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Abstract: Free vibration analysis of the porous functionally graded circular plates has been presented
on the basis of classical plate theory. The three defined coupled equations of motion of the porous
functionally graded circular/annular plate were decoupled to one differential equation of free
transverse vibrations of plate. The one universal general solution was obtained as a linear combination
of the multiparametric special functions for the functionally graded circular and annular plates with
even and uneven porosity distributions. The multiparametric frequency equations of functionally
graded porous circular plate with diverse boundary conditions were obtained in the exact closed-form.
The influences of the even and uneven distributions of porosity, power-law index, diverse boundary
conditions and the neglected effect of the coupling in-plane and transverse displacements on the
dimensionless frequencies of the circular plate were comprehensively studied for the first time. The
formulated boundary value problem, the exact method of solution and the numerical results for the
perfect and imperfect functionally graded circular plates have not yet been reported.

Keywords: eigenvalue problem; axisymmetric and non-axisymmetric vibrations; multiparametric
special functions; circular plate; functionally graded porous material

1. Introduction

Functionally graded materials (FGMs) are a class of composite materials, which are made of
the ceramic and metal mixture such that the material properties vary continuously in appropriate
directions of structural components. In the processes of preparing functionally graded material,
micro-voids and porosities may appear inside material in view of the technical issues. Zhu et al. [1]
reported that many porosities appear in material during the functionally graded material preparation
process by the non-pressure sintering technique. Wattanasakulpong et al. [2] reported that many
porosities exist in the intermediate area of the functionally graded material fabricated by utilizing a
multi-step sequential infiltration technique because of the problem with infiltration of the secondary
material into the middle area. In that case, less porosities appear in the top and bottom area of material
because infiltration of the material is easier in these zones.

In recent years, a significant number of articles about the free vibrations of porous functionally
graded (FGM) plates have appeared in the literature due to their wide applications in many fields
of engineering such as aeronautical, civil, mechanical, automotive, and ocean engineering. The
gradation of properties in functionally graded materials and the diverse distributions of porosity
have a significant effect on distributions of the mass and the stiffness of plates and therefore their
natural frequencies. The knowledge about influence of distribution of the material properties on
dynamics of plates is very important because it allows us to predict the frequency of plates and find
their optimal parameters. Additionally, the comprehensive investigation of the effect of functionally
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graded material with porosities and diverse boundary conditions on the natural frequencies of plates
is the first important step to designing their safe and rational active vibration control system.

We note that, in most engineering applications, the classical plate theory is often used to analyze
the dynamic behavior of thin lightweight plates. It is impossible to review all works focused on
mechanical behavior of porous FGM structures; then, we limit ourselves to chronological review of
some of the works focused on mechanical behavior of porous and porous FGM plates that are closely
related to our work.

