋯|Sm and G|S|⋯|S︷ncopies as {S1,⋯,Sm}, G|Sn (or G|{S}n), respectively.

Definition 3.

([12]) A hypersequent rule is an ordered pair consisting of a sequence of hypersequents G1,⋯,Gn called the premises (upper hypersequents) of the rule, and a hypersequent G called the conclusion (lower hypersequent), written by G1⋯GnG. If n=0, then the rule has no premise and is called an initial sequent. The single-conclusion version of a rule adds the restriction that both the premises and conclusion must be single-conclusion; otherwise the rule is multiple-conclusion.

Definition 4.

([9])GULandGIULconsist of the single-conclusion and multiple-conclusion versions of the following initial sequents and rules, respectively:

Initial sequents

A⇒A(ID)Γ⇒⊤,Δ(⊤r)Γ,⊥⇒Δ(⊥l)⇒t(tr)f⇒(fl)

Structural rules

G|Γ⇒A|Γ⇒AG|Γ⇒A(EC)GG|Γ⇒A(EW)

G1|Γ1,Π1⇒Σ1,Δ1G2|Γ2,Π2⇒Σ2,Δ2G1|G2|Γ1,Γ2⇒Δ1,Δ2|Π1,Π2⇒Σ1,Σ2(COM)

Logical rules

G|Γ⇒ΔG|Γ,t,⇒Δ(tl)G1|Γ1⇒A,Δ1G2|Γ2,B⇒Δ2G1|G2|Γ1,Γ2,A→B⇒Δ1,Δ2(→l)G|Γ,A,B⇒ΔG|Γ,A⊙B⇒Δ(⊙l)G|Γ,A⇒ΔG|Γ,A∧B⇒Δ(∧lr)G1|Γ⇒A,ΔG2|Γ⇒B,ΔG1|G2|Γ⇒A∧B,Δ(∧r)G|Γ⇒B,ΔG|Γ⇒A∨B,Δ(∨rl)G|Γ⇒ΔG|Γ⇒f,Δ(fr)G|Γ,A⇒B,ΔG|Γ⇒A→B,Δ(→r)G1|Γ1⇒A,Δ1G2|Γ2⇒B,Δ2G1|G2|Γ1,Γ2⇒A⊙B,Δ1,Δ2(⊙r)G|Γ,B⇒ΔG|Γ,A∧B⇒Δ(∧ll)G|Γ⇒A,ΔG|Γ⇒A∨B,Δ(∨rr)G1|Γ,A⇒ΔG2|Γ,B⇒ΔG1|G2|Γ,A∨B⇒Δ(∨l)

Cut rule

G1|Γ1,A⇒Δ1G2|Γ2⇒A,Δ2G1|G2|Γ1,Γ2⇒Δ1,Δ2(CUT)

Definition 5.

([9])GMTLandGIMTLareGULandGIULplus the single conclusion and multiple-conclusion versions, respectively, of:

G|Γ⇒ΔG|Γ,A⇒Δ(WL),G|Γ⇒ΔG|Γ⇒A,Δ(WR).

Definition 6.

(i) (I)∈{(tl),(fr),(→r),(⊙l),(∧lr),(∧ll),(∨rr),(∨rl),(WL),(WR)} and

(II)∈{(→l),(⊙r),(∧r),(∨l),(COM)};

(ii) By G′|S′G″|S″G′|G″|H′(II) (or G′|S′G′|H′(I)) we denote an instance of a two-premise rule (II) (or one-premise rule (I)) of GL, where S′ and S″ are its focus sequents and H′ is its principle sequent (for (→l), (⊙r), (∧r) and (∨l)) or hypersequent (for (COM), (∧rw) and (∨lw), see Definition 12).

Definition 7.

([9]) GLD is GL extended with the following density rule:

G|Γ1,p⇒Δ1|Γ2⇒p,Δ2G|Γ1,Γ2⇒Δ1,Δ2(D)

where p does not occur in G,Γ1,Γ2,Δ1 or Δ2.

Definition 8.

([12]) A derivation τ of a hypersequent G from hypersequents G1,⋯,Gn in a hypersequent calculus GL is a labeled tree with the root labeled by G, leaves labeled initial sequents or some G1,⋯,Gn, and for each node labeled G0′ with parent nodes labeled G1′,⋯,Gm′ (where possibly m=0), G1′⋯Gm′G0′ is an instance of a rule of GL.

Notation 2.

(i) G1⋯Gn̲G0τ denotes that τ is a derivation of G0 from G1,⋯,Gn;

(ii) Let H be a hypersequent. H∈τ denotes that H is a node of τ. We call H a leaf hypersequent if H is a leaf of τ, the root hypersequent if it is the root of τ. G1′⋯Gm′G0′∈τ denotes that G0′∈τ and its parent nodes are G1′,⋯,Gm′;

(iii) Let H∈τ then τ(H) denotes the subtree of τ rooted at H;

(iv) τ determines a partial order ⩽τ with the root as the least element. H1∥H2 denotes H1≰τH2 and H2≰τH1 for any H1,H2∈τ. By H1=τH2 we mean that H1 is the same node as H2 in τ. We sometimes write ⩽τ as ⩽;

(v) An inference of the form G′|SnG′|S∈τ is called the full external contraction and denoted by (EC*), if n⩾2, G′|Sn is not a lower hypersequent of an application of (EC) whose contraction sequent is S, and G′|S not an upper one in τ.

Definition 9.

Let τ be a derivation of G and H∈τ. The thread Thτ(H) of τ at H is a sequence H0,⋯,Hn of node hypersequents of τ such that H0=τH, Hn=τG, HkHk+1∈τ or there exists G′∈τ such that HkG′Hk+1 or G′HkHk+1 in τ for all 0⩽k⩽n−1.

Proposition 1.

Let H1,H2∈τ. Then

(i) H1⩽H2 if and only if H1∈Thτ(H2);

(ii) H1∥H2 and H1⩽H3 imply H2∥H3;

(iii) H1⩽H3 and H2⩽H3 imply H1∦H2.

We need the following definition to give each node of τ an identification number, which is used in Construction 3 to differentiate sequents in a hypersequent in a proof.

Definition 10.

(Appendix A.5.2) Let H∈τ and Th(H)=(H0,⋯,Hn). Let bn:=1,

bk:=1ifG′HkHk+1∈τ,0ifHkHk+1∈τorHkG′Hk+1∈τ

for all 0⩽k⩽n−1. Then P(H):=∑k=0k=n2kbk and call it the position of H in τ.

Definition 11.

A rule is admissible for a calculusGLif whenever its premises are derivable inGL, then so is its conclusion.

Lemma 1.

([9]) Cut-elimination holds for GL, i.e., proofs using (CUT) can be transformed syntactically into proofs not using (CUT).

3. Proof of the Main Theorem: A Computational Example

In this section, we present an example to illustrate the proof of the main theorem.

Let G0≡⇒p,B|B⇒p,¬A⊙¬A|p⇒C|C,p⇒A⊙A. G0 is a theorem of IUL and a cut-free proof τ of G0 is shown in Figure 1, where we use an additional rule Γ,A⇒ΔΓ⇒¬A,Δ(¬r) for simplicity. Note that we denote three applications of (EC) in τ respectively by (EC)1,(EC)2,(EC)3 and three (⊙r) by (⊙r)1,(⊙r)2 and (⊙r)3.

By applying (D) to free combinations of all sequents in ⇒p,B|B⇒p,¬A⊙¬A and in p⇒C|C,p⇒A⊙A, we get that H0≡⇒B,C|C⇒A⊙A,B|B⇒C,¬A⊙¬A|C,B⇒A⊙A,¬A⊙¬A. H0 is a theorem of IUL and a cut-free proof ρ of H0 is shown in Figure 2. It supports the validity of the generalized density rule (D0) in Section 1, as an instance of (D0).

Our task is to construct ρ, starting from τ. The tree structure of ρ is more complicated than that of τ. Compared with UL, MTL and IMTL, there is no one-to-one correspondence between nodes in τ and ρ.

Following the method given by G. Metcalfe and F. Montagna, we need to define a generalized density rule for IUL. We denote such an expected unknown rule by (Dx) for convenience. Then Dx(H) must be definable for all H∈τ. Naturally,

Dx(p⇒p)=⇒t;

Dx(A⇒p|p⇒A)=A⇒A;

Dx(⇒p,¬A|p,p⇒A⊙A)=⇒¬A,¬A,A⊙A;

Dx(⇒p,B|B⇒p,¬A⊙¬A|p,p⇒A⊙A)=

⇒B,B,A⊙A|B,B⇒A⊙A,¬A⊙¬A,¬A⊙¬A|B⇒A⊙A,B,¬A⊙¬A;

Dx(G0)=D0(G0)=H0.

However, we could not find a suitable way to define Dx(H××) and Dx(H×) for H×× and H× in τ, see Figure 1. This is the biggest difficulty we encounter in the case of IUL such that it is hard to prove density elimination for IUL. A possible way is to define Dx(⇒p,p,¬A⊙¬A|p,p⇒A⊙A) as ⇒t,A⊙A,¬A⊙¬A. Unfortunately, it is not a theorem of IUL.

Notice that two upper hypersequents ⇒p,¬A|p,p⇒A⊙A of (⊙r)3 are permissible inputs of (Dx). Why is H×× an invalid input? One reason is that, two applications (EC)1 and (EC)2 cut off two sequents A⇒p such that two p′s disappear in all nodes lower than upper hypersequent of (EC)1 or (EC)2, including H××. These make occurrences of p′s to be incomplete in H××. We then perform the following operation in order to get complete occurrences of p′s in H××.

Step 1 (preprocessing of τ). Firstly, we replace H with H|S′ for all G′|S′|S′G′|S′(EC)k∈τ, H⩽G′|S′ then replace G′|S′|S′G′|S′|S′(EC)k with G′|S′|S′ for all k=1,2,3. Then we construct a proof without (EC), which we denote by τ1, as shown in Figure 3. We call such manipulations sequent-inserting operations, which eliminate applications of (EC) in τ.

However, we also cannot define Dx(H××′) for H××′∈τ1 in that ⇒p,p,¬A⊙¬A|p,p⇒A⊙A⊆H××′. The reason is that the origins of p′s in H××′ are indistinguishable if we regard all leaves in the form p⇒p as the origins of p′s which occur in the inner node. For example, we do not know which p comes from the left subtree of τ1(H××′) and which from the right subtree in two occurrences of p′s in ⇒p,p,¬A⊙¬A∈H××′. We then perform the following operation in order to make all occurrences of p′s in H××′ distinguishable.

We assign the unique identification number to each leaf in the form p⇒p∈τ1 and transfer these identification numbers from leaves to the root, as shown in Figure 4. We denote the proof of G|G* resulting from this step by τ*, where G≡⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A in which each sequent is a copy of some sequent in G0 and G*≡A⇒p1|A⇒p3|p3,p4⇒A⊙A in which each sequent is a copy of some external contraction sequent in (EC)-node of τ. We call such manipulations eigenvariable-labeling operations, which make us to trace eigenvariables in τ.

Then all occurrences of p in τ* are distinguishable and we regard them as distinct eigenvariables (See Definition 18 (i)). Firstly, by selecting p1 as the eigenvariable and applying (D) to G|G*, we get

G′≡A⇒C|⇒p2,B|B⇒p4,¬A⊙¬A|C,p2⇒A⊙A|A⇒p3|p3,p4⇒A⊙A.

Secondly, by selecting p2 and applying (D) to G′, we get

G″≡A⇒C|B⇒p4,¬A⊙¬A|C⇒B,A⊙A|A⇒p3|p3,p4⇒A⊙A.

Repeatedly, we get

G″″≡A⇒C|A,B⇒A⊙A,¬A⊙¬A|C⇒A⊙A,B.

We define such iterative applications of (D) as D-rule (See Definition 20). Lemma 10 shows that ⊢GIULD(G|G*) if ⊢GIULG|G*. Then we obtain ⊢GIULD(G|G*), i.e., ⊢GIULG″″.

A miracle happens here! The difficulty that we encountered in GIUL is overcome by converting H××′=A⇒p|⇒p,p,¬A⊙¬A|p,p⇒A⊙A|A⇒p|p,p⇒A⊙A into A⇒p1|⇒p2,p4,¬A⊙¬A|p1,p2⇒A⊙A|A⇒p3|p3,p4⇒A⊙A and using (D) to replace (Dx).

Why do we assign the unique identification number to each p⇒p∈τ1? We would return back to the same situation as that of τ1 if we assign the same indices to all p⇒p∈τ1 or, replace p3⇒p3 and p4⇒p4 by p2⇒p2 in τ*.

Note that D(G|G*)=H1. So we have built up a one-one correspondence between the proof τ* of G|G* and that of H1. Observe that each sequent in G* is not a copy of any sequent in G0. In the following steps, we work on eliminating these sequents in G*.

Step 2 (extraction of elimination rules). We select A⇒p2 as the focus sequent in H1c in τ* and keep A⇒p1 unchanged from H1c downward to G|G* (See Figure 4). So we extract a derivation from A⇒p2 by pruning some sequents (or hypersequents) in τ*, which we denote by τH1c:A⇒p2*, as shown in Figure 5.

A derivation τH1c:A⇒p1* from A⇒p1 is constructed by replacing p2 with p1, p3 with p5 and p4 with p6 in τH1c:A⇒p2*, as shown in Figure 6. Notice that we assign new identification numbers to new occurrences of p in τH1c:A⇒p1*.

Next, we apply τH1c:A⇒p1* to A⇒p1 in G|G*. Then we construct a proof τH1c:G|G*☆(1), as shown in Figure 7, where G′≡G|G*\{A⇒p1}.

However, GH1c:G|G*☆(1)=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|A⇒p3|p3,p4⇒A⊙A|⇒p1,B|B⇒p6,¬A⊙¬A|A⇒p5|p5,p6⇒A⊙A contains more copies of sequents from G* and seems more complex than G|G*. We will present a unified method to tackle with it in the following steps. Other derivations are shown in Figure 8, Figure 9, Figure 10 and Figure 11.

Step 3 (separation of one branch). A proof τH1c:G|G*☆(2) is constructed by applying sequentially

τH3c:p3,p4⇒A⊙A*,τH3c:p5,p6⇒A⊙A*

to p3,p4⇒A⊙A and p5,p6⇒A⊙A in GH1c:G|G*☆(1), as shown in Figure 12, where G″≡GH1c:G|G*☆(1)\{p3,p4⇒A⊙A,p5,p6⇒A⊙A}

GH1c:G|G*☆(2)=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|A⇒p3|⇒p1,B|

B⇒p6,¬A⊙¬A|A⇒p5|p3⇒C|C,p4⇒A⊙A|p5⇒C|C,p6⇒A⊙A.

Notice that

D(B⇒p4,¬A⊙¬A|A⇒p3|p3⇒C|C,p4⇒A⊙A)=D(B⇒p6,¬A⊙¬A|A⇒p5|p5⇒C|C,p6⇒A⊙A)=A⇒C|C,B⇒A⊙A,¬A⊙¬A.

Then it is permissible to cut off the part

B⇒p6,¬A⊙¬A|A⇒p5|p5⇒C|C,p6⇒A⊙A

of GH1c:G|G*☆(2), which corresponds to applying (EC) to D(GH1c:G|G*☆(2)). We regard such a manipulation as a constrained contraction rule applied to GH1c:G|G*☆(2) and denote it by (ECΩ). Define GH1c:G|G*☆ to be

⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|

A⇒p3|⇒p1,B|p3⇒C|C,p4⇒A⊙A.

Then we construct a proof of GH1c:G|G*☆ by GH1c:G|G*☆(2)GH1c:G|G*☆(ECΩ), which guarantees the validity of

⊢GIULD(GH1c:G|G*☆)

under the condition

⊢GIULD(GH1c:G|G*☆(2)).

A change happens here! There is only one sequent which is a copy of a sequent in G* in GH1c:G|G*☆. It is simpler than G|G*. So we are moving forward. The above procedure is called the separation of G|G* as a branch of H1c and reformulated as follows (See Section 7 for details).

G|G*̲GH1c:G|G*☆(1)τH1c:A⇒p1*̲GH1c:G|G*☆(2)τH3c:p3,p4⇒A⊙A*,τH3c:p5,p6⇒A⊙A*̲GH1c:G|G*☆ECΩ

The separation of G|G* as a branch of H2c is constructed by a similar procedure as follows.

G|G*̲GH2c:G|G*☆(1)τH2c:A⇒p3*̲GH2c:G|G*☆(2)τH3c:p3,p4⇒A⊙A*̲GH2c:G|G*☆ECΩ

Note that D(GH1c:G|G*☆)=H2 and D(GH2c:G|G*☆)=H3. So we have built up one-one correspondences between proofs of GH1c:G|G*☆,GH1c:G|G*☆ and those of H2,H3.

Step 3 (separation algorithm of multiple branches). We will prove ⊢GIULD0(G0) in a direct way, i.e., only the major step of Theorem 2 is presented in the following. (See Appendix A.5.4 for a complete illustration.) Recall that

GH1c:G|G*☆=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|

A⇒p3|⇒p1,B|p3⇒C|C,p4⇒A⊙A,

GH2c:G|G*☆=A⇒p1|⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|

B⇒p3,¬A⊙¬A|p3⇒C|C,p4⇒A⊙A.

By reassigning identification numbers to occurrences of p′s in GH2c:G|G*☆,

GH2c:G|G*☆=A⇒p5|⇒p6,B|B⇒p8,¬A⊙¬A|p5⇒C|C,p6⇒A⊙A|

B⇒p7,¬A⊙¬A|p7⇒C|C,p8⇒A⊙A.

By applying τ{H1c:A⇒p5,H2c:A⇒p3}* to A⇒p3 in GH1c:G|G*☆ and A⇒p5 in GH2c:G|G*☆, we get ⊢GIULG′, where

G′≡⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|⇒p1,B|

p3⇒C|C,p4⇒A⊙A|⇒p6,B|B⇒p8,¬A⊙¬A|p5⇒C|C,p6⇒A⊙A|

B⇒p7,¬A⊙¬A|p7⇒C|C,p8⇒A⊙A|⇒p5,B|B⇒p3,¬A⊙¬A.

Why reassign identification numbers to occurrences of p′s in GH2c:G|G*☆? It makes different occurrences of p′s to be assigned different identification numbers in two nodes GH1c:G|G*☆ and GH2c:G|G*☆ of the proof of G′.

By applying ECΩ* to G′, we get ⊢GIULΩGI☆, where

GI☆≡⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|⇒p1,B|

p3⇒C|C,p4⇒A⊙A|B⇒p3,¬A⊙¬A.

A great change happens here! We have eliminated all sequents which are copies of some sequents in G* and converted G|G* into GI☆ in which each sequent is some copy of a sequent in G0.

Then ⊢GIULD(GI☆) by Lemma 8, where D(GI☆)=H0 =

⇒C,B|C⇒B,A⊙A|B⇒C,¬A⊙¬A|C,B⇒A⊙A,¬A⊙¬A.

So we have built up one-one correspondences between the proof of GI☆ and that of H0, i.e., the proof of H0 can be constructed by applying (D) to the proof of GI☆. The major steps of constructing GI☆ are shown in the following figure, where D(G|G*)=H1, D(GH1c:G|G*☆)=H2, D(GH2c:G|G*☆)=H3 and D(GI☆)=H0. [image: Symmetry 11 00445 i001]

In the above example, D(GI☆)=D0(G0). But that is not always the case. In general, we can prove that ⊢GLD0(G0) if ⊢GLD(GI☆), which is shown in the proof of the main theorem in Page 42. This example shows that the proof of the main theorem essentially presents an algorithm to construct a proof of D0(G0) from τ.

4. Preprocessing of Proof Tree

Let τ be a cut-free proof of G0 in the main theorem in GL by Lemma 1. Starting with τ, we will construct a proof τ* which contains no application of (EC) and has some other properties in this section.

Lemma 2.

(i) If ⊢GLΓ1⇒A,Δ1 and ⊢GLΓ2⇒B,Δ2

then⊢GLΓ1⇒A∧B,Δ1|Γ2⇒A∧B,Δ2;

(ii) If ⊢GLΓ1,A⇒Δ1 and ⊢GLΓ2,B⇒Δ2

then⊢GLΓ1,A∨B⇒Δ1|Γ2,A∨B⇒Δ2.

Proof.

(i)

Γ2⇒B,Δ2Γ1⇒A,Δ1B⇒BA⇒AA⇒AB⇒BA⇒B|B⇒A(COM)A⇒A∧B|B⇒A(∧r)A⇒A∧B|B⇒A∧B(∧r)Γ1⇒A∧B,Δ1|B⇒A∧B(CUT)Γ1⇒A∧B,Δ1|Γ2⇒A∧B,Δ2(CUT)

(ii) is proved by a procedure similar to that of (i) and omitted. □

We introduce two new rules by Lemma 2.

Definition 12.

G1|Γ1⇒A,Δ1G2|Γ2⇒B,Δ2G1|G2|Γ1⇒A∧B,Δ1|Γ2⇒A∧B,Δ2(∧rw)and G1|Γ1,A⇒Δ1G2|Γ2,B⇒Δ2G1|G2|Γ1,A∨B⇒Δ1|Γ2,A∨B⇒Δ2(∨lw) are called the generalized (∧r) and (∨l) rules, respectively.

Now, we begin to process τ as follows.

Step 1. A proof τ1 is constructed by replacing inductively all applications of

G1|Γ⇒A,ΔG2|Γ⇒B,ΔG1|G2|Γ⇒A∧B,Δ(∧r)(orG1|Γ,A⇒ΔG2|Γ,B⇒ΔG1|G2|Γ,A∨B⇒Δ(∨l))

in τ with

G1|Γ⇒A,ΔG2|Γ⇒B,ΔG1|G2|Γ⇒A∧B,Δ|Γ⇒A∧B,Δ(∧rw)G1|G2|Γ⇒A∧B,Δ(EC)

(accordinglyG1|Γ,A⇒ΔG2|Γ,B⇒ΔG1|G2|Γ,A∨B⇒Δ|Γ,A∨B⇒Δ(∨lw)G1|G2|Γ,A∨B⇒Δ(EC)for(∨l)).

The replacements in Step 1 are local and the root of τ1 is also labeled by G0.

Definition 13.

We sometimes may regard G′G′ as a structural rule of GL and denote it by (IDΩ) for convenience. The focus sequent for (IDΩ) is undefined.

Lemma 3.

Let G′|SmG′|S(EC*)∈τ1, Thτ1(G′|S)=(H0,H1,⋯,Hn), where H0=G′|S and Hn=G0. A tree τ′ is constructed by replacing each Hk in τ1 with Hk|Sm−1 for all 0⩽k⩽n. Then τ′ is a proof of G0|Sm−1.

