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Abstract: A specific spectral deformation of the Maxwell-Bloch equations of nonlinear optics is
investigated. The Darboux transformation formalism is adapted to this spectrally deformed system
to construct its single and multi-soliton solutions. The Effects of spectral deformation on soliton
behaviour is studied.
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1. Introduction

The spectral deformation technique is a tool of applied mathematics, which enables one to generate
many new integrable partial differential equations (pde’s) from a given integrable pde. In its main
lines, it can be summarized as follows: Each integrable pde has an associated linear overdetermined
system (i.e, a zero curvature representation (ZCR) or a Lax pair) which contains a spectral parameter, λ.
According to the established methods of soliton theory, this parameter must be a constant number.
It was first suggested in [1] that under some restrictive assumptions, λ can be choosen as a function of
the independent parameters of the problem, rather than a constant. The main restriction on λ is that it
should be the solution of an overdetermined, nonlinear set of pde’s, which was derived in [2]. General
solutions for this set of nonlinear pde’s for λ are presently not known. However, many different
particular solutions can be found by inspection. Each of these particular solutions generates a new,
integrable pde from the given integrable pde. These new pde’s are called the “spectral deformations”,
or simply “deformations” of the original pde. For some applications of the spectral deformation
technique in nonlinear optics, see [3–5].

In 1994, the spectral deformation technique was applied to the Maxwell-Bloch (MB) equations of
nonlinear optics, which model resonant light–matter interactions [2]. The result was three different
deformations, corresponding to three different particular solutions for λ. Two of these deformations
were subsequently solved by employing the dressing and Darboux transformations [2,6]. The third
one is not solved yet. Our aim in this paper is to investigate this third equation, which we will call
“the deformed Maxwell–Bloch equation” (DMB).

In Section 1, we will summarize the deformation process through which one can generate DMB
from MB. Section 2 will develop a Darboux transformation methodology and construct single soliton
solutions for DMB. The behaviour of these solitons will be investigated. Section 3 will construct two
soliton solutions and investigate soliton collisions.
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2. Maxwell-Bloch Equations and Spectral Deformation

Maxwell-Bloch (MB) equations can be expressed as

Eη = ρ, (1)

Nζ +
ρE∗ + ρ∗E

2
= 0, (2)

ρζ + i
ε + ε∗

2
ρ = NE (3)

εη = 0. (4)

where ζ = t− x
c , η = Ω

c x. Ω =
4πp2

0n0ω0
h̄ is a constant dependent on the physical properties of the

system, with n0 being the number of atoms per unit volume, p0 is the polarization and ω0 is the
frequency of the electric field. E denotes the complex envelope of the electric field; ρ is the amount
of polarization in the resonant medium, and N is the amount of population inversion between the
two energy levels. ε models frequency shift from the resonance. It is a trivial field as it can be eliminated
from the MB equations by rescaling. However, we will not rescale it, as it will become non-trivial when
the system is deformed.

It is well-known that MB equations are integrable and possess the following zero curvature
representation (ZCR):

Ψζ = JΨΛ + UΨ, (5)

Ψη = VΨΛ−1, (6)

where

J =

[
−i 0
0 i

]
, Ψ =

[
ψ φ∗

φ −ψ∗

]
, Λ =

[
λ 0
0 λ∗

]
,

U = − 1
2

[
iε E
−E∗ −iε∗

]
, V = − 1

4i

[
N ρ

ρ∗ −N

]
,

(7)

and λ is a complex constant. The MB Equations (1)–(4) can be recovered from the ZCR (5) and (6) by
equating the mixed derivatives, i.e by Ψζη = Ψηζ , which results in

Uη = [U, V], (8)

Vζ = [V, J ], (9)

where [.,.] denotes the commutator. If we substitute the expressions for U, V and J as given in (7) into
the above equations, (8) will yield (1), and (4) and (9) will yield (3) and (2). This shows the equivalence
of ZCR (5) and (6) to the MB equations.

Note that Equation (3) differs from the original version derived in [2], Equation (9). These two sets
of equations are equivalent when the field ε is real. However, if the field ε is taken to be complex, they
cease to be equivalent. Furthermore, the ZCR given in [2] becomes invalid, which indicates that with
a complex ε field, Equation (9) in [2] loses integrability, while (3) continues to be integrable.