Jabbari et al. [3] studied the buckling of thin saturated porous circular plate with the layers of
piezoelectric actuators. Buckling load was obtained for clamped circular plate under uniform radial
compressive loading. The same authors presented the buckling analysis of clamped thin saturated
porous circular plate with sensor–actuator layers under uniform radial compression [4,5] investigated
thermal and mechanical stability of clamped thin saturated and unsaturated porous circular plates with
piezoelectric actuators. Rad and Shariyat [6] solved the three-dimensional magneto-elastic problem for
asymmetric variable thickness porous FGM circular supported on the Kerr elastic foundation using the
differential quadrature method and the state space vector technique. Barati et al. [7] studied buckling
of functionally graded piezoelectric rectangular plates with porosities based on the four-variable plate
theory. Mechab et al. [8] studied free vibration of the FGM nanoplate with porosities resting on Winkler
and Pasternak elastic foundation based on the two-variable plate theory. Mojahedin et al. [9] analyzed
buckling of radially loaded clamped saturated porous circular plates based on higher order shear
deformation theory. Wang and Zu [10] analyzed vibration behaviors of thin FGM rectangular plates
with porosities and moving in the thermal environment using the method of harmonic balance and
the Runge–Kutta technique. Gupta and Talha [11] analyzed flexural and vibration response of porous
FGM rectangular plates using nonpolynomial higher-order shear and the normal deformation theory.
Wang and Zu [12] analyzed vibration characteristics of longitudinally moving sigmoid porous FGM
plates based on the von Kármán nonlinear plate theory. Ebrahimi et al. [13] studied free vibration
of smart shear deformable rectangular plates made of porous magneto-electro-elastic functionally
graded materials. Feyzi and Khorshidvand [14] studied axisymmetric post-buckling behavior of a
saturated porous circular plate with simply supported and clamped boundary conditions. Wang and
Zu [15] studied large-amplitude vibration of thin sigmoid functionally graded plates with porosities.
Wang et al. [16] studied vibrations of longitudinally travelling FGM porous thin rectangular plates
using the Galerkin method and the four-order Runge–Kutta method. Ebrahimi et al. [17] used a
four-variable shear deformation refined plate theory for free vibration analysis of embedded smart
rectangular plates made of magneto-electro-elastic porous functionally graded materials. Shahverdi
and Barati [18] developed nonlocal strain-gradient elasticity model for vibration analysis of porous
FGM nano-scale rectangular plates. Shojaeefard et al. [19] studied free vibration and thermal
buckling of micro temperature-dependent FGM porous circular plate using the generalized differential
quadrature method. Barati and Shahverdi [20] presented a new solution to examine large amplitude
vibration of a porous nanoplate resting on a nonlinear elastic foundation modeled based on the
four-variable plate theory. Kiran et al. [21] studied free vibration of porous FGM magneto-electro-elastic
skew plates using the finite element formulation. Cong et al. [22] presented an analytical approach to
buckling and post-buckling behavior analysis of FGM rectangular plates with porosities under thermal
and thermomechanical loads based on the Reddy’s higher-order shear deformation theory. Kiran
and Kattimani [23] studied free vibration and static behavior of porous FGM magneto-electro-elastic
rectangular plates using the finite element method. Arshid and Khorshidvand [24] analyzed free
vibration of saturated porous FGM circular plates integrated with piezoelectric actuators using the
differential quadrature method. Shahsavari et al. [25] used the quasi-3D hyperbolic theory for free
vibration of porous FGM rectangular plates resting on Winkler, Pasternak and Kerr foundations.
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2. Contribution of Current Study

The aim of the paper is to formulate and solve the boundary value problem for the free
axisymmetric and non-axisymmetric vibrations of FGM circular plate with even and uneven porosity
distributions and diverse boundary conditions. The defined coupled equations of motion for the porous
FGM circular plate were decoupled based on the properties of physical neutral surface. The general
solution of the decoupled equation of motion of a porous FGM circular plate was defined as the linear
combination of the Bessel functions functionally dependent on the material parameters. The obtained
characteristic equations allow us to comprehensively study the effect of the distribution of material
parameters and the formulated boundary conditions on the natural frequencies of axisymmetric and
non-axisymmetric vibrations of the circular plates without the necessity to solve a new eigenvalue
problem for plates with a steady distribution of parameters.

Authors of many previous papers (e.g., [26–30]) presented the free transverse vibration analysis
of the perfect (without porosity) FGM circular plates using the equation of motion including only the
coefficient of the pure bending stiffness varying in the thickness direction of the plate. The coefficients
of the extensional stiffness and the bending-extensional coupling stiffness were neglected because
the effect of the coupled in-plane and transverse displacements was omitted for obtaining simplified
solution to the eigenvalue problem.

In the present paper, the obtained equation of motion of the perfect and imperfect FGM circular
plates includes the coefficients of extensional stiffness, bending-extensional coupling stiffness and
bending stiffness, which appeared by decoupling the in-plane and transverse displacements using the
properties of the physical neutral surface. The differences between the values of numerical results for
the eigenfrequencies of the perfect FGM circular plate with and without the coupling effect are shown
for diverse boundary conditions.

To the best knowledge of authors, there are no studies which focus on the free axisymmetric and
non-axisymmetric vibrations of FGM and porous FGM circular plates. In particular, the obtained exact
solution, the multiparametric frequency equations and the calculated eigenfrequencies for the free
vibrations of perfect and imperfect FGM circular plates with clamped, simply supported, sliding and
free edges have not yet been reported. The present paper fills this void in the literature.