Proof.

The proof is by induction on n. Since τ1(G′|Sm) is a proof and G′|SmH0|Sm−1(IDΩ) is valid in GL, then τ′(H0|Sm−1) is a proof. Suppose that τ′(Hn−1|Sm−1) is a proof. Since Hn−1G″Hn(II) (or Hn−1Hn(I)) in τ1, then Hn−1|Sm−1G″Hn|Sm−1 (or Hn−1|Sm−1Hn|Sm−1) is an application of the same rule (II) (or (I)). Thus τ′(Hn|Sm−1) is a proof. □

Definition 14.

The manipulation described in Lemma 3 is called a sequent-inserting operation.

Clearly, the number of (EC*)-applications in τ′ is less than τ1. Next, we continue to process τ.

Step 2. Let G1‴|{S1c}m1′G1′|S1c(EC*),⋯,GN‴|{SNc}mN′GN′|SNc(EC*) be all applications of (EC*) in τ1 and G0*:={S1c}m1′−1|⋯|{SNc}mN′−1. By repeatedly applying sequent-inserting operations, we construct a proof of G0|G0* in GL without applications of (EC*) and denote it by τ2.

Remark 1.

(i) τ2 is constructed by converting (EC) into (IDΩ); (ii) Each node of τ2 has the form H0|H0*, where H0∈τ1 and H0* is a (possibly empty) subset of G0*.

We need the following construction to eliminate applications of (EW) in τ2.

Construction 1.

Let H∈τ2, H′⊆H and Thτ2(H)=(H0,⋯,Hn), where H0=H, Hn=G0|G0*. Hypersequents HkH:H′ and trees τH:H′2(HkH:H′) for all 0⩽k⩽n are constructed inductively as follows.

(i) H0H:H′:=H′ and τH:H′2(H0H:H′) consists of a single node H′;

(ii) Let G′|S′G″|S″G′|G″|H″(II) (or G′|S′G′|S″(I)) be in τ2, Hk=G′|S′ and Hk+1=G′|G″|H″ (accordingly Hk+1=G′|S″ for (I)) for some 0⩽k⩽n−1.

If S′∈HkH:H′

Hk+1H:H′:=HkH:H′\{S′}|G″|H″

(accordinglyHk+1H:H′:=HkH:H′\{S′}|S″for(I))

and τH:H′2(Hk+1H:H′) is constructed by combining trees

τH:H′2(HkH:H′),τ2(G″|S″)withHkH:H′G″|S″Hk+1H:H′(II)

(accordinglyτH:H′2(HkH:H′)withHkH:H′Hk+1H:H′(I)for(I))

otherwise Hk+1H:H′:=HkH:H′ and τH:H′2(Hk+1H:H′) is constructed by combining

τH:H′2(HkH:H′)withHkH:H′Hk+1H:H′(IDΩ).

(iii) Let G′G′|S′(EW)∈τ2, Hk=G′ and Hk+1=G′|S′ then Hk+1H:H′:=HkH:H′ and τH:H′2(Hk+1H:H′) is constructed by combining τH:H′2(HkH:H′)withHkH:H′Hk+1H:H′(IDΩ).

Lemma 4.

(i) HkH:H′⊆Hk for all 0⩽k⩽n;

(ii) τH:H′2(HkH:H′) is a derivation of HkH:H′ from H′ without (EC).

Proof.

The proof is by induction on k. For the base step, H0H:H′=H′ and τH:H′2(H0H:H′) consists of a single node H′. Then H0H:H′⊆H0=H, τH:H′2(H0H:H′) is a derivation of H0H:H′ from H′ without (EC).

For the induction step, suppose that HkH:H′ and τH:H′2(HkH:H′) be constructed such that (i) and (ii) hold for some 0⩽k⩽n−1. There are two cases to be considered.

Case 1. Let G′|S′G′|S″(I)∈τ2, Hk=G′|S′ and Hk+1=G′|S″. If S′∈HkH:H′ then HkH:H′\{S′}⊆G′ by HkH:H′⊆Hk=G′|S′. Thus Hk+1H:H′=(HkH:H′\{S′})|S″⊆G′|S″=Hk+1. Otherwise S′∉HkH:H′ then HkH:H′⊆G′ by HkH:H′⊆Hk=G′|S′. Thus Hk+1H:H′⊆Hk+1 by Hk+1H:H′=HkH:H′⊆G′⊆Hk+1. τH:H′2(Hk+1H:H′) is a derivation of Hk+1H:H′ from H′ without (EC) since τH:H′2(HkH:H′) is such one and HkH:H′Hk+1H:H′(I) is a valid instance of a rule (I) of GL. The case of applications of the two-premise rule is proved by a similar procedure and omitted.

Case 2. Let G′G′|S′(EW)∈τ2, Hk=G′ and Hk+1=G′|S′. Then Hk+1H:H′⊆Hk+1 by Hk+1H:H′=HkH:H′⊆Hk⊆Hk+1. τH:H′2(Hk+1H:H′) is a derivation of Hk+1H:H′ from H′ without (EC) since τH:H′2(HkH:H′) is such one and HkH:H′Hk+1H:H′(IDΩ) is valid by Definition 13. □

Definition 15.

The manipulation described in Construction 1 is called a derivation-pruning operation.

Notation 3.

We denote HnH:H′ by GH:H′2, τH:H′2(HnH:H′) by τH:H′2 and say that H′ is transformed into GH:H′2 in τ2.

Then Lemma 4 shows that H′̲GH:H′2τH:H′2, GH:H′2⊆G0|G0*. Now, we continue to process τ as follows.

Step 3. Let G′G′|S′(EW)∈τ2 then τG′|S′:G′2(HnG′|S′:G′) is a derivation of HnG′|S′:G′ from G′ thus a proof of HnG′|S′:G′ is constructed by combining τ2(G′) and τG′|S′:G′2(HnG′|S′:G′) with G′G′(IDΩ). By repeatedly applying the procedure above, we construct a proof τ3 of G1|G1* without (EW) in GL, where G1⊆G0,G1*⊆G0* by Lemma 4(i).

Step 4. Let Γ,p,⊥⇒Δ∈τ3 (or Γ,p⇒⊤,Δ, G|Γ⇒ΔG|Γ,p⇒Δ(WL)) then there exists Γ′⇒Δ′∈H such that p∈Γ′ for all H∈Thτ3(Γ,p,⊥⇒Δ) (accordingly H∈Thτ3(Γ,p⇒⊤,Δ), H∈Thτ3(Γ,p⇒Δ)) thus a proof is constructed by replacing top-down p in each Γ′ with ⊤.

Let Γ,⊥⇒p,Δ (or Γ⇒⊤,p,Δ, G|Γ⇒ΔG|Γ⇒p,Δ(WR)) is a leaf of τ3 then there exists Γ′⇒Δ′∈H such that p∈Δ′ for all H∈Thτ3(Γ,⊥⇒p,Δ) (accordingly H∈Thτ3(Γ⇒⊤,p,Δ) or H∈Thτ3(Γ⇒p,Δ)) thus a proof is constructed by replacing top-down p in each Γ′ with ⊥.

Repeatedly applying the procedure above, we construct a proof τ4 of G2|G2* in GL such that there does not exist occurrence of p in Γ or Δ at each leaf labeled by Γ,⊥⇒Δ or Γ⇒⊤,Δ, or p is not the weakening formula A in G|Γ⇒ΔG|Γ⇒A,Δ(WR) or G|Γ⇒ΔG|Γ,A⇒Δ(WL) when (WR) or (WL) is available. Define two operations σl and σr on sequents by σl(Γ,p⇒Δ):=Γ,⊤⇒Δ and σr(Γ⇒p,Δ):=Γ⇒⊥,Δ. Then G2|G2* is obtained by applying σl and σr to some designated sequents in G1|G1*.

Definition 16.

The manipulation described in Step 4 is called eigenvariable-replacing operation.

Step 5. A proof τ* is constructed from τ4 by assigning inductively one unique identification number to each occurrence of p in τ4 as follows.

One unique identification number, which is a positive integer, is assigned to each leaf of the form p⇒p in τ4 which corresponds to pk⇒pk in τ*. Other nodes of τ4 are processed as follows.

	
Let G1|Γ,λp⇒μp,ΔG1|Γ′,λp⇒μp,Δ′(I)∈τ4. Suppose that all occurrences of p in G1|Γ,λp⇒μp,Δ are assigned identification numbers and have the form G1′|Γ,pi1,⋯,piλ⇒pj1,⋯,pjμ,Δ in τ*, which we often write as G1′|Γ,{pik}k=1λ⇒{pjk}k=1μ,Δ. Then G1|Γ′,λp⇒μp,Δ′ has the form G1′|Γ′,{pik}k=1λ⇒{pjk}k=1μ,Δ′.

	
Let G′G″G‴(∧rw)∈τ4, where G′≡G1|Γ,λp⇒μp,A,Δ,G″≡G2|Γ,λp⇒μp,B,Δ,G‴≡G1|G2|Γ,λp⇒μp,A∧B,Δ|Γ,λp⇒μp,A∧B,Δ. Suppose that G′ and G″ have the forms G1′|Γ,{pi1k}k=1λ⇒{pj1k}k=1μ,A,Δ and G2′|Γ,{pi2k}k=1λ⇒{pj2k}k=1μ,B,Δ in τ*, respectively. Then G‴ has the form G1′|G2′|Γ,{pi1k}k=1λ⇒{pj1k}k=1μ,A∧B,Δ|Γ,{pi2k}k=1λ⇒{pj2k}k=1μ,A∧B,Δ. All applications of (∨lw) are processed by the procedure similar to that of (∧rw).

	
Let G′G″G‴(⊙r)∈τ4, where G′≡G1|Γ1,λ1p⇒μ1p,A,Δ1,

G″≡G2|Γ2,λ2p⇒μ2p,B,Δ2,G‴≡G1|G2|Γ1,Γ2,(λ1+λ2)p⇒(μ1+μ2)p,A⊙B,Δ1,Δ2. Suppose that G′ and G″ have the forms G1′|Γ1,{pi1k}k=1λ1⇒{pj1k}k=1μ1,A,Δ1 and G2′|Γ2,{pi2k}k=1λ2⇒{pj2k}k=1μ2,B,Δ2 in τ*, respectively. Then G‴ has the form G1′|G2′|Γ1,Γ2,{pi1k}k=1λ1,{pi2k}k=1λ2⇒{pj1k}k=1μ1,{pj2k}k=1μ2,A⊙B,Δ1,Δ2. All applications of (→l) are processed by the procedure similar to that of (⊙r).

	
Let G′G″G‴(COM)∈τ4, where G′≡G1|Γ1,Π1,λ1p⇒μ1p,Σ1,Δ1,

G″≡G2|Γ2,Π2,λ2p⇒μ2p,Σ2,Δ2,G‴≡G1|G2|Γ1,Γ2,(λ11+λ21)p⇒(μ11+μ21)p,Δ1,Δ2|

Π1,Π2,(λ12+λ22)p⇒(μ12+μ22)p,Σ1,Σ2, where λ11+λ12=λ1,λ21+λ22=λ2, μ11+μ12=μ1,μ21+μ22=μ2.

Suppose that G′ and G″ have the forms G1′|Γ1,Π1,{pik1}k=1λ1⇒{pjk1}k=1μ1,Σ1,Δ1 and G2′|Γ2,Π2,{pik2}k=1λ2⇒{pjk2}k=1μ2,Σ2,Δ2 in τ*, respectively. Then G‴ has the form

G1′|G2′|Γ1,Γ2,{pi1k1}k=1λ11,{pi1k2}k=1λ21⇒{pj1k1}k=1μ11,{pj1k2}k=1μ21,Δ1,Δ2|

Π1,Π2,{pi2k1}k=1λ12,{pi2k2}k=1λ22⇒{pj2k1}k=1μ12,{pj2k2}k=1μ22,Σ1,Σ2,

where

{pikw}k=1λw={pi1kw}k=1λw1⋃{pi2kw}k=1λw2,{pjkw}k=1μw={pj1kw}k=1μw1⋃{pj2kw}k=1μw2

for w=1,2.

Definition 17.

The manipulation described in Step 5 is called eigenvariable-labeling operation.

Notation 4.

Let G2 and G2* be converted to G and G* in τ*, respectively. Then τ* is a proof of G|G*.

In the preprocessing of τ, each Gi‴|{Sic}mi′Gi‴|Sic(EC*)i is converted into Gi″|{Sic}mi′Gi″|{Sic}mi′(IDΩ)i in Step 2, where Gi‴⊆Gi″ by Lemma 3. G′G′|S′(EW)∈τ2 is converted into G″G″(IDΩ) in Step 3, where G″⊆G′ by Lemma 4(i). Some G′|Γ′,p⇒Δ′∈τ3 (or G′|Γ′⇒p,Δ′) is revised as G′|Γ′,⊤⇒Δ′ (or G′|Γ′⇒⊥,Δ′) in Step 4. Each occurrence of p in τ4 is assigned the unique identification number in Step 5. The whole preprocessing above is depicted by Figure 13.

Notation 5.

Let Gi‴|{Sic}mi′Gi‴|Sic(EC*)i,1⩽i⩽N be all (EC*)-nodes of τ1 and Gi‴|{Sic}mi′ be converted to Gi″|{Sic}mi in τ*. Note that there are no identification numbers for occurrences of variable p in Sic∈Gi‴|{Sic}mi′ meanwhile they are assigned to p in Sic∈Gi″|{Sic}mi. But we use the same notations for Sic∈Gi‴|{Sic}mi′ and Sic∈Gi″|{Sic}mi for simplicity.

In the whole paper, let Hic=Gi′|{Sic}mi denote the unique node of τ* such that Hic⩽Gi″|{Sic}mi and Sic is the focus sequent of Hic in τ*, in which case we denote the focus one Si1c and others Si2c|⋯|Simic among {Sic}mi. We sometimes denote Hic also by Gi′|{Sivc}v=1mi or Gi′|Si1c|{Sivc}v=2mi. We then write G* as {Sivc}i=1⋯Nv=2⋯mi.

We call Hic, Siuc the i-th pseudo-(EC) node of τ* and pseudo-(EC) sequent, respectively. We abbreviate pseudo-EC as pEC. Let H∈τ*, by Sic∈H we mean that Siuc∈H for some 1⩽u⩽mi.

It is possible that there does not exist Hic⩽Gi″|{Sic}mi such that Sic is the focus sequent of Hic in τ*, in which case {Sic}mi⊆G|G*, then it has not any effect on our argument to treat all such Sic as members of G. So we assume that all Hic are always defined for all Gi″|{Sic}mi in τ*, i.e., Hic>G|G*.

Proposition 2.

(i) {Sivc}v=2⋯mi⊆H for all H⩽Hic; (ii) G*={Sivc}i=1⋯Nv=2⋯mi.

Now, we replace locally each G′G′(IDΩ) in τ* with G′ and denote the resulting proof also by τ*, which has no essential difference with the original one, but could simplify subsequent arguments. We introduce the system GLΩ as follows.

Definition 18.

GLΩ is a restricted subsystem of GL such that

(i) p is designated as the unique eigenvariable by which we mean that it is not used to built up any formula containing logical connectives and only used as a sequent-formula.

(ii) Each occurrence of p on each side of every component of a hypersequent in GL is assigned one unique identification number i and written as pi in GLΩ. Initial sequent p⇒p of GL has the form pi⇒pi in GLΩ.

(iii) Each sequent S of GL in the form Γ,λp⇒μp,Δ has the form

Γ,{pik}k=1λ⇒{pjk}k=1μ,Δ

in GLΩ, where p does not occur in Γ or Δ, ik≠il for all 1⩽k<l⩽λ, jk≠jl for all 1⩽k<l⩽μ. Define vl(S)={i1,⋯,iλ} and vr(S)={j1,⋯,jμ}. Let G be a hypersequent of GLΩ in the form S1|⋯|Sn then vl(Sk)⋂vl(Sl)=∅ and vr(Sk)⋂vr(Sl)=∅ for all 1⩽k<l⩽n. Define vl(G)=⋃k=1nvl(Sk), vr(G)=⋃k=1nvr(Sk). Here, l and r in vl and vr indicate the left side and right side of a sequent, respectively.

(iv) A hypersequent G of GLΩ is called closed if vl(G)=vr(G). Two hypersequents G′ and G″ of GLΩ are called disjoint if vl(G′)⋂vl(G″)=∅, vl(G′)⋂vr(G″)=∅, vr(G′)⋂vl(G″)=∅ and vr(G′)⋂vr(G″)=∅. G″ is a copy of G′ if they are disjoint and there exist two bijections σl:vl(G′)→vl(G″) and σr:vr(G′)→vr(G″) such that G″ can be obtained by applying σl to antecedents of sequents in G′ and σr to succedents of sequents in G′, i.e., G″=σr∘σl(G′).

(v) A closed hypersequent G′|G″|G‴ can be contracted as G′|G″ in GLΩ under the condition that G″ and G‴ are closed and G‴ is a copy of G″. We call it the constraint external contraction rule and denote it by

G′|G″|G‴G′|G″(ECΩ).

Furthermore, if there do not exist two closed hypersequents H′,H″⊆G′|G″ such that H″ is a copy of H′ then we call it the fully constraint contraction rule and denote by G′|G″|G‴̲G′|G″ECΩ*.

(vi) (EW) and (CUT) of GL are forbidden. (EC), (∧r) and (∨l) of GL are replaced with (ECΩ), (∧rw) and (∨lw) in GLΩ, respectively.

(vii) G1|S1 and G2|S2 are closed and disjoint for each two-premise rule

G1|S1G2|S2G1|G2|H′(II) of GLΩ and, G′|S′ is closed for each one-premise rule G′|S′G′|S″(I).

(viii) p does not occur in Γ or Δ for each initial sequent Γ,⊥⇒Δ or Γ⇒⊤,Δ and, p does not act as the weakening formula A in G|Γ⇒ΔG|Γ⇒A,Δ(WR) or G|Γ⇒ΔG|Γ,A⇒Δ(WL) when (WR) or (WL) is available.

Lemma 5.

Let τ be a cut-free proof of G0 in L and τ* be the tree resulting from preprocessing of τ.

(i) If G′|S′G′|S″(I)∈τ* then vl(G′|S″)=vr(G′|S″)=vr(G′|S′)=vl(G′|S′);

(ii) If G′|S′G″|S″G′|G″|H′(II)∈τ* then vl(G′|G″|H′)=vl(G′|S′)⋃vl(G″|S″)=vr(G′|G″|H′)=vr(G′|S′)⋃vr(G″|S″);

(iii) If H∈τ* and k∈vl(H) then k∈vr(H);

(iv) If H∈τ* and k∈vl(H) (or k∈vr(H)) then H⩽pk⇒pk;

(v) τ* is a proof of G|G* in GLΩ without (ECΩ);

(vi) If H′,H″∈τ* and H′∥H″ then vl(H′)⋂vl(H″)=∅, vr(H′)⋂vr(H″)=∅.

Proof.

Claims from (i) to (iv) follow immediately from Step 5 in preprocessing of τ and Definition 18. Claim (v) is from Notation 4 and Definition 18. Only (vi) is proved as follows.

Suppose that k∈vl(H′)⋂vl(H″). Then H′⩽pk⇒pk, H″⩽pk⇒pk by Claim (iv). Thus H′⩽H″ or H″⩽H′, a contradiction with H′∥H″ hence vl(H′)⋂vl(H″)=∅.

vr(H′)⋂vr(H″)=∅ is proved by a similar procedure and omitted. □

5. The Generalized Density Rule (D) for GLΩ

In this section, we define the generalized density rule (D) for GLΩ and prove that it is admissible in GLΩ.

Definition 19.

Let G be a closed hypersequent of GLΩ and S∈G. Define SG=⋂{H:S∈H⊆G,vl(H)=vr(H)}, i.e., SG is the minimal closed unit of G containing S. In general, for G′⊆G, define G′G=⋂{H:G′⊆H⊆G,vl(H)=vr(H)}.

Clearly, SG=S if vl(S)=vr(S) or p does not occur in S. The following construction gives a procedure to construct SG for any given S∈G.

Construction 2.

Let G and S be as above. A sequence G1,G2,⋯,Gn of hypersequents is constructed recursively as follows. (i) G1={S}; (ii) Suppose that Gk is constructed for k⩾1. If vl(Gk)≠vr(Gk) then there exists ik+1∈vl(Gk)\vr(Gk) (or ik+1∈vr(Gk)\vl(Gk)) thus there exists the unique Sk+1∈G\Gk such that ik+1∈vr(Sk+1)\vl(Sk+1) (or ik+1∈vl(Sk+1)\vr(Sk+1)) by vl(G)=vr(G) and Definition 18 then let Gk+1=Gk|Sk+1 otherwise the procedure terminates and n:=k.

Lemma 6.

(i) Gn=SG;

(ii)Let S′∈SG then S′G=SG;

(iii)Let G′≡G|H′, G″≡G|H″,vl(G′)=vr(G′), vl(G″)=vr(G″), vl(H′)⊖vr(H′)=vl(H″)⊖vr(H″) then H′G′\H′=H″G″\H″, where A⊖B is the symmetric difference of two multisets A,B;

(iv)Let vlr(Gk)=vl(Gk)⋂vr(Gk) then vlr(Gk)+1⩾Gk for all 1⩽k⩽n;

(v) vl(SG)+1⩾SG.

Proof.

(i) Since Gk⊆Gk+1 for 1⩽k⩽n−1 and S∈G1 then S∈Gn⊆G thus SG⊆Gn by vl(Gn)=vr(Gn). We prove Gk⊆SG for 1⩽k⩽n by induction on k in the following. Clearly, G1⊆SG. Suppose that Gk⊆SG for some 1⩽k⩽n−1. Since ik+1∈vl(Gk)\vr(Gk) (or ik+1∈vr(Gk)\vl(Gk)) and ik+1∈vr(Sk+1) (or ik+1∈vl(Sk+1)) then Sk+1∈SG by Gk⊆SG and vl(SG)=vr(SG) thus Gk+1⊆SG. Then Gn⊆SG thus Gn=SG.

(ii) By (i), SG=S1|S2|⋯|Sn, where S1=S. Then S′=Sk for some 1⩽k⩽n thus ik∈vr(Sk)\vl(Sk) (or ik∈vl(Sk)\vr(Sk)) hence there exists the unique k′<k such that ik∈vl(Sk′)\vr(Sk′) (or ik∈vr(Sk′)\vl(Sk′)) if k≥2 hence Sk′∈SkG. Repeatedly, S1∈SkG, i.e., S∈S′G then SG⊆S′G. S′G⊆SG by S′∈SG then S′G=SG.