Allowing ε to become complex is important, as the Darboux transformations forces it to become
complex during the first and subsequent iterations (see Equation (15)). This implies that Darboux
transformation cannot be applied directly to Equation (9) in [2] and their ZCR, as these cannot handle
a complex ε field. Hence, the modifications resulting in Equation (11) is crucial. Furthermore, note that
in Equation (11) while ε is allowed to be complex, only its real part affects the dynamics of the system.
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Spectral deformation of the MB equations is obtained when λ is considered not as a constant but as
a function of the independent variables ζ and η. We are interested in the following specific deformation:

∂λ

∂ζ
= −bλ2,

∂λ

∂η
= 0 ⇒ λ =

k
bk(ζ − ζ0) + 1

(10)

where b is a real constant and k is a complex integration constant which is called the ‘hidden
spectral parameter’ in the spectral deformation literature. Enforcing the consistency conditions
Ψζη = Ψηζ yields

Uη = [U, V] + bV,

Vζ = [V, J ],

or, when (7) is substituted,
Eη = (1− ib/2)ρ,

Nζ + (ρE∗ + ρ∗E)/2 = 0,
ρζ + i ε+ε∗

2 ρ = NE,
εη = −bN/2.

(11)

These equations will be called the deformed Maxwell–Bloch equations (DMB) in the rest of this article.
The physical meaning of Equation (11) is not clear, but we consider it interesting anyway to study
them from a mathematical point of view.

3. Single Soliton Solution for DMB

There are many methods to compute soliton solutions of integrable equations and these methods
usually work well with the spectrally deformed versions of the same equations. Recent examples that
specifically relate to optical solitons are [7–11], which use a plethora of closely related techniques like
Darboux transformations, Dressing transformations or Backlund transformations. This article will use
Darboux transformations to construct solitons of DMB.

For the seed solution, choose

E = 0, ρ = 0,

N = N0, ε = ε0 −
bN0

2
η,

by inspection, where N0, ε0 are real constants. Substituting these into (7), and solving for Ψ in (5)–(6)
with λ as defined in (10) gives

ψ = K1 exp
[
− i

b
ln(bk(ζ − ζ0) + 1)− iε0

2
(ζ − ζ0) +

ibN0

4
(ζ − ζ0)η +

iN0

4k
η

]
,

φ = K2 exp
[

i
b

ln(bk(ζ − ζ0) + 1) +
iε0

2
(ζ − ζ0)−

ibN0

4
(ζ − ζ0)η −

iN0

4k
η

]
.

The Darboux iteration maps a solution S0 = {U, V, Ψ(λ)} of the ZCR (5) and (6) to another solution
S1 = {Ū, V̄, Ψ̄(λ)} of the same ZCR. In practice, it is enough to specify a transformation that maps
Ψ(λ) to Ψ̄(λ). Two other transformations which map {U, V} to {Ū, V̄} follow as an extension to
this transformation.

The following ansatz is proposed for mapping Ψ(λ) to Ψ̄(λ):

Ψ̄(λ) = Ψ(λ) + QΨ(λ)Λ−1 (12)
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where Q(x, t) is a 2× 2 matrix whose exact form is to be determined. This ansatz differs from the
standard one used commonly in Darboux transformation theory, given as

Ψ̄(λ) = Ψ(λ)Λ + QΨ(λ).

which only generates trivial solutions for DMB. By contrast, the newly proposed transformation (12)
generates nontrivial solutions. To specify Q(ζ, η) it is sufficient to fix a zero of Ψ̄(λ), i.e, choose λ1 such
that Ψ̄(λ1) = 0 for all ζ and η. Here λ1 denotes λ evaluated at a hidden spectral parameter k = k1.

λ1 =
k1

bk1(ζ − ζ1) + 1
(13)

This implies the form of the matrix Q:

Q = −Ψ1Λ1Ψ−1
1

and Ψ̄(λ) = Ψ(λ, λ1)

Ψ(λ, λ1) = Ψ−Ψ1Λ1Ψ−1
1 ΨΛ−1, (14)

The subscript 1 above (as in Λ1 and Ψ1) denotes that k and ζ0 in Λ and Ψ are fixed at k = k1 and
ζ0 = ζ1. The next step is to construct the matrices Ū = U(λ1) and V̄ = V(λ1) satisfying

Ψ(λ, λ1)ζ = JΨ(λ, λ1)Λ + U(λ1)Ψ(λ, λ1)

Ψ(λ, λ1)η = V(λ1)Ψ(λ, λ1)Λ−1

After substituting (14) into the the zero curvature representation above and using (5)–(6) to
convert the result into an algebraic equation, we arrive at the final result:

U(λ1) = U + [J, Ψ1Λ1Ψ−1
1 ]− bΨ1Λ1Ψ−1

1 ,

V(λ1) = Ψ1Λ1Ψ−1VΨ1Λ−1
1 Ψ−1

1 .