(iii) It holds immediately from Construction 2 and (i).

(iv) The proof is by induction on k. For the base step, let k=1 then Gk=1 thus vlr(Gk)+1⩾Gk by vlr(Gk)⩾0. For the induction step, suppose that vlr(Gk)+1⩾Gk for some 1⩽k<n. Then vlr(Gk+1)⩾vlr(Gk)+1 by ik+1∈vlr(Gk+1)\vlr(Gk) and vlr(Gk)⊆vlr(Gk+1). Then vlr(Gk+1)+1⩾Gk+1 by Gk+1=Gk+1=k+1.

(v) It holds by (iv) and vlr(SG)=vl(SG). □

Definition 20.

Let G=S1|⋯|Sr and Sl be in the form Γl,{pikl}k=1λl⇒{pjkl}k=1μl,Δl for 1⩽l⩽r.

(i) If S∈G and SG be Sk1|⋯|Sku then DG(S) is defined as

Γk1,⋯,Γku⇒(vl(SG)−SG+1)t,Δk1,⋯,Δku;

(ii) Let ⋃k=1vSqkG=G and SqkG⋂SqlG=∅ for all 1⩽k<l⩽v then D(G) is defined as DG(Sq1)|⋯|DG(Sqv).

(iii) We call (D) the generalized density rule of GLΩ, whose conclusion D(G) is defined by (ii) if its premise is G.

Clearly, D(pk⇒pk) is ⇒t and D(S)=S if p does not occur in S.

Lemma 7.

Let G′≡G|S and G″≡G|S1|S2 be closed and S1G″⋂S2G″=∅, where S1=Γ1,{pik1}k=1λ1⇒{pjk1}k=1μ1,Δ1;S2=Γ2,{pik2}k=1λ2⇒{pjk2}k=1μ2,Δ2;S=Γ1,Γ2,{pik1}k=1λ1,{pik2}k=1λ2⇒{pjk1}k=1μ1,{pjk2}k=1μ2,Δ1,Δ2;DG″(S1)=Γ1,Σ1⇒Π1,Δ1 and DG″(S2)=Γ2,Σ2⇒Π2,Δ2. Then DG′(S)=Γ1,Σ1,Γ2,Σ2⇒Π1,Δ1,Π2,Δ2.

Proof.

Since S1G″⋂S2G″=∅ then SG′=S1G″\{S1}⋃S2G″\{S2}⋃{S} by vl(S)=vl(S1|S2), vr(S)=vr(S1|S2) and Lemma 6 (iii). Thus vl(SG′)=vl(S1G″)+vl(S2G″), SG′=S1G″+S2G″−1. Hence

vl(SG′)−SG′+1=vl(S1G″)−S1G″+1+vl(S2G″)−S2G″+1.

Therefore DG′(S)=Γ1,Σ1,Γ2,Σ2⇒Π1,Δ1,Π2,Δ2 by

Π1=(vl(S1G″)−S1G″+1)t,Π1\(vl(S1G″)−S1G″+1)t

Π2=(vl(S2G″)−S2G″+1)t,Π2\(vl(S2G″)−S2G″+1)t

DG′(S)=Γ1,Σ1,Γ2,Σ2⇒(vl(SG′)−SG′+1)t,

Π1\(vl(S1G″)−S1G″+1)t,Δ1,Π2\(vl(S2G″)−S2G″+1)t,Δ2

where λt={t,⋯,t}︸λ. □

Lemma 8.

(Appendix A.5.1) If there exists a proof τ of G in GLΩ then there exists a proof of D(G) in GL, i.e., (D) is admissible in GLΩ.

Proof.

We proceed by induction on the height of τ. For the base step, if G is pk⇒pk then D(G) is ⇒t otherwise D(G) is G then ⊢GLD(G) holds. For the induction step, the following cases are considered.

Case 1 Let

G′|S′G′|S″(→r)∈τ

where

S′≡A,Γ,{pik}k=1λ⇒{pjk}k=1μ,Δ,B,

S″≡Γ,{pik}k=1λ⇒{pjk}k=1μ,Δ,A→B.

Then S″G′|S″=S′G′|S′\{S′}|S″ by vl(S′)=vl(S″), vr(S′)=vr(S″) and Lemma 6(iii). Let DG′|S′(S′)=A,Γ,Γ″⇒Δ″,Δ,B then DG′|S″(S″)=Γ,Γ″⇒Δ″,Δ,A→B thus a proof of D(G′|S″) is constructed by combining the proof of D(G′|S′) and DG′|S′(S′)DG′|S″(S″)(→r). Other rules of type (I) are processed by a procedure similar to above.

Case 2 Let

G1|S1G2|S2G1|G2|S3(⊙r)∈τ

where

S1≡Γ1,{pik1}k=1λ1⇒{pjk1}k=1μ1,A,Δ1

S2≡Γ2,{pik2}k=1λ2⇒{pjk2}k=1μ2,B,Δ2

S3≡Γ1,Γ2,{pik1}k=1λ1,{pik2}k=1λ2⇒{pjk2}k=1μ2,{pjk1}k=1μ1,A⊙B,Δ1,Δ2.

Let

DG1|S1(S1)=Γ1,Γ11⇒Δ11,(vl(S1G1|S1)−S1G1|S1+1)t,A,Δ1,

DG2|S2(S2)=Γ2,Γ21⇒Δ21,(vl(S2G2|S2)−S2G2|S2+1)t,B,Δ2.

Then DG1|G2|S3(S3) is

Γ1,Γ2,Γ11,Γ21⇒Δ11,Δ21,A⊙B,Δ1,Δ2,

(vl(S1G1|S1)+vl(S2G2|S2)−S1G1|S1−S2G2|S2+2)t

by S3G1|G2|S3=(S1G1|S1\{S1})⋃(S2G2|S2\{S2})⋃{S3}. Then the proof of D(G1|G2|S3) is constructed by combining ⊢GLD(G1|S1) and

⊢GLD(G2|S2) with DG1|S1(S1)DG2|S2(S2)DG1|G2|S3(S3)(⊙r). All applications of (→l) are processed by a procedure similar to that of ⊙r and omitted.

Case 3 Let

G′G″G‴(∧rw)∈τ

where

G′≡G1|S1,G″≡G2|S2,G‴≡G1|G2|S1′|S2′,

Sw≡Γw,{pikw}k=1λw⇒{pjkw}k=1μw,Aw,Δw,

Sw′≡Γw,{pikw}k=1λw⇒{pjkw}k=1μw,A1∧A2,Δw

for w=1,2. Then S1′G‴=S1G′\{S1}|S1′, S2′G‴=S2G″\{S2}|S2′ by Lemma 6 (iii). Let

DGw|Sw(Sw)=Γw,Γw1⇒Δw1,(vl(SwGw|Sw)−SwGw|Sw+1)t,Aw,Δ1

for w=1,2. Then

DG‴(Sw′)=Γw,Γw1⇒Δw1,(vl(SwGw|Sw)−SwGw|Sw+1)t,A1∧A2,Δw

for w=1,2. Then the proof of D(G‴) is constructed by combining ⊢GLD(G′) and ⊢GLD(G″) with DG′(S1)DG″(S2)DG‴(S1′|S2′)(∧rw). All applications of (∨lw) are processed by a procedure similar to that of (∧rw) and omitted.

Case 4 Let

G′G″G‴(COM)∈τ

where

G′≡G1|S1,G″≡G2|S2,G‴≡G1|G2|S3|S4

S1≡Γ1,Π1,{pik1}k=1λ1⇒{pjk1}k=1μ1,Σ1,Δ1,

S2≡Γ2,Π2,{pik2}k=1λ2⇒{pjk2}k=1μ2,Σ2,Δ2,

S3≡Γ1,Γ2,{pi1k1}k=1λ11,{pi1k2}k=1λ21⇒{pj1k1}k=1μ11,{pj1k2}k=1μ21,Δ1,Δ2,

S4≡Π1,Π2,{pi2k1}k=1λ12,{pi2k2}k=1λ22⇒{pj2k1}k=1μ12,{pj2k2}k=1μ22,Σ1,Σ2

where {pikw}k=1λw={pi1kw}k=1λw1⋃{pi2kw}k=1λw2,{pjkw}k=1μw={pj1kw}k=1μw1⋃{pj2kw}k=1μw2 for w=1,2.

Case 4.1.S3∈S4G‴. Then S3G‴=S4G‴ by Lemma 6(ii) and

S3G‴=S1G′|S2G″|S3|S4\{S1,S2} by Lemma 6(iii). Then

vl(S3G‴)−S3G‴+1=vl(S1G′)+vl(S2G″)−S1G′−S2G″+1⩾0.

Thus vl(S1G′)−S1G′+1⩾1 or vl(S2G″)−S2G″+1⩾1. Hence we assume that, without loss of generality,

DG′(S1)=Γ1,Π1,Γ′⇒Δ′,t,Σ1,Δ1,

DG″(S2)=Γ2,Π2,Γ″⇒Δ″,Σ2,Δ2.

Then

DG‴(S3|S4)=Γ1,Π1,Γ′,Γ2,Π2,Γ″⇒Δ′,Σ1,Δ1,Δ″,Σ2,Δ2.

Thus the proof of DG′(S1)DG″(S2)̲DG‴(S3|S4) is constructed by

Γ1,Π1,Γ′⇒Δ′,t,Σ1,Δ1Γ2,Π2,Γ″⇒Δ″,Σ2,Δ2Γ2,Π2,Γ″,t⇒Δ″,Σ2,Δ2(tl)Γ1,Π1,Γ′,Γ2,Π2,Γ″⇒Δ′,Σ1,Δ1,Δ″,Σ2,Δ2(CUT).

Case 4.2.S3∉S4G‴. Then S3G‴⋂S4G‴=∅ by Lemma 6(ii). Let

S3w≡Γw,{pi1kw}k=1λw1⇒{pj1kw}k=1μw1,Δw,

S4w≡Πw,{pi2kw}k=1λw2⇒{pj2kw}k=1μw2,Σw,

for w=1,2. Then

S3G‴=S31G1|S31|S41\{S31}⋃S32G2|S32|S42\{S32}⋃{S3},

S4G‴=S41G1|S31|S41\{S41}⋃S42G2|S32|S42\{S42}⋃{S4}

by vl(S3)=vl(S31|S32), vl(S1)=vl(S31|S41), vl(S2)=vl(S32|S42) and vl(S4)=vl(S41|S42). Let

DGw|S3w|S4w(S3w)=Γw,X3w⇒Ψ3w,Δw,

DGw|S3w|S4w(S4w)=Πw,X4w⇒Ψ4w,Σw

for w=1,2. Then

DG′(S1)=Γ1,Π1,X31,X41⇒Ψ31,Ψ41,Σ1,Δ1,

DG″(S2)=Γ2,Π2,X32,X42⇒Ψ32,Ψ42,Σ2,Δ2,

DG‴(S3)=Γ1,X31,Γ2,X32⇒Ψ31,Δ1,Ψ32,Δ2,

DG‴(S4)=Π1,X41,Π2,X42⇒Ψ41,Σ1,Ψ42,Σ2

by Lemma 7, S3G‴⋂S4G‴=∅,S31G1|S31|S41⋂S41G1|S31|S41=∅,S32G2|S32|S42⋂S42G2|S32|S42=∅. Then the proof of DG‴(S3|S4) is constructed by combing the proofs of DG′(S1) and DG″(S2) with DG′(S1)DG″(S2)DG‴(S3|S4)(COM).

Case 5G′|G″|G‴G′|G″(ECΩ)∈τ. Then G′,G″ and G‴ are closed and G‴ is a copy of G″ thus DG′|G″|G‴(G″)=DG′|G″|G‴(G‴) hence a proof of D(G′|G″) is constructed by combining the proof of D(G′|G″|G‴) and D(G′|G″|G‴)D(G′|G″)(EC*). □

The following two lemmas are corollaries of Lemma 8.

Lemma 9.

If there exists a derivation of G0 from G1,⋯,Gr in GLΩ then there exists a derivation of D(G0) from D(G1),⋯,D(Gr) in GL.

Lemma 10.

Let τ be a cut-free proof of G0 in GL and τ* be the proof of G|G* in GLΩ resulting from preprocessing of τ. Then ⊢GLD(G|G*).

6. Extraction of Elimination Rules

In this section, we will investigate Construction 1 further to extract more derivations from τ*.

Any two sequents in a hypersequent seem independent of one another in the sense that they can only be contracted into one by (EC) when it is applicable. Note that one-premise logical rules just modify one sequent of a hypersequent and two-premise rules associate a sequent in a hypersequent with one in a different hypersequent.

τ* (or any proof without (ECΩ) in GLΩ) has an essential property, which we call the distinguishability of τ*, i.e., any variables, formulas, sequents or hypersequents which occur at the node H of τ* occur inevitably at H′<H in some forms.

Let H≡G′|S′|S″∈τ*. If S′ is equal to S″ as two sequents then the case that τH:S′* is equal to τH:S″* as two derivations could possibly happen. This means that both S′ and S″ are the focus sequent of one node in τ* when GH:S′*≠S′ and GH:S″*≠S″, which contradicts that each node has the unique focus sequent in any derivation. Thus we need to differentiate S′ from S″ for all G′|S′|S″∈τ*.

Define S′¯∈τ* such that G′|S′|S″⩽S′¯, S′∈S′¯ and S′ is the principal sequent of S′¯. If S′¯ has the unique principal sequent, NS′:=0, otherwise NS′:=1 (or NS′=2) to indicate that S′ is one designated principal sequent (or accordingly NS′=2 for another) of such an application as (COM),(∧rw) or (∨lw). Then we may regard S′ as (S′;P(S′¯),NS′). Thus S′ is always different from S″ by P(S′¯)≠P(S″¯) or, P(S′¯)=P(S″¯) and NS′≠NS″. We formulate it by the following construction.

Construction 3.

(Appendix A.5.2) A labeled tree τ**, which has the same tree structure as τ*, is constructed as follows.

(i) If S is a leaf τ*, define S¯=S, NS=0 and the node P(S) of τ** is labeled by (S;P(S¯),NS);

(ii) If G′|S′H≡G′|S″(I)∈τ* and P(G′|S′) be labeled by G′|(S′;P(S′¯),NS′) in τ**. Then define S″¯=H, NS″=0 and the node P(H) of τ** is labeled by G′|(S″;P(S″¯),NS″);

(iii) If G′|S′G″|S″H≡G′|G″|H′(II)∈τ*, P(G′|S′) and P(G″|S″) be labeled by G′|(S′;P(S′¯),NS′) and G″|(S″;P(S″¯),NS″) in τ**, respectively. If H′=S1|S2 then define S1¯=S2¯=H, NS1=1, NS2=2 and the node P(H) of τ** is labeled by G′|G″|(S1;P(S1¯),NS1)|(S2;P(S2¯),NS2). If H′=S1 then define S1¯=H, NS1=0 and P(H) is labeled by G′|G″|(S1;P(S1¯),NS1).

In the whole paper, we treat τ* as τ** without mention of τ**. Note that in preprocessing of τ, some logical applications could also be converted to (IDΩ) in Step 3 and we need fix the focus sequent at each node H and subsequently assign valid identification numbers to each H′<H by eigenvariable-labeling operation.

Proposition 3.

(i) G′|S′|S″∈τ* implies {S′}⋂{S″}=∅; (ii) H∈τ* and H′|H″⊆H imply H′⋂H″=∅; (iii) Let H∈τ* and Sic∈H then H⩽Hic or Hic⩽H.

Proof.

(iii) Let Sic∈H then Sic=Siuc for some 1⩽u⩽mi by Notation 5. Thus Sic∈Hic also by Notation 5. Hence H⩽Sic¯ and Hic⩽Sic¯ by Construction 3. Therefore H⩽Hic or Hic⩽H. □

Lemma 11.

Let H∈τ* and Th(H)=(H0,⋯,Hn), where H0=H, Hn=G|G*, Gk⊆H for 1⩽k⩽3.

(i) If G3=G1⋂G2 then HiH:G3=HiH:G1⋂HiH:G2 for all 0⩽i⩽n;

(ii) If G3=G1|G2 then HiH:G3=HiH:G1|HiH:G2 for all 0⩽i⩽n.

Proof.

The proof is by induction on i for 0⩽i<n. Only (i) is proved as follows and (ii) by a similar procedure and omitted.

For the base step, H0H:G3=H0H:G1⋂H0H:G2 holds by H0H:G1=G1, H0H:G2=G2, H0H:G3=G3 and G3=G1⋂G2.

For the induction step, suppose that HiH:G3=HiH:G1⋂HiH:G2 for some 0⩽i<n. Only is the case of a one-premise rule given in the following and other cases are omitted.

Let G′|S′G′|S″(I)∈τ*, Hi=G′|S′ and Hi+1=G′|S″.

Let S′∈HiH:G3. Then Hi+1H:G3=(HiH:G3\{S′})|S″, Hi+1H:G1=(HiH:G1\{S′})|S″ by S′∈HiH:G1 and

Hi+1H:G2=(HiH:G2\{S′})|S″ by S′∈HiH:G2.

Thus

Hi+1H:G3=Hi+1H:G1⋂Hi+1H:G2 by HiH:G3=HiH:G1⋂HiH:G2.

Let S′∉HiH:G1 and S′∉HiH:G2. Then Hi+1H:G1=HiH:G1,

Hi+1H:G2=HiH:G2 and Hi+1H:G3=HiH:G3.

Thus

Hi+1H:G3=Hi+1H:G1⋂Hi+1H:G2 by HiH:G3=HiH:G1⋂HiH:G2.

Let S′∉HiH:G1,S′∈HiH:G2. Then Hi+1H:G1=HiH:G1,

Hi+1H:G3=HiH:G3 and Hi+1H:G2=(HiH:G2\{S′})|S″.

Thus

Hi+1H:G3=Hi+1H:G1⋂Hi+1H:G2 by HiH:G3=HiH:G1⋂HiH:G2,S″∉Hi+1H:G1.

The case of S′∉HiH:G2,S′∈HiH:G1 is proved by a similar procedure and omitted. □

Lemma 12.

(i) Let G′|S′∈τ* then GG′|S′:S′*⋂GG′|S′:G′*=∅,GG′|S′:G′*|GG′|S′:S′*=G|G*;

(ii) H∈τ*, H′|H″⊆H then GH:H′|H″*=GH:H′*|GH:H″*.

Proof.

(i) and (ii) are immediately from Lemma 11. □

Notation 6.

We write τHic:Si1c*, GHic:Si1c* as τSi1c*, GSi1c*, respectively, for the sake of simplicity.

Lemma 13.

(i) GSi1c*⊆G|G*;

(ii) τSi1c* is a derivation of GSi1c* from Si1c, which we denote by Si1c̲GSi1c*τSi1c*;

(iii) GSiuc*=Siuc and τSiuc* consists of a single node Siuc for all 2⩽u⩽mi;

(iv) vl(GSi1c*)\vl(Si1c)=vr(GSi1c*)\vr(Si1c);

(v) HSi1c∈τSi1c* implies H⩽Hic. Note that HSi1c is undefined for any H>Hic or H∥Hic.

(vi) Sjc∈GSi1c* implies Hic≰Hjc.

Proof.

Claims from (i) to (v) follow immediately from Construction 1 and Lemma 4.

(vi) Since Sjc∈GSi1c*⊆G|G* then Sjc has the form Sjuc for some u≥2 by Notation 5. Then GSjc*=Sjc by (iii). Suppose that Hic⩽Hjc. Then Sjc is transferred from Hjc downward to Hic and in side-hypersequent of Hic by Notation 5 and G|G*<Hic⩽Hjc. Thus {Si1c}⋂{Sjc}=∅ at Hic since Si1c is the unique focus sequent of Hic. Hence Sjc∉GSi1c* by Lemma 11 and (iii), a contradiction therefore Hic≰Hjc. □

Lemma 14.

Let G′|S′G″|S″H≡G′|G″|H′(II)∈τ*. (i) If Sjc∈GH:H′* then Hjc⩽H or Hjc∥H; (ii) If Sjc∈GH:G″* then Hjc⩽H or Hjc∥G′|S′.

Proof.

(i) We impose a restriction on (II) such that each sequent in H′ is different from S′ or S″ otherwise we treat it as an (EW)-application. Since Sjc∈GH:H′*⊆G|G* then Sjc has the form Sjuc for some u≥2 by Notation 5. Thus GSjc*=Sjc. Suppose that Hjc>H. Then Sjc is transferred from Hjc downward to H. Thus Sjc∈H′ by GSjc*=Sjc∈GH:H′* and Lemma 11. Hence Sjc=S′ or Sjc=S″, a contradiction with the restriction above. Therefore Hjc⩽H or Hjc∥H.

(ii) Let Sjc∈GH:G″*. If Hjc>H then Sjc∈H by Proposition 2(i) and thus Sjc∈G″ by Lemma 11 and, hence Hjc∥G′|S′ by Hjc⩾G″|S″, G′|S′∥G″|S″. If Hjc∥H then Hjc∥G′|S′ by H⩽G′|S′. Thus Hjc⩽H or Hjc∥G′|S′. □

Definition 21.

(i) By Hic⇝Hjc we mean that Sjuc∈GSi1c* for some 2⩽u⩽mj; (ii) By Hic↭Hjc we mean that Hic⇝Hjc and Hjc⇝Hic; (iii) HicHjc means that Sjuc∉GSi1c* for all 2⩽u⩽mj.

Then Lemma 13(vi) shows that Hic⇝Hjc implies Hic≰Hjc.

Lemma 15.

Let Hic∥Hjc, Hic⇝Hjc, G′|S′G″|S″G′|G″|H′(II)∈τ* such that G′|S′⩽Hic, G″|S″⩽Hjc. Then S′∈G′|S′Si1c.

Proof.

Suppose that S′∉G′|S′Si1c. Then G′|S′Si1c⊆G′ by G′|S′Si1c⊆G′|S′, G′|G″|H′Si1c=G′|S′Si1c by Construction 1. Thus G′|G″|H′Si1c⊆G′. Hence G″|H′⋂G′|G″|H′Si1c=∅ by Proposition 3(ii). Therefore Sjuc∉GSi1c* for all 1⩽u⩽mj by Lemma 11, i.e., HicHjc, a contradiction and hence S′∈G′|S′Si1c. □

Lemma 13(ii) shows that τSi1c* is a derivation of GSi1c* from one premise Si1c. We generalize it by introducing derivations from multiple premises in the following. In the remainder of this section, let I={Hi1c,⋯,Himc}⊆{H1c,⋯,HNc}, Hikc↭Hiqc for all 1⩽k<q⩽m. Then Hikc≰Hiqc and Hiqc≰Hikc by Lemma 13(vi) thus Hikc∥Hiqc for all 1⩽k<q⩽m.

Notation 7.

HIV denotes the intersection node of Hi1c,⋯,Himc. We sometimes write the intersection node of Hic and Hjc as HijV. If I={Hic}, HIV:=Hic, i.e., the intersection node of a single node is itself.

Let G′|S′G″|S″G′|G″|H′(II)∈τ* such that G′|G″|H′=HIV. Then I is divided into two subsets Il={Hl1c,⋯,Hlm(l)c} and Ir={Hr1c,⋯,Hrm(r)c}, which occur in the left subtree τ*(G′|S′) and right subtree τ*(G″|S″) of τ*(G′|G″|H′), respectively.

Let I={Si11c,⋯,Sim1c}, Il={Sl11c,⋯,Slm(l)1c}, Ir={Sr11c,⋯,Srm(r)1c} such that I=Il⋃Ir. A derivation τI* of G|G*I from Si11c,⋯,Sim1c is constructed by induction on |I|. The base case of I=1 has been done by Construction 1. For the induction case, suppose that derivations τIl* of G|G*Il from Sl11c,⋯,Slm(l)1c and τIr* of G|G*Ir from Sr11c,⋯,Srm(r)1c are constructed. Then τI* of G|G*I from Si11c,⋯,Sim1c is constructed as follows.

Construction 4.

(Appendix A.5.2) (i)

HI:=HIlforallG′|S′⩽H⩽HicforsomeHic∈Il,

HI:=HIrforallG″|S″⩽H⩽HicforsomeHic∈Ir,

τI*(G′|S′I):=τIl*(G′|S′Il),τI*(G″|S″I):=τIr*(G″|S″Ir);

(ii)

G′|G″|H′I:=G′Il|G″Ir|H′

and

G′|S′IlG″|S″IrG′|G″|H′I(II)∈τI*;

(iii) Other nodes of τI* are built up by Construction 1(ii).

The following lemma is a generalization of Lemma 13.

Lemma 16.

Let Th(Hikc)=(Hik0c,⋯,Hiknikc), where 1⩽k⩽m,Hik0c=Hikc and Hiknikc=G|G*. Then, for all 0⩽u⩽nik,

(i)

HikucI=⋂{HikucSj1c:Hjc∈I,Hikuc⩽Hjc};

(ii)

{Sj1c:Hjc∈I,Hikuc⩽Hjc}̲HikucIτI*(HikucI);

(iii)

vl(HikucI)\⋃{vl(Sj1c):Hjc∈I,Hikuc⩽Hjc}=

vr(HikucI)\⋃{vr(Sj1c):Hjc∈I,Hikuc⩽Hjc};

(iv) HI∈τI* if and only if H⩽Hic for some Hic∈I. Note that HI is undefined if H>Hic or H∥Hic for all Hic∈I.

Proof.

(i) is proved by induction on I. For the base step, let I=1 then the claim holds clearly. For the induction step, let I⩾2 then Il⩾1 and Ir⩾1. Then S′∈G′|S′Si1c for all Hic∈Il by Lemma 15 and Hic⇝Hjc for all Hjc∈Ir. G′|S′Il=⋂Hic∈IlG′|S′Si1c by the induction hypothesis then S′∈G′|S′Il thus G′|G″|H′Il=G′Il|G″|H′ by G′|S′⩽HIlV.

G′|G″|H′Ir=G″Ir|G′|H′ holds by a procedure similar to above then

G′|G″|H′I=G′Il|G″Ir|H′=(G′Il|G″|H′)⋂(G″Ir|G′|H′)=G′|G″|H′Il⋂G′|G″|H′Ir

by G′Il⊆G′ and G″Ir⊆G″. Other claims hold immediately from Construction 4. □

Lemma 17.

(i) Let GI* denote G|G*I then GI*=⋂Hic∈IGSi1c*;

(ii) Si11c⋯Sim1c̲GI*τI*;

(iii) vl(GI*)\⋃Hjc∈Ivl(Sj1c)=vr(GI*)\⋃Hjc∈Ivr(Sj1c);

(iv) Sjc∈GI* implies Hic≰Hjc for all Hic∈I.

Proof.

(i), (ii) and (iii) follow immediately from Lemma 16. (iv) holds by (i) and Lemma 13 (vi). □

Lemma 17 (iv) shows that there exists no copy of Sikc in GI* for any 1⩽k⩽m. Then we may regard them to be eliminated in τI*. We then call τI* an elimination derivation.

Let I′={Si1u1c,⋯,Simumc} be another set of sequents to I such that G′≡Si1u1c|⋯|Simumc is a copy of G″≡Si11c|⋯|Sim1c. Then G′ and G″ are disjoint and there exist two bijections σl:vl(G′)→vl(G″) and σr:vr(G′)→vr(G″) such that σr∘σl(G′)=G″. By applying σr∘σl to τI*, we construct a derivation from Si1u1c,⋯,Simumc and denote it by τI′* and its root by GI′*.

Let I′={Gb1|Si1u1c,⋯,Gbm|Simumc} be a set of hypersequents to I, where Gbk|Sikukc be closed for all 1⩽k⩽m. By applying τI′* to Si1u1c,⋯,Simumc in Gb1|Si1u1c,⋯,Gbm|Simumc, we construct a derivation from

Gb1|Si1u1c,⋯,Gbm|Simumc

and denote it by τI′* and its root by GI′*. Then GI′*={Gbk}k=1m|GI′*.

Definition 22.

We will use all τI′* as rules of GLΩ and call them elimination rules. Further, we call Si1u1c,⋯,Simumc focus sequents and, all sequents in GI′* principal sequents and, Gb1,⋯,Gbm side-hypersequents of τI′*.

Remark 2.

We regard Construction 1 as a procedure F, whose inputs are τ2,H,H′ and output τH:H′2. With such a viewpoint, we write τH:H′2 as FH:H′(τ2). Then τI* can be constructed by iteratively applying F to τ*, i.e., τI*=FHimc:Sim1c(⋯FHi1c:Si11c(τ*)⋯).

We replace locally each G′G′(IDΩ) in τI* with G′ and denote the resulting derivation also by τI*. Then each non-root node in τI* has the focus sequent.

Let H∈τI*. Then there exists a unique node in τ*, which we denote by O(H) such that H comes from O(H) by Constructions 1 and 4. Then the focus sequent of O(H) in τ* is the focus of H in τI* if H is a non-root node and, O(H)=H or H⊆O(H) as two hypersequents. Since the relative positions of any two nodes in τ* are kept unchanged in constructing τI*, H1⩽τI*H2 if and only if O(H1)⩽τ*O(H2) for any H1,H2∈τI*. Especially, O(Sik1c)=Hikc for Sik1c∈τI*.

Let H∈τI*. Then H′≡σr∘σl(H)∈τI′* and H″≡{Gbk:H⩽τI*Sik1cand1⩽k⩽m}∣H′∈τI′*. Define O(H′)=O(H″)=O(H). Then O(GI′*)=G|G* and O(Gbk|Sikukc)=Hikc for all Gbk|Sikukc∈τI′*.

Since GI*=G|G*I⊆G|G*, then each (pEC)-sequent in GI* has the form Sjvc for some 1⩽j⩽N, 2⩽v⩽mj by Proposition 2(ii). Then we introduce the following definition.

Definition 23.

(i) By Sjc∈GI* we means that there exists H∈τI* such that Sjc∈H, O(H)=Hjc. So is Sjc∈GI′*.

(ii) Let Sjc∈GI*. By Hjc⩽τI*Hic we means that there exist H,H′∈τI* such that Sjc∈H, O(H)=Hjc,O(H′)=Hic and Hjc⩽τ*Hic. We usually write ⩽τI* as ⩽.

7. Separation of One Branch

In the remainder of this paper, we assume that p occur at most one time for each sequent in G0 as the one in the main theorem, τ be a cut-free proof of G0 in GL and τ* the proof of G|G* in GLΩ resulting from preprocessing of τ. Then vl(S)+vr(S)≤1 for all S∈G, which plays a key role in discussing the separation of branches.

Definition 24.

By S′∈cG′ we mean that there exists some copy of S′ in G′. G′⊆cG″ if S′∈cG″ for all S′∈G′. G′=cG″ if G′⊆cG″ and G″⊆cG′. Let G11,⋯,G1m be m copies of G1 then we denote G′|G11|⋯|G1m by G′|{G1u}u=1m or G′|{G1}m.

Definition 25.

Let I={Hi1c,⋯,Himc}⊆{H1c,⋯,HNc}, Hikc∥Hilc for all 1⩽k<l⩽m. ⌈Sikc⌉I is called a branch of Hikc to I if it is a closed hypersequent such that

(i)⌈Sikc⌉I⊆cG|G*,

(ii)Sikc∈⌈Sikc⌉I,

(iii)Sjc∈⌈Sikc⌉I implies Hjc⩽Hikc or Hjc∥Hic for all Hic∈I.

Then (i) Silc∉c⌈Sikc⌉I for all 1⩽k,l⩽m, k≠l; (ii) Sjc∈⌈Sikc⌉I and Hjc≰Hikc imply Hjc∉I.

In this section, let I={Hic}, I={⌈Sic⌉I}, we will give an algorithm to eliminate all Sjc∈⌈Sic⌉I satisfying Hjc⩽Hic.

Construction 5.

(Appendix A.3) A sequence of hypersequents GI☆(q) and their derivations τI☆(q) from ⌈Sic⌉I for all q⩾0 are constructed inductively as follows.

For the base case, define GI☆(0) to be ⌈Sic⌉I and, τI☆(0) be ̲GI☆(0). For the induction case, suppose that τI☆(q) and GI☆(q) are constructed for some 0⩽q. If there exists no Sjc∈GI☆(q) such that Hjc⩽Hic, then the procedure terminates and define JI to be q; otherwise define Hiqc such that Siqc∈GI☆(q), Hiqc⩽Hic and Hjc⩽Hiqc for all Sjc∈GI☆(q),Hjc⩽Hic. Let Siq1c,⋯,Siqmqc be all copies of Siqc in GI☆(q) then define GI☆(q+1)=GI☆(q)\{Siquc}u=1mq|{GSiquc*}u=1mq and its derivation τI☆(q+1) is constructed by sequentially applying τSiq1c*,⋯,τSiqmqc* to Siq1c,⋯,Siqmqc in GI☆(q), respectively. Notice that we assign new identification numbers to new occurrences of p in τSiquc* for all 0⩽q⩽JI−1, 1⩽u⩽mq.

Lemma 18.

(i) Hi0c=Hic and Hiq+1c<Hiqc for all 0⩽q⩽JI−2;

(ii) GI☆(q)⊆cG|G* is closed for all 0⩽q⩽JI;

(iii) ⌈Sic⌉I̲GI☆(q)τI☆(q) for all 0⩽q⩽JI, especially, ⌈Sic⌉I̲GI☆(JI)τI☆(JI);

(iv) Sjc∈GI☆(JI) implies Hjc∥Hic and, Sjc∈GSiquc* for some τGb|Siquc*∈τI☆(JI) or Sjc∈⌈Sic⌉I, Hjc≰Hic, where Gb=GI☆(q)\{Siqvc}v=1u|{GSiqvc*}v=1u−1, Gb|Siquc is closed and 0⩽q⩽JI−1, 1⩽u⩽mq.

Proof.

(i) Since Sic∈GI☆(0) by Sic∈⌈Sic⌉I=GI☆(0) and, Hjc⩽Hic for all Sjc∈GI☆(0),Hjc⩽Hic then Hi0c=Hic. If Siq+1c∈GI☆(q)\{Siquc}u=1mq then Hiq+1c⩽Hiqc by Siq+1c∈GI☆(q), Hiq+1c⩽Hic thus Hiq+1c<Hiqc by all copies of Siqc in GI☆(q) being collected in {Siquc}u=1mq. If Siq+1c∈{GSiquc*}u=1mq then Hiqc≰Hiq+1c by Lemma 13(vi) thus Hiq+1c<Hiqc by Hiqc⩽Hic, Hiq+1c⩽Hic. Then Hiq+1c<Hiqc by GI☆(q+1)=GI☆(q)\{Siquc}u=1mq|{GSiquc*}u=1mq. Note that HiJIc is undefined in Construction 5.

(ii) vl(GI☆(0))=vr(GI☆(0)),GI☆(0)⊆cG|G* by GI☆(0)=⌈Sic⌉I. Suppose that vl(GI☆(q))=vr(GI☆(q)),GI☆(q)⊆cG|G* then vl(GI☆(q+1))=vr(GI☆(q+1)),GI☆(q+1)⊆cG|G* by GI☆(q+1)=GI☆(q)\{Siquc}u=1mq|{GSiquc*}u=1mq, vl(GSiquc*\{Siquc})=vr(GSiquc*\{Siquc}) and GSiquc*⊆cG|G* for all 1⩽u⩽mq.

(iii) τI☆(0) is ̲GI☆(0)τI☆(0). Given ⌈Sic⌉I̲GI☆(q)τI☆(q) then ⌈Sic⌉I̲GI☆(q+1)τI☆(q+1) is constructed by linking up the conclusion of previous derivation to the premise of its successor in the sequence of derivations

⌈Sic⌉I̲GI☆(q)τI☆(q),GI☆(q)\{Siq1c}|Siq1c̲GI☆(q)\{Siq1c}|GSiq1c*τSiq1c*,⋯,GI☆(q)\{Siquc}u=1mq−1|Siqmqc|{GSiquc*}u=1mq−1̲GI☆(q+1)=GI☆(q)\{Siquc}u=1mq|{GSiquc*}u=1mqτSiqmqc*,

as shown in Figure 14.

(iv) Let Sjc∈GI☆(JI). Then Hjc≰Hic by the definition of JI. If Sjc∈⌈Sic⌉I, then Hjc∥Hic by Hjc≰Hic and the definition of ⌈Sic⌉I. Otherwise, by Construction 5, there exists some τGb|Siquc* in τI☆(JI) such that Sjc∈GSiquc*. Then Hiqc≰Hjc by Lemma 13(vi). Thus Hic≰Hjc by Hiqc⩽Hic. Hence Hjc∥Hic. □

Lemma 18 shows that Construction 5 presents a derivation τI☆(JI) of GI☆(JI) from ⌈Sic⌉I such that there does not exist Sjc∈GI☆(JI) satisfying Hjc⩽Hic, i.e., all Sjc∈⌈Sic⌉I satisfying Hjc⩽Hic are eliminated by Construction 5. We generalize this procedure as follows.

Construction 6.

Let H∈τ*, H1⊆H and H2⊆cG|G*. Then GH:Hl☆(JH:Hl) and its derivation τH:Hl☆(JH:Hl) for l=1,2 are constructed by procedures similar to that of Construction 5 such that Hjc≰H for all Sjc∈GH:Hl☆(JH:Hl), where GH:H1☆(0):=GH:H1*, τH:H1☆(0):=τH:H1*, which are defined by Construction 1.

We sometimes write JI, JH:Hl as J for simplicity. Then the following lemma holds clearly.

Lemma 19.

(i) Hl̲GH:Hl☆(J)τH:Hl☆(J), Hjc≰H for all Sjc∈GH:Hl☆(J).

(ii) If Sic∈H and Hic>H then GH:Sic☆(J)=Sic.

(iii) If S∈cG or, S∈cG* is a copy of Si1c and Hic≰H then GH:S☆(J)=S.

(iv) Let H′|H″⊆H∈τ*. Then GH:H′|H″☆(J)=GH:H′☆(J)|GH:H″☆(J) by suitable assignments of identification numbers to new occurrences of p in constructing τH:H′|H″☆(J), τH:H′☆(J) and τH:H″☆(J).

(v) GI☆(J)=⋃{GHic:Sjc☆(J):Sjc∈⌈Sic⌉I,Hjc⩽Hic}|⋃{Sjc:Sjc∈⌈Sic⌉I,Hjc≰Hic}|⋃{S:S∈⌈Sic⌉I,S∈cG}.

Proof.

Part (i) is proved by a procedure similar to that of Lemma 18(iii) and (iv), and omitted.

(ii) Since Si1c is the focus sequent of Hic then it is revised by some rule at the node lower than Hic. Thus Sic∈H is some copy of Si1c by Hic>H. Hence Sic has the form Siuc for some u≥2. Therefore it is transferred downward to G|G*, i.e., Sic∈G|G*. Then GH:Sic☆(0)=GH:Sic*=Sic. Since there exists no Sjc∈GH:Sjc☆(0),Hjc⩽H then J=0. Thus GH:Sic☆(J)=Sic.

(iii) is proved by a procedure similar to that of (ii) and omitted.

(iv) Since H′|H″⊆H∈τ*, then H′⋂H″=∅ by Proposition 3. Thus GH:H′|H″☆(0)=GH:H′|H″*=GH:H′*|GH:H″*=GH:H′☆(0)|GH:H″☆(0). Suppose that GH:H′|H″☆(q)=GH:H′☆(q)|GH:H″☆q) for some q≥0. Then all copies {Siquc}u=1mq of Siqc in GH:H′|H″☆(q) are divided two subsets {Siquc}u=1mq⋂GH:H′☆(q) and {Siquc}u=1mq⋂GH:H″☆(q). Thus we can construct GH:H′|H″☆(q+1),GH:H′☆(q+1) and GH:H″☆(q+1) simultaneously and assign the same identification numbers to new occurrences of p in GH:H′☆(q+1) and GH:H″☆(q+1) as the corresponding one in GH:H′|H″☆(q+1). Hence GH:H′|H″☆(q+1)=GH:H′☆(q+1)|GH:H″☆(q+1). Then GH:H′|H″☆(J)=GH:H′☆(J)|GH:H″☆(J).

Note that the requirement is imposed only on one derivation that distinct occurrence of p has a distinct identification number. We permit GH:H″☆(q+1)=GH:H″☆(q) or GH:H′☆(q+1)=GH:H′☆(q) in the proof above, which has no essential effect on the proof of the claim.

(v) is immediately from (iv). □

Lemma 19 (v) shows that GI☆(J) could be constructed by applying τHic:Sjc☆(J) sequentially to each Sjc∈⌈Sic⌉I satisfying Hjc⩽Hic. Thus the requirement Hiq+1c<Hiqc in Construction 5 is not necessary, but which make the termination of the procedure obvious.

Construction 7.

Apply (ECΩ*) to GI☆(J) and denote the resulting hypersequent by GI☆ and its derivation by τI☆. It is possible that (ECΩ*) is not applicable to GI☆(J) in which case we apply IDΩ to it for the regularity of the derivation.

Lemma 20.

(i) ⌈Sic⌉I̲GI☆τI☆, GI☆ is closed and Hjc∥Hic for all Sjc∈GI☆;

(ii) τI☆ is constructed by applying elimination rules, say, Gb|Siquc̲Gb|GSiquc*τGb|Siquc*, and the fully constraint contraction rules, say, G2̲G1ECΩ*, where Hiqc⩽Hic, Gb|Siquc is closed for 0⩽q⩽J−1, 1⩽u⩽mq.

Proof.

The proof follows immediately from Lemma 18. □

Definition 26.

Let G′∈GI☆(J), H′⊆G′ and S′∈H′.

(i) For any sequent-formula A of S′, define A^ to be the sequent S of GI☆(J) such that A is a sequent-formula of S or subformula of a sequent-formula of S.

(ii) Let S′ be in the form A1,⋯,An⇒B1,⋯,Bm, define S′^ to be the hypersequent which consists of all distinct sequents among A1^,⋯,An^,B1^,⋯,Bm^; (iii) Let H′ be in the form S1|⋯|Sm, define H′^ to be S1^|⋯|Sm^.

(iv) We call H′ to be separable if H′^⊆cG and, call it to be separated into H′^.

Note that τI☆(J) is a derivation without (ECΩ) in GLΩ. Then we can extract elimination derivations from it by Construction 1.

Notation 8.

Let H′⊆G′∈τI☆(J). τI{G′:H′}☆(J) denotes the derivation from H′, which extracts from τI☆(J) by Construction 1, and denote its root by GI{G′:H′}☆(J).

The following two lemmas show that Constructions 5 and 6 force some sequents in ⌈Sic⌉I or H′ to be separable.

Lemma 21.

Let G′|S′G″|S″H≡G′|G″|H′(II)∈τ*. Then

(i) H′ is separable in τH:H′☆(J).

(ii) If Gb|G′|S′SiqucG″|S″H1≡Gb|G′Siquc|G″|H′(II)∈τGb|Siquc*∈τI☆, then H′ is separable in τI☆(J) and there is a unique copy of S″^|GI{H1:G″}☆(J) in GI☆.

Proof.

(i) We write ⩽τH:H′☆(J) and ⩽τ* respectively as ⩽☆ and ⩽ for simplicity. Since GH:H′☆(J)⊆cG|G*, we divide it into two hypersequents GH:H′0(J) and GH:H′*(J) such that GH:H′☆(J)=GH:H′0(J)|GH:H′*(J),GH:H′0(J)⊆cG,GH:H′*(J)⊆cG*.

Let Sjc∈GH:H′*(J) then Hjc≰H by Construction 6. We prove that Hjc∥H′ in τH:H′☆(J) as follows. If Sjc∈GH:H′* then Hjc||H′ in τH:H′* by Lemma 14(i), τH:H′*∈τH:H′☆(J) and Hjc≰H. Thus we assume that SjcGH:H′* in the following.

Then, by Lemma 18(iv), there exists some τGb|Sic* in τH:H′☆(J) such that Hic⩽H, Sjc∈GSic*. Then Hic≰Hjc by Lemma 13(vi). Hjc≰Hic by Hic⩽H, Hjc≰H. Thus Hic∥τ*Hjc. Let G1|S1G2|S2G1|G2|H2(II)∈τ*, where G1|G2|H2=HijV, G1|S1⩽Hic, G2|S2⩽Hjc. Then S1∈G1|S1Sic, Gb|G1|S1Sic∈τH:H′☆(J), G2|S2∈τH:H′☆(J) by Sjc∈GSic*⊆Gb|GSic*∈τH:H′☆(J). Thus Hjc∥☆H′ by Gb|G1|S1Sic⩽☆Gb|Sic⩽☆H′, G2|S2⩽☆Hjc and Gb|G1|S1Sic∥☆G2|S2.

Thus Hjc||H′ in τH:H′☆(J). Therefore GH:H′*(J)⋂H′^=∅. Then H′^⊆GH:H′0(J)⊆cG, i.e., H′ is separable in τH:H′☆(J).