Carrying out the algebra, we find all the fields (which are elements of the matrices U(λ1) and
V(λ1)) corresponding to a single-soliton solution:

E(λ1) = −4 K∗2
K2

(
1− ib

2

)
=(λ1)eia1 sech(β1)

ρ(λ1) = −4 K∗2
K2

∂
∂η

(
=(λ1)eia1 sech(β1)

)
N(λ1) = N0 − 4=(λ1)

∂
∂η tanh(β1)

ε(λ1) = 2b=(λ1) tanh(β1)− 2b<(λ1)i + ε0 − bN0η
2

(15)

where

a1 = −2
b
| bk(ζ − ζ1) + 1| − ε0(ζ − ζ1) +

bN0

2
(ζ − ζ1)η +

N0

2|k1|2
<(k1)η, (16)

β1 = −2
b

arctan
(

b(ζ − ζ1)=(k1)

b(ζ − ζ1)<(k1) + 1

)
+

N0=(k1)

2|k1|2
η + ln

|K1|
|K2|

. (17)

Here =(.), <(.) denote the real and imaginary parts of a complex number. Note that due to the term
2b<(λ1)i the field ε(λ1) becomes complex after the application of the Darboux transformation.
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Figure 1 plots the electric field of the single-soliton solution vs. ζ and η. Contrary to the
undeformed MB equation, the soliton of the DMB equation is a transient. It pops out of the background,
attains a maximum, and then decays back into the background. This can be seen much better in
Figure 2, which indicates that the soliton has a “lifetime”, i.e., it has a significant magnitude only for
−300 < η < 300. Furthermore, the soliton does not travel at a uniform speed. The soliton stops for
some time before it grows or after it decays, which can be observed in Figure 3.
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Figure 1. E-field vs. ζ and η for b = 0.015, k = −2 + 0.1i, N0 = −60 and ε0 = 0.
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Figure 2. Magnitude of the electric field peak vs. η. Parameters are the same with Figure 1.

One can also ask the question if the DMB soliton behaves more like the MB soliton as b → 0.
Figures 4 and 5 demonstrate that this is the case. There is a region around η = 0 in which the soliton
travels with approximately constant amplitude and speed, like the MB soliton. As b becomes smaller,
this region gets wider.
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Figure 3. Position of the electric field peak vs. η. Parameters are the same with Figure 1.
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Figure 4. Magnitude of the electric field peak vs. η for various values of b, from b = 0.001 to b = 0.0241
with steps ∆b = 0.003. All other parameters are the same with Figure 1.
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Figure 5. Position of the peak of electric field vs. η for various values of b, from b = 0.001 to b = 0.0241
with steps ∆b = 0.003. All other parameters are the same with Figure 1.
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4. Two-Soliton Solution

Using Ψ(λ, λ1), U(λ1) and V(λ1) found above as seed solutions, we can also compute a
two-soliton solution, whose E can be given by

E(λ2, λ1) = −4
(

1− ib
2

)
×

I2eia2 sh(β2)+I1eia1 sh(β1)−
2i(R2−R1)I1 I2

|λ2 |2−2R2R1+|λ1 |2
(ei a2 th(β1) sh(β2)−ei a1 sh(β1) th(β2))

1− I1 I2
|λ2 |2−2R2R1+|λ1 |2

[2 th(β2) th(β1)+sh(β2) sh(β1)(ei(a2−a1)+ei(a1−a2))]
,

where a2, β2 are defined in the same way with a1, β1 in Equations (16) and (17) with the substitutions
k2 → k1 and ζ2 → ζ1. Also, sh(.), th(.) denote sech(.), tanh(.). R1,2, I1,2 denote <(λ1,2) and
=(λ1,2), respectively.

Figure 6 demonstrates two solitons in collision, where b = 0.2, k1 = 0.1− 0.85i, k2 = 0.2+ 0.4i and
ζ1 = ζ2 = 0. As in the undeformed case, the faster soliton passes through the smaller one elastically,
without losing its shape.
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Figure 6. |E|-field for the collison of two solitons between η = −0.56 and η = 0.46. −60 < ζ < 60,
b = 0.2, k1 = 0.1−0.85i, k2 = 0.2 + 0.4i, ε0 = 0, N0 = −60.

5. Discussion

A Darboux-transformation based methodology to construct the soliton solutions of the DMB
equation is proposed. These solitons are shown to behave quite differently compared to the well-known
MB solitons, as they have a finite lifetime, constantly changing shape and nonuniform speed. It is also
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shown that as the deformation parameter b goes to zero, DMB solitons behave more and more like the
MB soliton. In all other respects, DMB solitons have the usual soliton behaviour, like elastic collisions.
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