(ii) Clearly, GI{H1:G″∣H′}☆(J) is a copy of GH:G″∣H′☆(J) and, τI{H1:G″∣H′}☆(J) has no difference with τH:G″∣H′☆(J) except some applications of (IDΩ) and identification numbers of some p′s. Then H′ is separated into H′^ in GI{H1:H′}☆(J) by the same reason as that of (i). Then S′,S″ are separated into S′^ and S″^ in τI☆(J), respectively. Then S″^|GI{H1:G″}☆(J)⊆GI0(J)|GI*(J) is closed since G″|S″ is closed. Thus all copies of S″^|GI{H1:G″}☆(J) in τI☆(J) are contracted into one by (ECΩ*) in GI☆. □

Lemma 22.

(i) All copies of Sic in ⌈Sic⌉I are separable in τI☆(J).

(ii) Let H∈τ*, H′⊆H, Hjc⩽H or Hjc∥H for all Sjc∈GH:H′*. Then H′ is separable in τH:H′☆(J).

Proof.

Parts (i) and (ii) are proved by a procedure similar to that of Lemma 21 and are omitted. □

Definition 27.

The skeleton of τI☆, which we denote by τ¯I☆, is constructed by replacing all Gb|Siquc̲Gb|GSiquc*τGb|Siquc*∈τI☆ with Gb|SiqucGb|GSiquc*(τGb|Siquc*), i.e, Gb|Siquc is the parent node of Gb|GSiquc* in τ¯I☆.

Lemma 23.

The parameter τ¯I☆ is a linear structure with the lowest node GI☆ and the highest ⌈Sic⌉I.

Proof.

It holds by all τGb|Siquc* and ECΩ* in τI☆ being one-premise rules. □

Definition 28.

We call Construction 5 together with 7 the separation algorithm of one branch and, Construction 6 the separation algorithm along H.

8. Separation Algorithm of Multiple Branches

In this section, let I={Hi1c,⋯,Himc}⊆{H1c,⋯,HNc} such that Hikc∥Hilc for all 1⩽k<l⩽m. We will generalize the separation algorithm of one branch to that of multiple branches. Roughly speaking, we give an algorithm to eliminate all Sjc∈G|G* satisfying Hjc⩽Hikc for some Hikc∈I.

Definition 29.

I¯:={Hjc:Hjc⩽HicforsomeHic∈I}.

Theorem 2.

([A.4,A.5.4]) Let I={⌈Si1c⌉I,⋯,⌈Simc⌉I}. Then there exist one closed hypersequent GI☆⊆cG|G* and its derivation τI☆ from ⌈Si1c⌉I, …, ⌈Simc⌉I in GLΩ such that

(i) τI☆ is constructed by applying elimination rules, say,

Gb1|Sj1cGb2|Sj2c⋯Gbw|Sjwc̲GIj*={Gbk}k=1w|GIj*τIj*,

and the fully constraint contraction rules, say G2̲G1ECΩ*, where 1⩽w⩽m, Hjkc↭Hjlc for all 1⩽k<l⩽w, Ij={Hj1c,⋯,Hjwc}⊆I¯, Ij={Sj1c,⋯,Sjwc}, Ij={Gb1|Sj1c,⋯,Gbw|Sjwc} and Gbk|Sjkc is closed for all 1⩽k⩽w. Then Hic≰Hjc for all Sjc∈GIj* and Hic∈I.

(ii) For all H∈τ¯I☆,

∂τI☆(H):=G|G*Histherootofτ¯I☆orG2inG2̲G1ECΩ*orIDΩ∈τ¯I☆,HjkcHisGbk|SjkcinτIj*∈τ¯I☆forsome1⩽k⩽w,

where, τ¯I☆ is the skeleton of τI☆ which is defined as Definition 27. Then

∂τI☆(GIj*)⩽∂τI☆(Gbk|Sjkc) for some 1⩽k⩽w in τIj*.

(iii) Let H∈τ¯I☆, G|G*<∂τI☆(H)⩽HIV, then GHIV:H☆(J)∈τI☆ and it is constructed by applying the separation algorithm along HIV to H and, is an upper hypersequent of either ECΩ* if it is applicable, or IDΩ otherwise.

(iv) Sjc∈GI☆ implies Hjc∥Hic for all Hic∈I and, Sjc∈GIj* for some τIj*∈τI☆ or Sjc∈⌈Sikc⌉I for some Hikc∈I satisfying Hjc≰Hikc.

Note that in Claim (i), bold j in Ij,Ij or Ij indicates the w-tuple (j1,⋯,jw) in Sj1c,⋯,Sjwc. Claim (iv) shows the final aim of Theorem 2, i.e., there exists no Sjc∈GI☆ such that Hjc⩽Hic for some Hic∈I. It is almost impossible to construct τI☆ in a non-recursive way. Thus we use Claims (i)–(iii) in Theorem 2 to characterize the structure of τI☆ in order to construct it recursively.

Proof.

τI☆ is constructed by induction on I. For the base case, let I=1. Then τI☆ is constructed by Construction 5 and 7. Here, Claim (i) holds by Lemma 20(ii), Lemma 18(i) and Lemma 13(vi), Claim (ii) by Lemma 18(i), (iii) is clear and (iv) by Lemma 18(iv).

For the induction case, let I⩾2. Let G′|S′G″|S″G′|G″|H′(II)∈τ*, where G′|G″|H′=HIV. Then {Hi1c,⋯,Himc} is divided into two subsets Il={Hl1c,⋯,Hlm(l)c},Ir={Hr1c,⋯,Hrm(r)c}, which occur in the left subtree τ*(G′|S′) and right subtree τ*(G″|S″) of τ*(HIV), respectively. Then m(l)+m(r)=m. Let Il={⌈Sl1c⌉I,⋯,⌈Slm(l)c⌉I},Ir={⌈Sr1c⌉I,⋯,⌈Srm(r)c⌉I}. Suppose that derivations τIl☆ of GIl☆ and τIr☆ of GIr☆ are constructed such that Claims from (i) to (iv) hold. There are three cases to be considered in the following.

Case 1.S′∉G′|S′Ijl for all τIjl*∈τIl☆. Then τI☆:=τIl☆ and GI☆:=GIl☆.

	
For Claim (i), let τIjl*∈τIl☆ and Sjc∈GIjl*. By the induction hypothesis, Hic≰Hjc for all Hic∈Il. Since S′∉G′|S′Ijl then G″|H′⋂G′|G″|H′Ijl=∅. Thus GHIV:G″|H′*⋂GIjl*=∅ by Lemmas 11 and 12. Then Sjc∉GHIV:G″|H′*. Thus G″|S″≰Hjc by Proposition 2(i). Hence, for all Hic∈Ir, Hic≰Hjc by G″|S″⩽Hic. Then Hic≰Hjc for all Hic∈I. Claims (ii) and (iii) follow directly from the induction hypothesis.

	
For Claim (iv), let Sjc∈GI☆. It follows from the induction hypothesis that Hjc∥Hic for all Hic∈Il and, Sjc∈GIjl* for some τIjl*∈τIl☆ or Sjc∈⌈Slkc⌉I for some Hlkc∈Il,Hjc≰Hlkc. Then Hjc≰HIV by Hjc∥Hl1c,HIV<Hl1c.

If Sjc∈⌈Slkc⌉I for some Hlkc∈Il,Hjc≰Hlkc then Hjc∥Hic for all Hic∈I by the definition of branches to I. Thus we assume that Sjc∈GIjl* for some τIjl*∈τIl☆ in the following. If G′|S′⩽Hjc then Hjc∥Hic for all Hic∈Ir thus Hjc∥Hic for all Hic∈I. Thus let G′|S′≰Hjc in the following. By the proof of Claim (i) above, G″|S″≰Hjc. Then HIV≮Hjc by G′|S′≰Hjc and G″|S″≰Hjc. Thus Hjc∥HIV. Hence Hjc∥Hic for all Hic∈I.

Case 2.S″∉G″|S″Ijr for all τIjr*∈τIr☆. Then τI☆:=τIr☆ and GI☆:=GIr☆. This case is proved by a procedure similar to that of Case 1 and omitted.

Case 3.S′∈G′|S′Ijl for some τIjl*∈τIl☆ and S″∈G″|S″Ijr☆ for some τIjr*∈τIr☆.

Given

Gbr1|Sjr1cGbr2|Sjr2c⋯Gbrv|Sjrvc̲Gr≡{Gbrk}k=1v|GIjr*τIjr*∈τIr☆

such that S″∈G″|S″Ijr and Hjrkc>HIV for all 1⩽k⩽v, where, 1⩽v⩽m(r), Gbrk|Sjrkc is closed for all 1⩽k⩽v, Ijr={Hjr1c,Hjr2c,⋯,Hjrvc}⊆Ir¯,Ijr={Sjr1c,Sjr2c,⋯,Sjrvc},Ijr={Gbr1|Sjr1c,⋯,Gbrv|Sjrvc}. Then HIjrV⩾G″|S″ by Ijr⊆Ir¯ and Hjrkc>HIV for all 1⩽k⩽v. Thus Hjc⇝Hic for all Hjc∈Ijr and Hic∈Il by S″∈G″|S″Ijr and Construction 4.

For each τIjr*∈τIr☆ above, we construct a derivation τIl☆(τIjr*) in which you may regard τIl☆ as a subroutine, and τIjr* as its input in the following stage 1. Then a derivation τIr☆(τIl☆(τIjr*)) is constructed by calling τIl☆(τIjr*) in Stage 2, in which you may regard τIr☆(τIl☆(τIjr*)) as a routine and τIl☆(τIjr*) as its subroutine.

Before proceeding to deal with Case 3, we present the following property of τI☆ which are derived from Claims (i) ∼ (iv) and applicable to τIl☆ or τIr☆ under the induction hypothesis.

Notation 9.

Let

G†:=S″^|GHIV:G″☆(J)|GHIV:H′☆(J)\{S′^|S″^}and

G‡:={Gbrk}k=1v|S″^|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}

be two close hypersequents, G†⊆H for some H∈τIl☆ and G‡\{Gbrk}k=1v⊆H for some H∈τIr☆.

Generally, S″^⊆G† is a copy of S″^⊆G‡, i.e., eigenvariables in S″^⊆G† have different identification numbers with those in S″^⊆G‡, so are H′,G″,S′.

Lemma 24.

Sjc∈G† implies Hjc∥G′|S′.

Proof.

Let Sjc∈G†⊆GHIV:G″|H′☆(J). Then Hjc≰HIV by Lemma 19(i). Thus Hjc>HIV or Hjc∥HIV. If Hjc∥HIV then Hjc∥G′|S′ by HIV<G′|S′ and Proposition 1 (ii). If Hjc>HIV then Sjc∈HIV by Proposition 2(i). Thus Sjc∈G″ by Lemma 11, Lemma 14(i). Hence Hjc∥G′|S′ by Hjc⩾G″|S″, G′|S′∥G″|S″. □

Lemma 25.

(1) τ¯I☆ is an m-ary tree and, τI☆ is a binary tree;

(2) Let H∈τ¯I☆ then ∂τI☆(H)⩽Hikc for some 1⩽k⩽m;

(3) Let H∈τ¯I☆ then HIV∦∂τI☆(H);

(4) Let w>1 in τIj*∈τI☆ then HIV<Hjkc for all 1⩽k⩽w.

(5) Let τIj*∈τI☆, ∂τI☆(Gbk|Sjkc)⩽HIV for some 1⩽k⩽w. Then w=1.

Proof.

(1) is immediately from Claim (i). (2) holds by G|G*⩽Hjkc and Hjkc⩽Hikc for some Hikc∈I by Ij⊆I¯. (3) holds by Proposition 1(iii), (2) and HIV⩽Hikc.

For (4), let w>1. Then Hj1c∥Hjkc for each 2⩽k⩽w, Hj1c⩽Higc and Hjkc⩽Hihc for some Higc,Hihc∈I by (2). Thus Hj1c∥Hihc and Hjkc∥Higc by Proposition 1(ii). Hence Hj1c≰HigihV by HigihV<Hihc, and Hjkc≰HigihV by HigihV<Higc. Thus HIV<Hj1c and HIV<Hjkc by (3), HIV⩽Hj1jkV. Hence HIV<Hjkc for all 1⩽k⩽w. (5) is from (4). □

Lemma 26.

Let Hi,1⋯Hi,wi̲Hi−1,1τIj(i)*∈τI☆ for all 1⩽i⩽n such that ∂τI☆(H0,1)=G|G* and ∂τI☆(Hn,1)⩽HIV. Then ∂τI☆(Hi,1)⩽HIV and wi=1 for all 1⩽i⩽n.

Proof.

The proof is by induction on n. Let n=1 then w1=1 by Lemma 25(5) and ∂τI☆(H1,1)⩽HIV. For the induction step, let ∂τI☆(Hi,1)⩽HIV for some 1<i⩽n then wi=1 by Lemma 25(5). Since Hi,1⋯Hi,wi̲Hi−1,1τIj(i)*∈τI☆ then ∂τI☆(Hi−1,1)⩽∂τI☆(Hi,k) for some 1⩽k⩽wi by Claim (ii). Then ∂τI☆(Hi−1,1)⩽∂τI☆(Hi,1)⩽HIV by wi=1. Thus wi−1=1 by Lemma 25(5). □

Definition 30.

Let G2̲G1ECΩ*∈τI☆. The module of τI☆ at G2, which we denote by τI:G2☆, is defined as follows: (1) G2∈τI:G2☆; (2) H1⋯Hu̲H0τIj*∈τI:G2☆ if H0∈τI:G2☆; (3) H1∉τI:G2☆ if H1̲H0ECΩ*∈τI☆, H0∈τI:G2☆.

Each node of τI:G2☆ is determined bottom-up, starting with G2, whose root is G2 and leaves may be branches, leaves of τ* or lower hypersequents of ECΩ*-applications. While each node of τH:H′* is determined top-down, starting with H′, whose root is a subset of G|G* and leaves contain H′ and some leaves of τ*.

Lemma 27.

(1) τI:G2☆ is a derivation without ⟨ECΩ*⟩ in GLΩ.

(2) Let H′∈τ¯I:G2☆ and ∂τI☆(H′)>HIV. Then ∂τI☆(H)>HIV for all H∈τ¯I:G2☆ and H⩾H′.

Proof.

Part (1) is clear and (2) immediately follows from Lemma 26. □

Now, we continue to deal with Case 3 in the following.

Stage 1 Construction of Subroutine τIl☆(τIjr*). Roughly speaking, τIl☆(τIjr*) is constructed by replacing some nodes τIjl*∈τIl☆ with τIjl⋃Ijr* in post-order. However, the ordinal postorder-traversal algorithm cannot be used to construct τIl☆(τIjr*) because the tree structure of τIl☆(τIjr*) is generally different from that of τIl☆ at some nodes H∈τIl☆ satisfying ∂τIl☆(H)<HIlV. Thus we construct a sequence τIl☆(q) of trees for all q⩾0 inductively as follows.

For the base case, we mark all ECΩ*-applications in τIl☆ as unprocessed and define such marked derivation to be τIl☆(0). For the induction case, let τIl☆(q) be constructed. If all applications of ECΩ* in τIl☆(q) are marked as processed, we firstly delete the root of the tree resulting from the procedure and then, apply ⟨ECΩ*⟩ to the root of the resulting derivation if it is applicable otherwise add an ⟨IDΩ⟩-application to it and finally, terminate the procedure. Otherwise we select one of the outermost unprocessed ECΩ*-applications in τIl☆(q), say, Gq+1∘∘̲Gq+1∘ECΩ*q+1∘, and perform the following steps to construct τIl☆(q+1) in which Gq+1∘∘̲Gq+1∘ECΩ*q+1∘ be revised as Gq+1··̲Gq+1∘ECΩ*q+1· such that

(a) τIl☆(q+1) is constructed by locally revising τIl:Gq+1∘∘☆(q) and leaving other nodes of τIl☆(q) unchanged, particularly including Gq+1∘;

(b) τIl☆(q+1)(Gq+1··) is a derivation in GLΩ;

(c) Gq+1··=Gq+1∘∘ if S′∉G′|S′Ijl for all τIjl*∈τIl☆(Gq+1∘∘) otherwise

Gq+1··=Gq+1∘∘\G†mq+1|G‡mq+1 for some mq+1⩾1.

Remark 3.

By two superscripts ∘ and · in ECΩ*q+1∘ or ECΩ*q+1·, we indicate the unprocessed state and processed state, respectively. This procedure determines an ordering for all ECΩ*-applications in τIl☆ and the subscript q+1 indicates that it is the q+1-th application of ECΩ* in a post-order transversal of τIl☆. Gq+1∘∘ and Gq+1∘ (Gq+1·· and Gq+1·) are the premise and conclusion of ECΩ*q+1∘ (ECΩ*q+1·), respectively.

Step 1 (Delete). Take the module τIl:Gq+1∘∘☆(q) out of τIl☆(q). Since ECΩ*q+1∘ is the unique unprocessed ECΩ*-applications in τIl☆(q)(Gq+1∘) by its choice criteria, τIl:Gq+1∘∘☆(q) is the same as τIl:Gq+1∘∘☆ by Claim (a). Thus it is a derivation. If ∂τIl☆(H)⩽HIV for all H∈τIl:Gq+1∘∘☆(q), delete all internal nodes of τIl:Gq+1∘∘☆(q). Otherwise there exists

Gbl′1|Sjl′1cGbl′2|Sjl′2c⋯Gbl′u′|Sjl′u′c̲Gl′≡{Gbl′k}k=1u′|GIjl′*τIjl′*∈τIl:Gq+1∘∘☆(q)

such that ∂τIl☆(Gbl′k|Sjl′kc)>HIV for all 1⩽k⩽u′ and ∂τIl☆(Gl′)⩽HIV by Lemma 27(2) and ∂τIl☆(Gq+1∘∘)=G|G*⩽HIV, then delete all H∈τIl:Gq+1∘∘☆(q), Gq+1∘∘⩽H<Gl′. We denote the structure resulting from the deletion operation above by τIl:Gq+1∘∘(1)☆(q). Since ∂τIl☆(Gl′)⩽HIV then τIl:Gq+1∘∘(1)☆(q) is a tree by Lemma 26. Thus it is also a derivation.

Step 2 (Update). For each Gq′∘∈τIl:Gq+1∘∘(1)☆(q) which satisfies Gq′··̲Gq′∘ECΩ*q′·∈τIl☆(q) and S′∈G′|S′Ijl for some τIjl*∈τIl☆(Gq′∘∘), we replace H with H\G†|G‡ for each H∈τIl:Gq+1∘∘(1)☆(q), Gl′⩽H⩽Gq′∘.

Since Gq′··̲Gq′∘ECΩ*q′·∈τIl☆(q)(Gq+1∘∘) and ECΩ*q+1∘ is the outermost unprocessed

ECΩ*-application in τIl☆(q) then q′⩽q and ECΩ*q′· has been processed. Thus Claims (b) and (c) hold for τIl☆(q)(Gq′·) by the induction hypothesis. Then Gq′··̲Gq′· is a valid ECΩ*-application since Gq′∘∘̲Gq′∘, G†mq′̲G† and G‡mq′̲G‡ are valid, where Gq′··=Gq′∘∘\G†mq′|G‡mq′, Gq′·=Gq′∘\G†|G‡.

Lemma 28.

Let Gl′<H⩽Gq′∘. Then ∂τIl☆(H)⩾G′|S′.

Proof.

Since Gl′<H then Gbl′k|Sjl′kc⩽H for some 1⩽k⩽u′. If ∂τIl☆(H)⩾HIlV then ∂τIl☆(H)⩾G′|S′. Otherwise all applications between Gl′ and H are one-premise rules by Lemma 26. Then Hjl′kc⩽∂τIl☆(H) by Claim (ii). Thus ∂τIl☆(H)⩾G′|S′ by HIV<Hjl′kc, ∂τIl☆(H)⩽Hlk′c for some 1⩽k′⩽m(l) by Claim (i). □

Since ∂τIl☆(H)⩾G′|S′ by Lemma 28 and Hjc∥G′|S′ for each Sjc∈G† by Lemma 24, then G†⊆H as side-hypersequent of H. Thus this step updates the revision of Gq′·· downward to Gl′.

Let m′ be the number of Gq′∘ satisfying the above conditions, τIl:Gq+1∘∘(1)☆(q), Gl′ and Gbl′k|Sjl′kc for all 1⩽k⩽u′ be updated as τIl:Gq+1∘∘(2)☆(q), Gl″, Gbl′k′|Sjl′kc, respectively. Then τIl:Gq+1∘∘(2)☆(q) is a derivation and Gl″=Gl′\G†m′|G‡m′.

Step 3 (Replace). All τIjl*∈τIl:Gq+1∘∘(2)☆(q) are processed in post-order. If Hic⇝Hjc for all Hic∈Ijl and Hjc∈Ijr it proceeds by the following procedure otherwise it remains unchanged. Let τIjl* be in the form

Gbl1|Sjl1cGbl2|Sjl2c⋯Gblu|Sjluc̲Gl≡{Gblk}k=1u|GIjl*.

Then Hjlkc⩾G′|S′ for all 1⩽k⩽u by Lemma 28, Gblk|Sjlkc>Gl″.

Firstly, replace τIjl* with τIjl∪Ijr*. We may rewrite the roots of τIjl* and τIjl∪Ijr* as

Gl={Gblk}k=1u|GHIV:G′Ijl*|GHIV:G″|H′*andGl,r≡{Gblk}k=1u|GHIV:G′Ijl*|{Gbrk}k=1v|GHIV:G″Ijr|H′*,

respectively.

Let Gl″<H⩽Gl. By Lemma 28, ∂τIl☆(H)⩾G′|S′. By Lemma 14, Hjc⩽HIV<G′|S′ or Hjc∥G′|S′ for all Sjc∈GHIV:G″|H′*. Thus GHIV:G″|H′*⊆H. Secondly, we replace H with H\GHIV:G″|H′*|{Gbrk}k=1v|GHIV:G″Ijr|H′* for all Gl′⩽H⩽Gl. Let m″ be the number of τIjl*∈τIl:Gq+1∘∘(2)Ω(q) satisfying the replacement conditions above, τIl:Gq+1∘∘(2)☆(q), Gl″ and Gbl′k′|Sjl′kc for all 1⩽k⩽u′ be updated as τIl:Gq+1∘∘(3)☆(q), Gl‴, Gbl′k″|Sjl′kc, respectively. Then τIl:Gq+1∘∘(3)☆(q) is a derivation of Gl‴ and Gl‴=Gl″\{GHIV:G″|H′*}m″|{{Gbrk}k=1v|GHIV:G″Ijr|H′*}m″.

Step 4 (Separation along HIV). Apply the separation algorithm along HIV to Gl‴ and denote the resulting derivation by τIl:Gq+1∘∘(4)☆(q) whose root is labeled by Gq+1··. Then all GHIV:G″Ijr|H′* in Gl‴ are transformed into GHIV:G″Ijr|H′☆(J) in τIl:Gq+1∘∘(4)Ω(q). Since G′|S′G″|S″HIV=G′|G″|H′(II)∈τ*,

{Gblk}k=1u|G′|S′Ijl{Gbrk}k=1v|G″|S″Ijr{Gblk}k=1u|{Gbrk}k=1v|G′Ijl|G″Ijr|H′(II)∈τIjl∪Ijr*∈τIl:Gq+1∘∘(3)☆(q),

H′, S′ and S″ are separable in τIl:Gq+1∘∘(4)☆(q) by a procedure similar to that of Lemma 21. Let S′ and S″ be separated into S′^ and S″^, respectively. By Claim (iii), GHIV:Gl′☆(J)=Gq+1∘∘.

GHIV:Gl″☆(J)=Gq+1∘∘\G†m′|G‡m′byLemma19(iv),Gq+1··=GHIV:Gl‴☆(J)=GHIV:Gl″☆(J)\{GHIV:G″|H′☆(J)}m″|{{Gbrk}k=1v|GHIV:G″Ijr|H′☆(J)}m″=GHIV:Gl″☆(J)\{S′^|S″^|GHIV:G″☆(J)|GHIV:H′☆(J)\{S′^|S″^}}m″|{{Gbrk}k=1v|S′^|S″^|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}}m″=GHIV:Gl″☆(J)\G†m″|G‡m″={Gq+1∘∘\G†m′|G‡m′}\G†m″|G‡m″=Gq+1∘∘\G†m′+m″|G‡m′+m″=Gq+1∘∘\G†mq+1|G‡mq+1

where mq+1:=m′+m″.

Step 5 (Put back). Replace τIl:Gq+1∘∘☆(q) in τIl☆(q) with τIl:Gq+1∘∘(4)☆(q) and mark Gq+1··̲Gq+1∘ECΩ*q+1∘ as processed, i.e., revise ECΩ*q+1∘ as ECΩ*q+1·. Among leaves of τIl:Gq+1∘∘☆(q), all Gq′∘ are updated as Gq′· and others keep unchanged in τIl:Gq+1∘∘(4)☆(q). Then this replacement is feasible, especially, Gq+1∘∘ be replaced with Gq+1··. Define the tree resulting from Step 5 to be τIl☆(q+1). Then Claims (a), (b) and (c) hold for q+1 by the above construction.

Finally, we construct a derivation of GIl☆\G†|G‡ from ⌈Sl1c⌉I,⋯,⌈Slm(l)c⌉I, Gbr1|Sjr1c,⋯,Gbrv|Sjrvc in GLΩ, which we denote by τIl☆(τIjr*).

Remark 4.

All elimination rules used in constructing τIl☆ are extracted from τ*. Since τIjr* is a derivation in GLΩ without (ECΩ), we may extract elimination rules from τIjr* which we may use to construct τIl☆(τIjr*) by a procedure similar to that of constructing τIl☆ with minor revision at every node H that ∂τIl☆(H)⩽HIV. Note that updates and replacements in Steps 2 and 3 are essentially inductive operations but we neglect it for simplicity.

We may also think of constructing τIl☆(τIjr*) as grafting τIjr* in τIl☆ by adding τIjr* to some τIjl*∈τIl☆. Since the rootstock τIl☆ of the grafting process is invariant in Stage 2, we encapsulate τIl☆(τIjr*) as an rule in GLΩ whose premises are Gbr1|Sjr1c,Gbr2|Sjr2c,⋯,Gbrv|Sjrvc and conclusion is S″^|{Gbrk}k=1v|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆, i.e.,

Gbr1|Sjr1cGbr2|Sjr2c⋯Gbrv|Sjrvc̲S″^|{Gbrk}k=1v|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆τIl☆(τIjr*),

where, GIl\r☆=GIl☆\G† is closed.

Stage 2. Construction of routine τIr☆(τIl☆(τIjr*)). A sequence τIr☆(q) of trees for all q⩾0 is constructed inductively as follows. τIr☆(0), τIr☆(q), Gq+1∘∘̲Gq+1∘ECΩ*q+1∘ are defined as those of Stage 1. Then we perform the following steps to construct τIr☆(q+1) in which Gq+1∘∘̲Gq+1∘ECΩ*q+1∘ be revised as Gq+1··̲Gq+1∘ECΩ*q+1· such that Claims (a) and (b) are same as those of Stage 1 and (c) Gq+1··=Gq+1∘∘ if S″∉G″|S″Ijr(tr) for all τIjr*∈τIr☆(Gq+1∘∘) otherwise Gq+1··=Gq+1∘∘\{S′^|GHIV:G′☆(J)}mq+1|{GIl\r☆}mq+1 for some mq+1⩾1.

Step 1 (Delete). τIr:Gq+1∘∘☆(q) and τIr:Gq+1∘∘(1)☆(q) are defined as before.

Gbr′1|Sjr′1cGbr′2|Sjr′2c⋯Gbr′v′|Sjr′v′c̲Gr′≡{Gbr′k}k=1v′|GIjr′*τIjr′*∈τIr:Gq+1∘∘☆(q)

satisfies ∂τIr☆(Gbr′k|Sjr′kc)>HIV for all 1⩽k⩽v′ and ∂τIr☆(Gr′)⩽HIV.

Step 2 (Update). For all Gq′∘∈τIr:Gq+1∘∘(1)☆(q) which satisfy Gq′··̲Gq′∘ECΩ*q′·∈τIr☆(q) and S″∈G″|S″Ijr for some τIjr*∈τIr☆(Gq′∘∘), we replace H with H\{S′^|GHIV:G′☆(J)}|GIl\r☆ for all H∈τIr:Gq+1∘∘(1)☆(q), Gr′⩽H⩽Gq′∘. Then Claims (a) and (b) are proved by a procedure as before. Let m′ be the number of Gq′· satisfying the above conditions. τIr:Gq+1∘∘(1)☆(q), Gr′ and Gbr′k|Sjr′kc for all 1⩽k⩽v′ be updated as τIr:Gq+1∘∘(2)☆(q), Gr″, Gbr′k′|Sjr′kc, respectively. Then τIr:Gq+1∘∘(2)☆(q) is a derivation and Gr″=Gr′\{S′^|GHIV:G′☆(J)}m′|{GIl\r☆}m′.

Step 3 (Replace). All τIjr*∈τIr:Gq+1∘∘(2)Ω(q) are processed in post-order. If Hic⇝Hjc for all Hic∈Ijr and Hjc∈Il it proceeds by the following procedure otherwise it remains unchanged. Let τIjr* be in the form

Gbr1|Sjr1cGbr2|Sjr2c⋯Gbrv|Sjrvc̲Gr≡{Gbrk}k=1v|GIjr*.

Then there exists the unique 1⩽k′⩽v′ such that Gr″<Gbr′k′|Sjr′k′c⩽Gr.

Firstly, we replace τIjr* with τIl☆(τIjr*). We may rewrite the roots of τIjr*, τIl☆(τIjr*) as Gr={Gbrk}k=1v|GHIV:G″Ijr*|GHIV:G′|H′*,Gl\r≡{Gbrk}k=1v|S″^|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆, respectively.

Let Gr″<H⩽Gr. Then ∂τIr☆(H)⩾G″|S″ by Lemma 28. Thus GHIV:G′|H′☆(0)⊆H,{Sjc:Sjc∈GHIV:G″Ijr*,Hjc⩾G″|S″}={Sjc:Sjc∈GHIV:G″Ijr☆(J),Hjc⩾G″|S″}. Define GH**={Sjc:Sjc∈GHIV:G″Ijr*,SjcbethefocussequentofsomeH′∈τIr:Gq+1∘∘(2)☆(q),H⩽H′⩽Gr}.

Then we replace H with

H\{GHIV:G″Ijr*\GH**|GHIV:G′|H′*}|S″^|{GHIV:G″Ijr☆(J)\GH**}|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆

for all Gbr′k′|Sjr′k′c⩽H⩽Gr.

Let m″ be the number of τIjr*∈τIr:Gq+1∘∘(2)Ω(q) satisfying the replacement conditions as above, τIr:Gq+1∘∘(2)☆(q), Gr″ and Gbr′k′|Sjr′kc for all 1⩽k⩽v′ be updated as τIr:Gq+1∘∘(3)☆(q), Gr‴, Gbr′k″|Sjr′kc, respectively. Then τIr:Gq+1∘∘(3)☆(q) is a derivation and Gr‴=Gr″\H1m″|H2m″, where

H0=GGbr′k′|Sjr′kc**,H1=GHIV:G″Ijr*\H0|GHIV:G′|H′*,H2=S″^|GHIV:G″Ijr☆(J)\H0|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆.

Step 4 (Separation along HIV). Apply the separation algorithm along HIV to Gr‴ and denote the resulting derivation by τIr:Gq+1∘∘(4)☆(q) whose root is labeled by Gq+1··.

By Claim (iii), GHIV:Gr′☆(J)=Gq+1∘∘.

GHIV:Gr″☆(J)=Gq+1∘∘\{GHIV:G′☆(J)|S′^}m′|{GIl\r☆}m′,GHIV:H1☆(J)=GHIV:G″Ijr☆(J)\GHIV:H3☆(J)|GHIV:G′|H′☆(J),GHIV:H2☆(J)=S″^|GHIV:G″Ijr☆(J)\GHIV:H3☆(J)|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆.

Then

GHIV:Gr‴☆(J)=GHIV:Gr″☆(J)\{GHIV:G′|H′☆(J)}m″|{S″^|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆}m″=GHIV:Gr″☆(J)\{GHIV:G′☆(J)|S′^}m″|{GIl\r☆}m″.

Then

Gq+1··=GHIV:Gr‴☆(J)=Gq+1∘∘\{S′^|GHIV:G′☆(J)}mq+1|{GIl\r☆}mq+1

where mq+1:=m′+m″.

Step 5 (Put back). Replace τIr:Gq+1∘∘☆(q) in τIr☆(q) with τIr:Gq+1∘∘(4)☆(q) and revise Gq+1··̲Gq+1∘ECΩ*q+1∘ as Gq+1··̲Gq+1∘ECΩ*q+1·. Define the resulting tree from Step 5 to be τIr☆(q+1) then Claims (a), (b) and (c) hold for q+1 by the above construction.

Finally, we construct a derivation of GIr☆\{S′^|GHIV:G′☆(J)}|GIl\r☆ from ⌈Si1c⌉I, …, ⌈Simc⌉I in GLΩ. Since the major operation of Stage 2 is to replace τIjr* with τIl☆(τIjr(tr)*) for all τIjr*∈τIr☆ satisfying S″∈G″|S″Ijr(tr), then we denote the resulting derivation from Stage 2 by τIr☆(τIl☆(τIjr*)).

In the following, we prove that the claims from (i) to (iv) hold if τI☆:=τIr☆(τIl☆(τIjr*)) and GI☆:=GIr☆\{S′^|GHIV:G′☆(J)}|GIl\r☆.

	
For Claims (i) and (ii): Let H1⋯Hw̲H0τIj*∈τI☆ and Sjc∈GIj*. Then ∂τI☆(Hk)≰Hjc for all 1⩽k⩽w by Lemma 17(iv).

If ∂τI☆(Hk′)⩽HIV for some 1⩽k′⩽w, then Hic≰Hjc for all Hic∈I by ∂τI☆(Hk′)⩽HIV⩽Hic. Thus Claim (i) holds and Claim (ii) holds by Lemma 25(5) and Lemma 19(i). Note that Lemma 25(5) is independent of Claims from (ii) to (iv).

Otherwise τIj* is built up from τIjr*∈τIr☆, τIjl* or τIjl∪Ijr*∈τIl☆(τIjr*) by keeping their focus and principal sequents unchanged and making their side-hypersequents possibly to be modified, but which has no effect on discussing Claim (ii) and then Claim (ii) holds for τI☆ by the induction hypothesis on Claim (ii) of τIl☆ or τIr☆.

If τIj* is from τIjl∪Ijr* then S′∈G′|S′Ijl and S″∈G″|S″Ijr by the choice of τIjl* and τIjr* at Stage 1. By the induction hypothesis, Hic≰Hjc for all Sjc∈GIjl*,Hic∈Il and Hic≰Hjc for all Sjc∈GIjr*,Hic∈Ir. Then Hic≰Hjc for all Sjc∈GIj*=GIjl∪Ijr*, Hic∈I by GIjl∪Ijr*=GIjl*⋂GIjr*, I=Il∪Ir.

If τIj* is from τIjl* then S′∉G′|S′Ijl by Step 3 at Stage 1. Then G′|G″|H′Ijl⋂(G″|H′)=∅. Thus Sjc∉GHIV:G″|H′*. Hence G″|S″≰Hjc. Therefore Hic≰Hjc for all Hic∈Ir by G″|S″⩽Hic. Thus Hic≰Hjc for all Hic∈I by Sjc∈GIj*=GIjl* and the induction hypothesis from τIjl*∈τIl☆. The case of τIj* built up from τIjr* is proved by a procedure similar to above and omitted.

	
Claim (iii) holds by Step 4 at Stages 1 and 2. Note that in the whole of Stage 1, we treat {Gbrk}k=1v as a side-hypersequent. But it is possible that there exists Sjc∈{Gbrk}k=1v such that Hjc⩽HIV. Since we have not applied the separation algorithm to {Gbrk}k=1v in Step 4 at Stage 1, then it could make Claim (iii) invalid. But it is not difficult to find that we just move the separation of such Sjc to Step 4 at Stage 2. Of course, we can move it to Step 4 at Stage 1, but which make the discussion complicated.

	
For Claim (iv), we prove (1) Hic∥Hjc for all Sjc∈GIl\r☆ and Hic∈I, (2) Hic∥Hjc for all Sjc∈GIr☆\{S′^|GHIV:G′☆(J)} and Hic∈I. Only (1) is proved as follows and (2) by a similar procedure and omitted.

Let Sjc∈GIl\r☆. Then Sjc∈GIl☆ and Sjc∉S″^|GHIV:G″☆(J)|GHIV:H′☆(J)\{S′^|S″^} by the definition of GIl\r☆. By a procedure similar to that of Claim (iv) in Case 1, we get Hjc≰HIV and assume that Sjc∈GIjl* for some τIjl*∈τIl☆ and let G′|S′≰Hjc in the following.

Suppose that G″|S″⩽Hjc. Then Sjc∈GHIV:G″* and S′∈G′|S′Ijl by Sjc∈GIjl*. Hence Sjc∈GHIV:G″☆(J) by Hjc⩾G″|S″>HIV. Therefore Sjc∈S″^|GHIV:G″☆(J)|GHIV:H′☆(J)\{S′^|S″^}, a contradiction thus G″|S″≰Hjc. Then HIV≮Hjc by G′|S′≰Hjc and G″|S″≰Hjc. Thus Hjc∥HIV. Hence Hjc∥Hic for all Hic∈I. This completes the proof of Theorem 2. □

Definition 31.

The manipulation described in Theorem 2 is called a derivation-grafting operation.

9. The Proof of the Main Theorem

Recall that in the main theorem G0≡G′|{Γi,p⇒Δi}i=1⋯n|{Πj⇒p,Σj}j=1⋯m.

Lemma 29.

(i) If G2=G0\{Γ1,p⇒Δ1} and ⊢GLD0(G2) then ⊢GLD0(G0);

(i′) If G2=G0\{Π1⇒p,Σ1} and ⊢GLD0(G2) then ⊢GLD0(G0);

(ii) If G2=G0|{Γ1,p⇒Δ1} and ⊢GLD0(G2) then ⊢GLD0(G0);

(ii′) If G2=G0|{Π1⇒p,Σ1} and ⊢GLD0(G2) then ⊢GLD0(G0);

(iii) If G2=G0\{Γ1,p⇒Δ1}|{Γ1,⊤⇒Δ1} and ⊢GLD0(G2) then ⊢GLD0(G0);

(iii′) If G2=G0\Π1⇒p,Σ1|Π1⇒⊥,Σ1 and ⊢GLD0(G2) then ⊢GLD0(G0).

Proof.

(i) Since D0(G2)=G′|{Γi,Πj⇒Δi,Σj}i=2⋯n;j=1⋯m⊆G′|{Γ1,Πj⇒Δ1,Σj}j=1⋯m|{Γi,Πj⇒Δi,Σj}i=2⋯n;j=1⋯m=D0(G0) then ⊢GLD0(G0) holds. If n=1, we replace all p in Πj⇒p,Σj with ⊥. Then ⊢GLD0(G0) holds by applying (CUT) to Γ1,⊥⇒Δ1 and G′|{Πj⇒⊥,Σj}j=1⋯m.

(ii) Since D0(G2)=G′|{Γ1,Πj⇒Δ1,Σj}j=1⋯m|{Γi,Πj⇒Δi,Σj}i=1⋯n;j=1⋯m then ⊢GLD0(G0) holds by applying (EC*) to D0(G2).

(iii) Since D0(G2)=G′|Γ1,⊤⇒Δ1|{Γi,Πj⇒Δi,Σj}i=2⋯n;j=1⋯m then ⊢GLG″≡G′|Γ1,Π1⇒Δ1,Σ1|{Γi,Πj⇒Δi,Σj}i=2⋯n;j=1⋯m holds by applying (CUT) to Γ1,⊤⇒Δ1 in D0(G2) and Π1⇒⊤,Σ1. Thus ⊢GLD0(G0) holds by applying (EW) to G″.

(i′),(ii′) and (iii′) are proved by a procedure respectively similar to those of (i), (ii) and (iii) and omitted. □

Let I={Hi1c,⋯,Himc}⊆{H1c,⋯,HNc}, GI denote a closed hypersequent such that GI⊆cG|G* and Hjc∥Hic for all Sjc∈GI and Hic∈I.

Lemma 30.

There exists GI such that ⊢GLΩGI for all I⊆{H1c,⋯,HNc}.

Proof.

The proof is by induction on m. For the base step, let m=0, then I=∅ and GI:=G|G* and ⊢GLΩGI by Lemma 5 (v).

For the induction step, suppose that m⩾1 and there exists GI such that ⊢GLΩGI for all I⩽m−1. Then there exist GI\{Hikc} for all 1⩽k⩽m such that ⊢GLΩGI\{Hikc} and Hjc∥Hic for all Sjc∈GI\{Hikc} and Hic∈I\{Hikc}.

If Hjc∥Hikc for all Sjc∈GI\{Hikc} then GI:=GI\{Hikc} and the claim holds clearly. Otherwise there exists Sjc∈GI\{Hikc} such that Hjc⩽Hikc or Hjc>Hikc then we rewrite GI\{Hikc} as ⌈Sik′c⌉{Hik′c}∪I\{Hikc}, where we define Hik′c such that Sik′c∈GI\{Hikc} and, Sjc∈GI\{Hikc} implies Hjc⩽Hik′c or Hjc∥Hic for all Hic∈{Hik′c}∪I\{Hikc}. If we cannot define GI to be GI\{Hikc} for each 1⩽k⩽m, let I′:={Hi1′c,⋯,Him′c}. Then GI′ is constructed by applying the separation algorithm of multiple branches (or one branch if m=1) to ⌈Si1′c⌉I′,⋯,⌈Sim′c⌉I′. Then ⊢GLΩGI′ by ⊢GLΩ⌈Si1′c⌉I′,⋯,⊢GLΩ⌈Sim′c⌉I′, Theorem 2 (or Lemma 20(i) for one branch). Let GI:=GI′ then ⊢GLΩGI clearly. □

The proof of Theorem 1:

Let I={H1c,⋯,HNc} in Lemma 30. Then there exists GI such that ⊢GLΩGI, GI⊆cG|G* and Hjc∥Hic for all Sjc∈GI and Hic∈I. Then ⊢GLD(GI) by Lemma 8.

Suppose that Sjc∈GI. Then Hjc∥Hic for all Hic∈I. Thus Hjc∥Hjc by Hjc∈I, a contradiction with Hjc⩽Hjc and hence there does not exist Sjc∈GI. Therefore GI⊆cG by GI⊆cG|G*.

By removing the identification number of each occurrence of p in G, we obtain the sub-hypersequent G2 of G2|G2*, which is the root of τ4 resulting from Step 4 in Section 4. Then ⊢GLD0(G2) by ⊢GLD(GI) and GI⊆cG. Since G2 is constructed by adding or removing some Γi,p⇒Δi or Πj⇒p,Σj from G0, or replacing Γi,p⇒Δi with Γi,⊤⇒Δi, or Πj⇒p,Σj with Πj⇒⊥,Σj, then ⊢GLD0(G0) by Lemma 29. This completes the proof of the main theorem. □

Theorem 3.

Density elimination holds for all GL in {GUL,GIUL,GMTL,GIMTL}.

Proof.

It follows immediately from the main theorem. □

10. Final Remarks and Open Problems

Recently, we have generalized our method described in this paper to the non-commutative substructural logic GpsUL* in [20]. This result shows that GpsUL* is the logic of pseudo-uninorms and their residua and answered the question posed by Metcalfe, Olivetti, Gabbay and Tsinakis in [21,22].

It has often been the case in the past that metamathematical proofs of the standard completeness have the corresponding algebraic ones, and vise verse. In particular, Baldi and Terui [23] had given an algebraic proof of the standard completeness of UL. A natural problem is whether there is an algebraic proof corresponding to our proof-theoretic one. It seems difficult to obtain it by using the insights gained from the approach described in this paper because ideas and syntactic manipulations introduced here are complicated and specialized. In addition, Baldi and Terui [23] also mentioned some open problems. Whether our method could be applied to their problems is another research direction.

On 21 March 2014, I found the way to deal with the example in Section 3. Then I finished the one branch algorithm in Section 7 on the late April 2014. I devised the multi-branch algorithm in Section 8 on early November 2014. Since I submitted my paper to Transactions of the American Mathematical Society on 20 January 2015, it has been reviewed successively by Annals of Pure and Applied Logic, Fuzzy Sets and Systems and, the Journal of Logic and Computation. As a mathematician, the greatest anxiety is that his work has never been taken seriously by his academic circle during his career, but after his death, someone would say, sir, your proof is wrong.

Funding

This research was funded by the National Foundation of Natural Sciences of China (Grant No: 61379018 &61662044& 11571013&11671358).

Acknowledgments

I am grateful to Lluis Godo, Arnon Avron, Jean-Yves Girard, George Metcalfe and Agata Ciabattoni for valuable discussions. I would like to thank anonymous reviewers for carefully reading the old version of this article and many instructive suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

Notations

	G1≡G2
	The symbol G1 denotes a complex hypersequent G2 temporarily for convenience.

	X:=Y
	Define X as Y for two hypersequents (sets or derivations) X and Y.

	G0
	The upper hypersequent of strong density rule in Theorem 1, page 2

	τ
	A cut-free proof of G0 in GL, in Theorem 1, page 3

	P(H)
	The position of H∈τ, Def. 10, Construction 3, pages 5, 24

	HkH:H′ and τH:H′2(HkH:H′)
	Construction 1, page 15

	GH:H′2 and τH:H′2
	Notation 3, page 16

	τ*
	The proof of G|G* in GLΩ resulting from preprocessing of τ, Notation 4, page 17

	G|G*
	The root of τ* corresponding to the root G0 of τ, Notation 4, page 17

	Hic
	The i-th (pEC)-node in τ*, the superscript ′c′ means contraction, Notation 5, page 18

	Si1c
	The focus sequent of Hic, Notation 5, page 18

	Sic or Siuc
	Si1c or one copy of Si1c, Notation 5, page 18

	{H1c,⋯,HNc}
	The set of all (pEC)-nodes in τ*, Notation 5, page 18

	GLΩ
	A restricted subsystem of GL, Definition 18, page 18

	SG,G′G
	The minimal closed unit of S and G′ in G, respectively, Definition 19, page 19

	(D)
	The generalized density rule of GLΩ, Definition 20, page 20

	τSi1c* and GSi1c*
	Notation 6, Page 25

	Hic⇝Hjc,Hic↭Hjc
	Definition 21, page 25

	I={Hi1c,⋯,Himc}
	A subset of {H1c,⋯,HNc}, Notation 7, page 26

	HIV, HijV
	The intersection nodes of I and, that of Hic and Hjc, Notation 7, page 26

	I′={Si1u1c,⋯,Simumc}
	A subset of (pEC)-sequents to I, Definition 22, page 27

	I′={Gb1|Si1u1c,⋯,Gbm|Simumc}
	A set of closed hypersequents to I, Definition 22, page 27

	HI,τI* and GI*
	The elimination derivation, Construction 4, Lemma 17, pages 26, 27

	τI′*
	The elimination rule, Definition 22, page 27

	SikcI
	A branch of Hikc to I, Definition 25, page 28

	GI☆(q),GI☆(JI),τI☆(q)
	Construction 5, page 28

	GH:H1☆(J),τH:H1☆(J)
	Construction 6, page 30

	GI☆,τI☆
	Construction 7, Theorem 2, pages 31, 32

	τ¯I☆
	The skeleton of τI☆, Definition 27, page 32

	∂τI☆(H)
	Theorem 2 (ii), page 33

	τI:G2☆
	The module of τI☆ at G2, Definition 30, page 35

Appendix A.

Appendix A.1. Why Do We Adopt Avron-Style Hypersequent Calculi?

A hypersequent calculus is called Pottinger-style if its two-premise rules are in the form of G|S′G|S″G|H′(II) and, Avron-style if in the form of G′|S′G″|S″G′|G″|H′(II). In the viewpoint of Avron-style systems, each application of two-premise rules contains implicitly applications of (EC) in Pottinger-style systems, as shown in the following.

G|S′G|S″G|H′(II)→inAvron−stylesystemcorrespondstoG|S′G|S″G|G|H′(II)G|H′(EC*)

The choice of the underlying system of hypersequent calculus is vital to our purpose and it gives the background or arena. In Pottinger-style system, G0 in Section 3 is proved without application of (EC) as follows. But it seems helpless to prove that H0 is a theorem of IUL.

C⇒CC⇒C|⇒p,B|B⇒p,¬A⊙¬AB⇒BB⇒B|p,p⇒A⊙Ap⇒pA⇒AA⇒p|p⇒Ap⇒pA⇒AA⇒p|p⇒AA⇒p|p,p⇒A⊙A⇒p,¬A|p,p⇒A⊙Ap⇒pA⇒AA⇒p|p⇒Ap⇒pA⇒AA⇒p|p⇒AA⇒p|p,p⇒A⊙A⇒p,¬A|p,p⇒A⊙A⇒p,p,¬A⊙¬A|p,p⇒A⊙A⇒p,B|B⇒p,¬A⊙¬A|p,p⇒A⊙A⇒p,B|B⇒p,¬A⊙¬A|p⇒C|C,p⇒A⊙A

The peculiarity of our method is not only to focus on controlling the role of the external contraction rule in the hypersequent calculus but also introduce other syntactic manipulations. For example, we label occurrences of the eigenvariable p introduced by an application of the density rule in order to be able to trace these occurrences from the leaves (axioms) of the derivation to the root (the derived hypersequent).

Appendix A.2. Why Do We Need the Constrained External Contraction Rule?

We use the example in Section 3 to answer this question. Firstly, we illustrate Notation 5 as follows. In Figure 4, let S11c=A⇒p2;S12c=A⇒p1;S21c=A⇒p4;S22c=A⇒p3;S31c=p1,p2⇒A⊙A;S32c=p3,p4⇒A⊙A;G1′=p1,p2⇒A⊙A;G2′=p3,p4⇒A⊙A;G3′=A⇒p1|⇒p2,B|B⇒p4,¬A⊙¬A|A⇒p3. Then Hic=Gi′|Si1c|Si2c for i=1,2,3. Hic are (pEC)-nodes and, Si1c and Si2c are (pEC)-sequents.

Let GH1c:A⇒p2*=⇒p2,B|B⇒p4,¬A⊙¬A|A⇒p3|p3,p4⇒A⊙A. We denote the derivation τH1c:A⇒p2* of GH1c:A⇒p2* from A⇒p2 by A⇒p2̲GH1c:A⇒p2*τH1c:A⇒p2*. Since we focus on sequents in G* in the separation algorithm, we abbreviate A⇒p2̲GH1c:A⇒p2*τH1c:A⇒p2* to S11c̲S22c|S32cτS11c* and further to 12|3τ1*. Then the separation algorithm τH1c:G|G*☆ is abbreviated as

1|2|32′|3′|2|3τ1*2′|2τ3*,τ3′*2ECΩ

where 2′ and 3′ are abbreviations of A⇒p5 and p5,p6⇒A⊙A, respectively. We also write 2′ and 3′ respectively as 2 and 3 for simplicity. Then the whole separation derivation is given as follows.

1|2|32|3|2|3τ1*2|2τ3*,τ3*2ECΩ1|2|31|1|3τ2*1|1τ3*1ECΩ∅τ{1,2}*

where ∅ is an abbreviation of G″ in page 14 and means that all sequents in it are copies of sequents in G0. Note that the simplified notations become intractable when we decide whether ECΩ is applicable to resulting hypersequents. If no application of ECΩ is used in it, all resulting hypersequents fall into the set {1|2|3|⋯|3︸l,2|2|3|⋯|3︸m,1|1|3|⋯|3︸n:l≥0,m≥0,n≥0} and ∅ is never obtained.

Appendix A.3. Why Do We Need the Separation of Branches?

In Figure 11, p1 and p2 in the premise of p1,p2⇒A⊙A̲p1⇒C|C,p2⇒A⊙AτS31c* could be viewed as being tangled in one sequent p1,p2⇒A⊙A but in the conclusion of τS31c* they are separated into two sequents p1⇒C and C,p2⇒A⊙A, which are copies of sequents in G0. In Figure 5, p2 in A⇒p2 falls into ⇒p2,B in the root of τH1c:A⇒p2* and ⇒p2,B is a copy of a sequent in G0. The same is true for p4 in A⇒p4 in Figure 8. But it’s not the case.

Lemma 13(vi) shows that in the elimination rule S11c̲GS11c*τS11c*, Sjc∈GS11c* implies Hjc<Hic or Hjc∥Hic. If there exists no Sjc∈GS11c* such that Hjc<Hic, then Sjc∈GS11c* implies Hjc∥Hic and, thus each occurrence of p′s in S11c is fell into a unique sequent which is a copy of a sequent in G0. Otherwise there exists Sjc∈GS11c* such that Hjc<Hic, then we apply τSjc* to Sjc in GS11c* and the whole operations can be written as

S11c̲GS11c☆(0)≡GS11c*\{Sjc}|SjcτS11c*̲GS11c☆(1)≡GS11c*\{Sjc}|GSjc*τSjc*.

Repeatedly we can get GS11c☆(J) such that Sjc∈GS11c☆(J) implies Hjc∥H1c. Then each occurrence of p′s in S11c is fell into a unique sequent in GS11c☆(J) which is a copy of a sequent in G0. In such case, we call occurrences of p′s in S11c are separated in GS11c☆(J) and call such a procedure the separation algorithm. It is the starting point of the separation algorithm. We introduce branches in order to tackle the case of multiple-premise separation derivations for which it is necessary to apply (ECΩ) to the resulting hypersequents.

Appendix A.4. Some Questions about Theorem 2

In Theorem 2, τI☆ is constructed by induction on the number I of branches. As usual, we take the algorithm of I−1 branches as the induction hypothesis. Why do we take τIl☆ and τIr☆ as the induction hypothesises?

Roughly speaking, it degenerates the case of I branches into the case of two branches in the following sense. The subtree τ*(G″|S″) of τ* is as a whole contained in τIjl* or not in it. Similarly, τ*(G′|S′) of τ* is as a whole contained in τIjr* or not in it. It is such a division of I into Il and Ir that makes the whole algorithm possible.

Claim (i) of Theorem 2 asserts that Hic¬⩽Hjc for all Sjc∈GIj* and Hic∈I. It guarantees that τIj* is not far from the final aim of Theorem 2 but roughly close to it if we define some complexity to calculate it. If Hic⩽Hjc, the complexity of GIj* is more than or equal to that of SicI under such a definition of complexity and thus such an application of τIj* is redundant at least. Claim (iii) of Theorem 2 guarantees the validity of the step 4 of Stages 1 and 2.

The tree structure of the skeleton of τIl☆(τIjr*) can be obtained by deleting some node H∈τ¯Il☆ satisfying ∂τIl☆(H)⩽HIV. The same is true for τI☆ if τIl☆(τIjr*) is treated as a rule or a subroutine whose premises are same as ones of τIjr*. However, it is incredibly difficult to imagine or describe the structure of τI☆ if you want to expand it as a normal derivation, a binary tree.

All syntactic manipulations in constructing τI☆ are performed on the skeletons of τIl☆ or τIr☆. The structure of the proof of Theorem 2 is depicted in Figure A1.

[image: Symmetry 11 00445 g0a1 550]

Figure A1. The structure of the proof of Theorem 2.

Figure A1. The structure of the proof of Theorem 2.

[image: Symmetry 11 00445 g0a1]

Appendix A.5. Illustrations of Notations and Algorithms

We use the example in Section 3 to illustrate some notations and algorithms in this paper.

Appendix A.5.1. Illustration of Two Cases of (COM) in the Proof of Lemma 8

Let G′G″G‴(COM) be p1⇒p1A⇒AA⇒p1|p1⇒A(COM), where G′=S1=p1⇒p1; G″=S2=A⇒A; S3=A⇒p1; S4=p1⇒A and G‴=S3|S4. Then S3G‴=S4G‴; DG′(S1)=⇒t; DG″(S2)=A⇒A; DG‴(S3|S4)=A⇒A. Thus the proof of DG′(S1)DG′(S2)̲DG′(S3|S4) is constructed by ⇒tA⇒AA,t⇒A(tl)A⇒A(CUT).

Let G′G″G‴(COM) be B⇒B⇒p2,p4,¬A⊙¬A|p1,p2⇒A⊙A|A⇒p1|A⇒p3|p3,p4⇒A⊙A⇒p2,B|B⇒p4,¬A⊙¬A|A⇒p1|p1,p2⇒A⊙A|A⇒p3|p3,p4⇒A⊙A(COM),

whereG’=S1=B⇒B;G2=p1,p2⇒A⊙A|A⇒p1|A⇒p3|p3,p4⇒A⊙A;

S2=⇒p2,p4,¬A⊙¬A; G″=G2|S2; S3=⇒p2,B; S4=B⇒p4,¬A⊙¬A and G‴=G2|S3|S4. Then DG′(S1)=B⇒B; DG″(S2)=A,A⇒A⊙A,¬A⊙¬A,A⊙A; DG‴(S3)=A⇒B,A⊙A; DG‴(S4)=A,B⇒A⊙A,¬A⊙¬A;DG‴(S3|S4)=DG‴(S4)|DG‴(S4).

Thus the proof of DG′(S1)DG′(S2)̲DG′(S3|S4) is constructed by

B⇒BA,A⇒A⊙A,¬A⊙¬A,A⊙AA⇒B,A⊙A|A,B⇒A⊙A,¬A⊙¬A(COM).

Appendix A.5.2. Illustration of Construction 3

Let τ* be

H8≡B⇒BH9≡A⇒AH4≡A⇒B|B⇒A(COM)H10≡B⇒BH11≡A⇒AH5≡A⇒B|B⇒A(COM)H2≡A⇒B|A⇒B|B,B⇒A⊙A(⊙r)H1≡A⇒B|⇒B,¬A|B,B⇒A⊙A(¬r).

By Construction 3, τ** is then given as follows.

(B⇒B;8,0)(A⇒A;9,0)(A⇒B;4,1)|(B⇒A;4,2)(COM)(B⇒B;10,0)(A⇒A;11,0)(A⇒B;5,1)|(B⇒A;5,2)(COM)(A⇒B;4,1)|(A⇒B;5,1)|(B,B⇒A⊙A;2,0)(⊙r)(A⇒B;4,1)|(⇒B,¬A;1,0)|(B,B⇒A⊙A;2,0)(¬r).

As an example, we calculate ℘(H8). Since Th(H8)=(H8,H4,H2,H1), then b3=1, b2=b1=b0=0 by Definition 10. Thus ℘(H8)=b020+b121+b222+b323=8.

Note that we cannot distinguish the one from the other for two A⇒B′s in H2∈τ*. If we divide H2 into H′|H″, where H′≡A⇒B and H″≡A⇒B|B,B⇒A⊙A, then H′⋂H″={A⇒B} in the conventional meaning of hypersequents. Thus only in the sense that we treat τ* as τ**, the assertion that H′⋂H″=∅ for any H′|H″⊆H in Proposition 3 holds.

Appendix A.5.3. Illustration of Notation 7 and Construction 4

Let I={H1c,H2c},Il={H1c},Ir={H2c},I={S11c,S21c},Il={S11c},Ir={S21c},

G′|S′G″|S″G′|G″|H′(⊙r)∈τ*,

where G′|G″|H′=HIV;G′≡A⇒p1|p1,p2⇒A⊙A;S′≡⇒p2,¬A;G″≡A⇒p3|p3,p4⇒A⊙A;S″≡⇒p4,¬A;H′≡⇒p2,p4,¬A⊙¬A (See Figure 4).

G′|S′Il=⇒p2,¬A;G′Il=∅;G′|G″|H′Il=A⇒p3|⇒p2,p4,¬A⊙¬A|p3,p4⇒A⊙A;G|G*Il=GIl*=GS11c*=⇒p2,B|B⇒p4,¬A⊙¬A|A⇒p3|p3,p4⇒A⊙A (See Figure 5).

G″|S″Ir=⇒p4,¬A;G′|G″|H′Ir=A⇒p1|⇒p2,p4,¬A⊙¬A|p1,p2⇒A⊙A;

G|G*Ir=GIr*=GS21c*=A⇒p1|⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A (See Figure 8).

G′|G″|H′I=⇒p2,p4,¬A⊙¬A;G|G*I=GI*=G{S11c,S21c}*=GIl*⋂GIr*=⇒p2,B|B⇒p4,¬A⊙¬A (See Figure 10).

Appendix A.5.4. Illustration of Theorem 2

Note that sequents in [] are principal sequents of elimination rules in the following. Let I,Ir,Il be the same as in Appendix A.5.3 and, I={S1cI,S2cI},Il={S1cI},Ir={S2cI},

S1cI=GH2c:G|G*☆=A⇒p5|⇒p6,B|B⇒p8,¬A⊙¬A|p5⇒C|

C,p6⇒A⊙A|B⇒p7,¬A⊙¬A|p7⇒C|C,p8⇒A⊙A,

S2cI=GH1c:G|G*☆=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|

A⇒p3|⇒p1,B|p3⇒C|C,p4⇒A⊙A.

τIl☆=S1cI̲GIl☆(1)τH1c:A⇒p5*̲GIl☆(2)τH3c:p9,p10⇒A⊙A*̲GIl☆ECΩ*,

where

GIl☆(1)=⇒p5,B|B⇒p10,¬A⊙¬A|A⇒p9|p10,p9⇒A⊙A|⇒p6,B|

B⇒p8,¬A⊙¬A|p5⇒C|C,p6⇒A⊙A|B⇒p7,¬A⊙¬A|

p7⇒C|C,p8⇒A⊙A,

GIl☆(2)=⇒p5,B|B⇒p10,¬A⊙¬A|A⇒p9|[p9⇒C|C,p10⇒A⊙A]|

⇒p6,B|B⇒p8,¬A⊙¬A|p5⇒C|C,p6⇒A⊙A|

B⇒p7,¬A⊙¬A|p7⇒C|C,p8⇒A⊙A,

GIl☆=⇒p5,B|A⇒p9|p9⇒C|⇒p6,B|B⇒p8,¬A⊙¬A|

p5⇒C|C,p6⇒A⊙A|B⇒p7,¬A⊙¬A|p7⇒C|C,p8⇒A⊙A,

GHIV:G″☆(J)=A⇒p9|p9⇒C|C,p10⇒A⊙A;S″^=B⇒p10,¬A⊙¬A;S′^=⇒p5,B;

GHIV:H′☆(J)=GHIV:H′*=S′^|S″^;G†=A⇒p9|p9⇒C|C,p10⇒A⊙A|B⇒p10,¬A⊙¬A.

τIr☆=S2cI̲GIr☆(1)τH2c:A⇒p3*̲GIr☆ECΩ*,

where

GIr☆(1)=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|

⇒p1,B|p3⇒C|C,p4⇒A⊙A|[A⇒p11|⇒p12,B|

B⇒p3,¬A⊙¬A|p11⇒C|C,p12⇒A⊙A],

GIr☆=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|

⇒p1,B|p3⇒C|C,p4⇒A⊙A|A⇒p11|B⇒p3,¬A⊙¬A|p11⇒C.

Since there is only one elimination rule in τIr☆, the case we need to process is τH2c:A⇒p3*, i.e.,

τIjr*=S2cI̲GH2c:S2cI☆(1)τH2c:A⇒p3*.

Then v=1, Sjr1c=A⇒p3; Gbr1=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|

C,p2⇒A⊙A|⇒p1,B|p3⇒C|C,p4⇒A⊙A in τIjr*.

τIl☆(0)=S1cI̲GIl☆(1)τH1c:A⇒p5*̲GIl☆(2)τH3c:p9,p10⇒A⊙A*̲GIl☆ECΩ*1∘,

where ∂τIl☆(S1cI)=H1c, ∂τIl☆(GIl☆(1))=H3c<HIV, ∂τIl☆(GIl☆(2))=∂τIl☆(GIl☆)=G|G*, G1∘∘=GIl☆(2), G1∘=GIl☆.

τIl:G1∘∘☆(0)=S1cI̲GIl☆(1)τH1c:A⇒p5*̲GIl☆(2)τH3c:p9,p10⇒A⊙A*,

τIl:G1∘∘(1)☆(0)=τIl:G1∘∘(2)☆(0)=S1cI̲GIl☆(1)τH1c:A⇒p5*.

Since there is only one elimination rule in τIl:G1∘∘(2)☆(0), the case we need to process is τH1c:A⇒p5*, i.e.,

τIjl*=S1cI̲GIl☆(1)τH1c:A⇒p5*.

Then u=1, Sjl1(tl1)c=A⇒p5; Gbl1=⇒p6,B|B⇒p8,¬A⊙¬A|

p5⇒C|C,p6⇒A⊙A|B⇒p7,¬A⊙¬A|p7⇒C|C,p8⇒A⊙A in τIjl*.

τIjl* is replaced with τIjl∪Ijr* in Step 3 of Stage 1, i.e.,

S1cIS2cI̲Gl,rτ{H1c:A⇒p5,H2c:A⇒p3}*=τIl:G1∘∘(3)☆(0)=τIl:G1∘∘(4)☆(0),

where

Gl,r=⇒p5,B|B⇒p3,¬A⊙¬A|Gbr1|Gbl1=⇒p2,B|B⇒p4,¬A⊙¬A|p1⇒C|C,p2⇒A⊙A|⇒p1,B|p3⇒C|C,p4⇒A⊙A|⇒p6,B|B⇒p8,¬A⊙¬A|p5⇒C|C,p6⇒A⊙A|B⇒p7,¬A⊙¬A|p7⇒C|⇒C,p8⇒A⊙A|p5,B|B⇒p3,¬A⊙¬A.

Replacing τIl:G1∘∘☆(0) in τIl☆(0) with τIl:G1∘∘(4)☆(0), then deleting GIl☆ and after that applying ECΩ* to Gl,r and keeping Gbr1 unchanged, we get

τIl☆(τIjr*)=S1cIS2cI̲Gl,rτ{H1c:A⇒p5,H2c:A⇒p3}*̲S″^|Gbr1|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆ECΩ*,

where GHIV:G″Ijr☆(J)=GHIV:G″Ijr*=∅; S′^=⇒p5,B;

S″^=B⇒p3,¬A⊙¬A;G‡=Gbr1|S″^,GHIV:H′☆(J)=GHIV:H′*=S′^|S″^;

GIl\r☆=⇒p5,B|⇒p6,B|B⇒p7,¬A⊙¬A|p5⇒C|C,p6⇒A⊙A|

p7⇒C|C,p8⇒A⊙A|B⇒p8,¬A⊙¬A.

Stage 2τIr:G1∘∘☆(0)=τIr:G1∘∘(1)☆(0)=τIr:G1∘∘(2)☆(0)=S2cI̲GIr☆(1)τH2c:A⇒p3*,

τIr:G1∘∘(3)☆(0)=τIr:G1∘∘(4)☆(0)=S1cIS2cI̲S″^|Gbr1|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆τIl☆(τIjr*).

Replacing τIr:G1∘∘☆(0) in τIr☆(0) with τIr:G1∘∘(4)☆(0), then deleting GIr☆ and after that applying ECΩ* to S″^|Gbr1|GHIV:G″Ijr☆(J)|GHIV:H′☆(J)\{S′^|S″^}|GIl\r☆, we get τI☆.

References

	

Rose, A.; Rosser, J.B. Fragments of many-valued statement calculi. Trans. Am. Math. Soc. 1958, 87, 1–53. [Google Scholar]

	

Chang, C.C. Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 1958, 88, 467–490. [Google Scholar]

	

Chang, C.C. A new proof of the completeness of the Lukasiewicz’s axioms. Trans. Am. Math. Soc. 1959, 93, 74–80. [Google Scholar] [CrossRef]

	

Hájek, P. Metamathematics of Fuzzy Logic; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]

	

Hájek, P. Basic fuzzy logic and BL-algebras. Soft Comput. 1998, 2, 124–128. [Google Scholar] [CrossRef]

	

Cignoli, R.; Esteva, F.; Godo, L.; Torrens, A. Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput. 2000, 4, 106–112. [Google Scholar] [CrossRef]

	

Esteva, F.; Godo, L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 2001, 124, 271–288. [Google Scholar] [CrossRef]

	

Jenei, S.; Montagna, F. A proof of standard completeness for Esteva and Godo’s logic MTL. Stud. Log. 2002, 70, 183–192. [Google Scholar] [CrossRef]

	

Metcalfe, G.; Montagna, F. Substructural fuzzy logics. J. Symb. Log. 2007, 7, 834–864. [Google Scholar] [CrossRef]

	

Cintula, P.; Noguera, C. Implicational (semilinear) logics I: A new hierarchy. Arch. Math. Log. 2010, 49, 417–446. [Google Scholar] [CrossRef]

	

Takeuti, G.; Titani, T. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Log. 1984, 49, 851–866. [Google Scholar] [CrossRef]

	

Avron, A. A constructive analysis of RM. J. Symb. Log. 1987, 52, 939–951. [Google Scholar] [CrossRef]

	

Pottinger, G. Uniform cut-free formulations of T, S4 and S5 (abstract). J. Symb. Log. 1983, 48, 900–901. [Google Scholar]

	

Avron, A. Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 1991, 4, 225–248. [Google Scholar] [CrossRef]

	

Esteva, F.; Gispert, J.; Godo, L.; Montagna, F. On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic. Stud. Log. 2002, 71, 199–226. [Google Scholar] [CrossRef]

	

Wang, S.M. Involutive uninorm logic with the n-potency axiom. Fuzzy Sets Syst. 2013, 218, 1–23. [Google Scholar] [CrossRef]

	

Wang, S.M. The Finite Model Property for Semilinear Substructural Logics. Math. Log. Q. 2013, 59, 268–273. [Google Scholar] [CrossRef]

	

Jenei, S. Co-rotation constructions of residuated semigroups. Fuzzy Sets Syst. 2014, 252, 25–34. [Google Scholar] [CrossRef]

	

Ciabattoni, A.; Metcalfe, G. Density elimination. Theor. Comput. Sci. 2008, 403, 328–346. [Google Scholar] [CrossRef]

	

Wang, S.M. The logic of pseudo-uninorms and their residua. Symmetry 2019, 11, 368. [Google Scholar] [CrossRef]

	

Metcalfe, G.; Olivetti, N.; Gabbay, D. Proof Theory for Fuzzy Logics; Springer Series in Applied Logic; Springer: New York, NY, USA, 2009; Volume 36, ISBN 9781402094095. [Google Scholar]

	

Metcalfe, G.; Tsinakis, C. Density revisited. Soft Comput. 2017, 21, 175–189. [Google Scholar] [CrossRef]

	

Baldi, P.; Terui, K. Densification of FL chains via residuated frames. Algebra Universalis 2016, 75, 169–195. [Google Scholar] [CrossRef]

[image: Symmetry 11 00445 g001 550]

Figure 1. A proof τ of G0.

Figure 1. A proof τ of G0.

[image: Symmetry 11 00445 g001]

[image: Symmetry 11 00445 g002 550]

Figure 2. A proof ρ of H0.

Figure 2. A proof ρ of H0.

[image: Symmetry 11 00445 g002]

[image: Symmetry 11 00445 g003 550]

Figure 3. A proof τ1.

Figure 3. A proof τ1.

[image: Symmetry 11 00445 g003]

[image: Symmetry 11 00445 g004 550]

Figure 4. A proof τ* of G|G*.

Figure 4. A proof τ* of G|G*.

[image: Symmetry 11 00445 g004]

[image: Symmetry 11 00445 g005 550]

Figure 5. A derivation τH1c:A⇒p2* from A⇒p2.

Figure 5. A derivation τH1c:A⇒p2* from A⇒p2.

[image: Symmetry 11 00445 g005]

[image: Symmetry 11 00445 g006 550]

Figure 6. A derivation τH1c:A⇒p1* from A⇒p1.

Figure 6. A derivation τH1c:A⇒p1* from A⇒p1.

[image: Symmetry 11 00445 g006]

[image: Symmetry 11 00445 g007 550]

Figure 7. A proof τH1c:G|G*☆(1) of GH1c:G|G*☆(1).

Figure 7. A proof τH1c:G|G*☆(1) of GH1c:G|G*☆(1).

[image: Symmetry 11 00445 g007]

[image: Symmetry 11 00445 g008 550]

Figure 8. A derivation τH2c:A⇒p4* from A⇒p4.

Figure 8. A derivation τH2c:A⇒p4* from A⇒p4.

[image: Symmetry 11 00445 g008]

[image: Symmetry 11 00445 g009 550]

Figure 9. A derivation τH2c:A⇒p3* from A⇒p3.

Figure 9. A derivation τH2c:A⇒p3* from A⇒p3.

[image: Symmetry 11 00445 g009]

[image: Symmetry 11 00445 g010 550]

Figure 10. τ{H1c:A⇒p2,H2c:A⇒p4}* and τ{H1c:A⇒p5,H2c:A⇒p3}*

Figure 10. τ{H1c:A⇒p2,H2c:A⇒p4}* and τ{H1c:A⇒p5,H2c:A⇒p3}*

[image: Symmetry 11 00445 g010]

[image: Symmetry 11 00445 g011 550]

Figure 11. τH3c:p1,p2⇒A⊙A*, τH3c:p3,p4⇒A⊙A* and τH3c:p5,p6⇒A⊙A*.

Figure 11. τH3c:p1,p2⇒A⊙A*, τH3c:p3,p4⇒A⊙A* and τH3c:p5,p6⇒A⊙A*.

[image: Symmetry 11 00445 g011]

[image: Symmetry 11 00445 g012 550]

Figure 12. A proof τH1c:G|G*☆(2) of GH1c:G|G*☆(2).

Figure 12. A proof τH1c:G|G*☆(2) of GH1c:G|G*☆(2).

[image: Symmetry 11 00445 g012]

[image: Symmetry 11 00445 g013 550]

Figure 13. Preprocessing of τ.

Figure 13. Preprocessing of τ.

[image: Symmetry 11 00445 g013]

[image: Symmetry 11 00445 g014 550]

Figure 14. A derivation of GI☆(q+1) from GI☆(q).

Figure 14. A derivation of GI☆(q+1) from GI☆(q).

[image: Symmetry 11 00445 g014]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file26.jpg
C=C

C=C G'|ps,ps= Ao Alps,ps = A0 A
G"|p3 = C|C,ps = A® Alps,po = A0 A

G

#*(2)
HEGIG* =

G"|p3 = C|C,ps = A0 Alps = C|C,ps = A A

media/file8.jpg
B=B
C=C

p=pA=Ap=pA=A pospA=Ap=pA=A
A=pp=AA=pp=A A=pp=A A=pp=4A
A=plA=plpp=AcA A=plA=ppp=AcA
A=pl=p-App=A0A A=pl=p-App=A0A

Hy =A=pl=p,p,~A0-Alp,p= A0 AA = plp,p = A0 A

A= pl=p,BB=p-A0-Ap,p=AcAA=plp,p = AGA

A=pl=

P.BB=p,~A0-Alp=C|C,p=>A0A|A=plp,p=A0A

media/file27.png
C,:>C G"lps, pa= A0 Alps, ps = A0 A
/
G"|p3 = C|IC,ps = A0 Al|ps,ps = AGA

GH2) =Gl ps=C
HS:G|G* P3 C,ps=A0Alps =C|C,ps=> A0 A

C=>

media/file13.png
B =B

A= pp

p3=>p3 A=A pp=>py A=A

A=>palpa=A A=pyps=>A

A= p3|A = pylps, pa=>ACA

= p2,~A A= p3|= ps,-Alpz,ps=ACA

= p2,pa, ~AO-A|A = palps, pr=AGA

= p2,B|B = ps,~A0-A|A = p3|ps, pa=AGA

media/file31.png
(S5 11

*(q) _ ~%(q) m m
GI - GI \{ququ}uzl|{szqqu}uz2 quql < >

Y (q) m m *
GI \{ququ}uzl {ququ}u23|sz¢q2|G ?1
lq

c
Siql

mq—l
u=1

% (q) m *

u=1

% (g+1) _ ~(Mg | g r
Gr ™ = Grss mGE 3
lqu

u=1

media/file12.jpg
B=B

A=pp

p3=ps A=A pp=>py A=A
A=pilps=A A=pipa=A

A= palA= plps, ps= A0 A

= po,~A A= p3| = ps,-Alpz,prs=>A0A

= p2,Pa,~AC-A|A = p3lps, py= AOA

= p2, BIB= ps,-A@-AlA = p3|p3,ps = A0 A

media/file18.jpg
C=C

B=B

A= pi|=py,-Alppr=AGA

A=py

= pa-A

A= pil=pops~A0-ApLpr=> A0 A

A= pi|=psBB=ps,-A0-Alp,pp=> A0 A

A=pi|=pyBB=py,-A0-Alp1 =>C|IC,pp=> A0 A

media/file9.png
C=C

B =B

p=2pA=>Ap=>2pA=>A p=2pA=>Ap=>pA=>A

A=>plp=A A=>plp=>A A=>plp=>=A A=pp=>A

A=>plA=plpp=>A0A A=>plA=plpp=>A0A

A=pl=p-Alpp=>A0A A=p|l=p-App=>A0A

Hix=A=pl=pp-Ac-App=AcAlA=>ppp=AcA

A=p/=pBB=p -Ac-Alpp=>A0AA=plpp=A0A

A=>p|=pBB=>p -Ao-Alp=>C|IC,p=>A0AlA=>plpp=>A0A

media/file14.jpg
B=B

A=p

ps=>ps A=A pg=>ps A=A

A=pslps=A A= plpe=A

A = ps|A = pelps, pe = A0 A

= p1, A A= ps|= ps,-Alps, pe = A0 A

= p1,P6,~A®-A|A = pslps, pe = A0 A

= p1,BIB = ps,~A©-A|A = pslps, po = A0 A

media/file20.jpg
C=C

B=B

A=
A= psl = po,~Alps,ps = Ao A —— T2
=p3, A

A= ps| = po,p3, ~A©-Alps, ps = A0 A

A= ps5| = pe, BB = p3,~A©-Alps,ps=> A0 A

A = ps| = pe, BIB = p3,~A©-Alps = CIC,ps = A0 A

media/file23.png
B =

B

A=>py A=py

:>p2,—|A :>p4,—|A

= P2, P4, -A®-A

= p2,B|B = py,-A®-A

A=ps A=p;3

= p5/ p3/ -A®-A

= p5,B|B = P3, -A®-A

media/file5.png
p=p A:A/
A:p|p:A\

p=7p A:A/
mE (
= plp = A

COM)

A= plA=plpp=>A0A

(@1

A=plpp=AcA

(EC),

:>p,ﬁA|p,p:>A®A

(=r)

p=7p

A
(

p:>

p

A:p|p:A \

M)

A=plp=

A

A/
(COM)

(®r)2

A=plA=plpp=A0A
A=plpp=AcA
:>p,ﬁA|p,p:>A®A

(EC)

(=r)

(continued)
=p,-Ap,p=A0A =p-App=AcA
%m3$nnﬁMHMnP$A®AmpéA®A\@h@c
B=B Hx == p,p,-A0-Alp,p= A0 A \ h(DM
C=C = p,BB=p,-Aeo-Ap,p=>A0A \)@OM
= p,BB=p,-Ae-Ap=>CIC,p=>A0A \)

media/file15.png
B =B

A= p

ps =>ps A=A psg=>ps A=A

A= pslps =A A= pglpe = A

A = p5|A = pslps, pe = AGA

= p1,~A A= ps| = pe,-Alps, ps = A0 A

= p1,P6,~A O -A|A = pslps,ps = AGA

= p1,B|B = pe,-A @ ~A|A = ps|ps, ps = AG A

media/file19.png
C=>C

B =B

A= pi| = pr,-Alp,p2=> A0 A

A:>p4

— p4, —|A

A= P1| = P2/P4/_'A@_'A|P1/P2 = A0A

A= pi|=py,B|B=py,-A0-Alpr,pp =>A0A

A=p1|=p2,B|B=py,-A0-Alp1 = C|C,pp=> A0 A

media/file28.jpg
< Step 1: 7! Step 2: % Step 3: T
- G G GolGy G1|Gy
0 o T EC 0lGg W 1G]
Step 4: 7* Step 5: T
——— G9|G; G|G*
LW ID numbers

media/file2.jpg
G
(Target)

link
&
(Route)

)
Tl e, |

CHINEEIC

e

o <1.,,)

Taall

c.‘j\wlc:v"z,»n,\,

s @)

nav.xhtml

 symmetry-11-00445

 		
 symmetry-11-00445

media/file11.png
C=>C

B =B

pr1=pPA=>Ap=2pA=>A p3=>p3 A= Apy=>ps A=A

A=>pilpi=A A= plpp= A A= palps=>AA=pylps= A

H{=A=pi|[A=plp1,pp=>A0AHS=A= p3|A= pslps,ps= A0 A

A=pi|=py,-Alp,pp=A0A A=ps=ps-Alps,ps=A0A

A= p1|= p2,ps,~AC-Alp,pr = AOA|A = p3ps, ps = ACA

Hy= A= pi|= py,BIB=py,~A0-Alp1,pp=> A0 A|A = p3|ps, ps = A0 A

A= pi|= p2, B|B= ps,~A0-Alp1 = C|C,p2 = A A|A = p3|ps, ps = AG A

media/file6.jpg
A=A A=A A=A A=A

AA=AcA AA=AcA
A=-AAcA A=-AAGA
B=B __ AA=>-Ac-AAcAAcA

C=C___AB=AoA-Ao-AA=AcAB
H=A=ClAB=A0AA0-AC=AGAB

Aoa a=a o
TAATASA ~ _Mi=A=CAB=A0A-A0-AC=A0AD
Ao AASK = AT = A0A-AS-ACS AAT
FoB A -Ao-AAGACAB=AGA-AD-ACSAGAD
=< SRS A0-AA0AAT = A0A-A0AL = A0 AT
ST ASU=ROCA=-A6-AA0AAT=A0A-10-AC=A0AT
A=0A=C=h,0CF=A0-AA6ACE=A0A-A0-AC=ACAD

Tis A== 5,0C 5= A0A Ao-AC=A0AD

YRy
Aa=doa_ = A8 = A0 -A0-AC= AOAD
Am-Adon A= G~ A A0 -Ao-AL= ASAE
F=b A= 0AT= A0-AAOAAGA-AGAC= AOAD
=< 5= 404,404 A0 A4 = ClA = 704, 5L = AOAT
= A= TB5~-A0-AAGA A0-AA= (= ADAFC = ASAT
A= CCh A0 A,~A0-AA = ClF = C, A0 -AC = A0 AT AOAT

= A= CC > A0 A BT = G40 A8 = A0 4,204

== BCCB= A0, A0 -AC= A0 A
AT = BOC = ASA -A0-AC = ASAE

AT AGANB = CnA A,

=AoA-A0-A

F=F = AoACO=ROCI=AoA AeAC=AeAH

C= AGA B = C-AOCB > A0 A A
B A0-ACl= 5.0/~ B.0C8= A0 A, -A0-AC= ASA]
CoASANB = CAOICH = ADA 204

(comy

Ti== 5,0C= A0 A0 = A6 -ACH = A6 A A6 A 8o

media/file24.jpg
C=C pypp=>A0A C=C p3y,ps=A0A
p1=ClCpp=>A0A p3=>ClICps=A0A

C=C ps,ps=>A0A
p5=ClC,ps=A0A

media/file29.png
Step 1: 7!

/\TZU/Vlw

> Go|G;

Step 2: 2
Go

EC

Step 5: 7

ID numbers

> GolGg

. G|G*

Step 3: =

> G1/Gy

media/file1.png
= p2, BB = p3,~A©-Alp; :C\
Pl = pslps,p.

sz:A AlA=

G|
Gliegie = A= pil= pz,Bl
B=py,~A0-Alp =C| ’
Cpp=A0Alp3=C|
B=p3,~A0-AC,ps > A0 A ?
5 == p2, BB = py,~A©-Alp; = CIC,pr = AGA|
B:‘ﬁAeaA p3l = p1Blps = CIC,ps = A0 A

media/file10.jpg
B=B.
c=cC

PP AmApopA=sA pop A=mApop A=A
A=pipn=AA=plpn=A A=plps=AA=pilp=A4
H{=A= pilA=palpi,pa= A0 AH5 = A= ps]A= pylpa,ps = AGA

A=pil=pr-ApLpr=A0A A= py=ps,-Apsps=A0A

A= pil=paps,~A0-Alp,pr = ACAIA= pilps, ps = A0 A

H:

= pi| = p2 BIB = ps,~A©-Alp,p2 = A0 AIA = pslpa,ps = AGA

A= pil= 72, BB = ps,~A0-Alp1 = CIC,p2= AGAIA = pilps,ps = AGA

media/file7.png
A=A A=A A=A A=A
AA=>AGA AAA=>AGA
A=>-AAGCA A=-AAGA
B= B AA=-A0-AACA AGCA
C=C A B=A0A -A0-AlA=AGA,B
H=A=C|A B=>A0A-A0-AC=A0A,B

A=A A=A
AAA=AGA H =A=C|AAB=A0A -A0-AIC=A0A,B

A=-AAGCA = -A,C|A,B=A0A-AG-AC=A0A,B

B=B A= -A0-AA0ACIAB=A0A -A0-AC=A0A,B

C=2C = B,C|A,B=>-A0-A,A0AIA B=A0CA -AG-AIC=A0A,B

C=C A=C|=B,C|ICCB=-A0-A,A0AIAB=A0A-A0-AC=A0GA,B

A=CA=C|=B,CIC,B=-A0-AAQA|ICCB=A0A -A0-AIC=A0A,B
Hy=A=C|=B,CICCB=A0A -A0-AIC=A0A,B

A=A A=A
AA=AGA H =A=C|AAB=A0A -A0-AIC=A0A,B
A= -AAGA A=CB=-AA0A -A0-AC=A0A,B
B=B A=C|AB=-A0-AA0AAGCA -AG0-AIC=A0A,B
C=C B B=-A0-AAGCA -A0-AIA=C|IA=AGABC=A0A,B
C=C A=C|BB=-A0-AA0A -A0-A|IA=CIC=A0AB|IC=A0A,B
A=C|ICCB==A0A -A0-A[A=CIB=C,-A0-AIC=A0ABC=A0A,B
Hy=A=C|C=A0ABB=C-AG0-A|CCB=A0A-AO-A

Hy=A=C|=B,CICCB=A0A-A0-AC=A0A,B

Hy=A=C|C=>A®ABB=C,-A0®-AlC,B=AGA, ~A®-A

B = B - -A®-A,C,Cl=B,CIC,CB=>AG®A -AG-AC= A® A, B| ‘
C=>AOABB=C-A0-ACLB=AGA -AG-A

C=A0ABB=C-AG0-A|CLB=A0A-AO0-A

Hy==B,C|[C=A®A,BB=C,-A@-AC,CB=A®A -A®-A

(ECT)

media/file16.jpg
ps=ps A=A ps=>ps A=A
S A A=plpe=A
G'lA=p A= pslA = pelps, ps = A0 A
Gl=pr~A A= ps|= po-Alps,ps= AGA

B=B
G'[= p1,pe,~A©-AlA = pslps, ps = A0 A
GED ., = G'| = p1, BIB = pe, ~A ©~AJA = ps|ps, ps = A® A

HEGIG

media/file3.png
Gy
(Target)
link
Tlﬁ
(Route)

Induction hypothesis

gifts us

W
G 3t lGy o, |

rafting <«* Tjr
8 8 I, G*ﬁr(]) \{S/|S//}|GIZ\
into TF\‘T
1
Tll (T;;r)
1 call
) e\ rar ()
grafting rf;’ (Tf;r) GI, \{S'|GH}/:G’}|GIZ\7
. ﬁ :
mto TIr TI‘Z;T (TIT (Tl?r))

media/file0.png

media/file22.jpg
A=py A=py

A=>ps A=p;

BoB :szA = pa A

pPs ~A =p3-A

= P, ps,~A®-A

= p5,p3,~A0-A

= p2,B|B=py,~A0-A

= p5,B|B= p3,~A0-A

media/file17.png
B =B

ps =>p5s A=A pg=>ps A=A

A=pslps=A A= pglpe = A
G'|A = p1 A = ps|A = pslps, pe = A A
G’|:>p1,—|A A:>p5|:>p6,—|A|p5,p6:>A®A

G'| = p1,p6,~A O -~A|A = ps|ps, pe => AG A

¥ (1)
GHf:G|

o =G| = p1,B|B = pg,~A@-A|A = ps|ps,ps => A A

media/file4.jpg
pop A=A p=p A=A

2P 22 Zcom2t 22

Ao dp= A oM A=A oM
A= A= plpp=A0A
A=plpp=AcA

(orh

(ECh

=poApp=Acd

(=)

pop AmA_pop A=A
p=p 22 Lcomt =t 224
G R T S
A= A= pp=AcA

A=plpp=AoA

(@n)2

(EC)2

= p~Alpp=AcA

(=)

(continued)

~Alpp=A0A_ =p-App=Acd
Hox == . AG-App = ACApP = ACA

{or)s

5=8 e == pp,Ao-App = ASA

EC)s

c=c S pBB=p-Ac-Apy=AGA

(com)

= pBB=p-Ac-Ap=CCp=AGA

(com)

media/file30.jpg
G- Gr O\,

G\,

g

(S ISialC |

GOSN, 55)

lgutu=1

g1
u=1

le(qﬂ)

GO\

1I(G

o

iy
u=1

media/file25.png
C=C p,pp=>A0A C=C p3,ps=>A0A
P1:>C|C,P2:>A®A p3=>C|C,p4:>A®A

C=C p5,pe=>A0A
ps = C|C,ps = AGA

media/file21.png
C=C

B =B

A= ps| = pe, -Alps, p6 = A0 A

A=>p3

= p3, —|A

A= p5| = P6/P3,—|A®—|A|p5,p6 = A®A

A = ps| = pe,B|B = p3,~A0-Alps,ps => A0 A

A= ps| = pgs, B|B=p3,~A0-Alps = C|C,ps = A0 A