3. FGM Circular Plate with Porosities

Consider a porous FGM thin circular plate with radius R and thickness h presented in the
cylindrical coordinate (r, θ, z) with the z-axis along the longitudinal direction. The geometry and the
coordinate system of the considered circular plate are shown in Figure 1. The FGM plate contains evenly
(e) and unevenly (u) distributed porosities along the plate’s thickness direction. The cross-sections of
the FGM circular plates with the two various types of distribution of porosities are shown in Figure 2.Symmetry 2019, 11 FOR PEER REVIEW  4 

 

 
Figure 1. The geometry and the coordinate system of the porous FGM circular plate. 
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Figure 2. The cross-sections of the porous FGM circular plate: (a) even distribution; (b) 
uneven distribution. 
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defined as [31] 𝑉 (𝑧, 𝑔) = + ,   𝑔 ≥ 0, (3) 

where 𝑔 is the power-law index of the material. A change in the power 𝑔 of functionally graded 
material results in a change in the portion of the ceramic and metal components in the circular 
plate. We assume that the composition is varied from the bottom surface (𝑧 = −ℎ/2) to the top 
surface  (𝑧 = ℎ/2) of the circular plate. After substituting the variation of the ceramic part 𝑉 (𝑧, 𝑔) 
from Equation (3) into Equations (2), the material properties of the functionally graded circular 
plate with evenly distributed porosities are defined in the final form:  𝐸 (𝑧, 𝑔, 𝜓) = (𝐸 − 𝐸 ) + + 𝐸 − (𝐸 + 𝐸 ), (4a) 𝜌 (𝑧, 𝑔, 𝜓) = (𝜌 − 𝜌 ) + + 𝜌 − (𝜌 + 𝜌 ), (4b) 𝜈 (𝑧, 𝑔, 𝜓) = (𝜈 − 𝜈 ) + + 𝜈 − (𝜈 + 𝜈 ). (4c) 

For the functionally graded circular plate with unevenly (u) distributed porosities [16], the 
material properties in Equations (4) can be replaced by the following forms: 𝐸 (𝑧, 𝑔, 𝜓) = (𝐸 − 𝐸 ) + + 𝐸 − (𝐸 + 𝐸 ) 1 − | | , (5a) 𝜌 (𝑧, 𝑔, 𝜓) = (𝜌 − 𝜌 ) + + 𝜌 − (𝜌 + 𝜌 ) 1 − | | , (5b) 𝜈 (𝑧, 𝑔, 𝜓) = (𝜈 − 𝜈 ) + + 𝜈 − (𝜈 + 𝜈 ) 1 − | | . (5c) 
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Figure 2. The cross-sections of the porous FGM circular plate: (a) even distribution;
(b) uneven distribution.

The functionally graded material is a mixture of a ceramic (c) and a metal (m). If the volume
fraction of the ceramic part is Vc and the metallic part is Vm, we have the well-known dependence:

Vc(z) + Vm(z) = 1. (1)

Based on the modified rule of mixtures [16] with the porosity volume fraction ψ (ψ� 1), the
Young’s modulus, the density and the Poisson’s ratio for evenly (e) distributed porosities over the
cross-section of the plate have the general forms:

Ee(z, ψ) = Ec

[
Vc(z)−

ψ

2

]
+ Em

[
Vm(z)−

ψ

2

]
, (2a)

ρe(z, ψ) = ρc

[
Vc(z)−

ψ

2

]
+ ρm

[
Vm(z)−

ψ

2

]
, (2b)

νe(z, ψ) = νc

[
Vc(z)−

ψ

2

]
+ νm

[
Vm(z)−

ψ

2

]
. (2c)

The volume fraction of the ceramic part changes continually along the thickness and can be
defined as [31]

Vc(z, g) =
(

z
h
+

1
2

)g
, g ≥ 0, (3)

where g is the power-law index of the material. A change in the power g of functionally graded material
results in a change in the portion of the ceramic and metal components in the circular plate. We assume
that the composition is varied from the bottom surface (z = −h/2) to the top surface (z = h/2) of
the circular plate. After substituting the variation of the ceramic part Vc(z, g) from Equation (3) into
Equation (2), the material properties of the functionally graded circular plate with evenly distributed
porosities are defined in the final form:

Ee(z, g, ψ) = (Ec − Em)

(
z
h
+

1
2

)g
+ Em −

ψ

2
(Ec + Em), (4a)

ρe(z, g, ψ) = (ρc − ρm)

(
z
h
+

1
2

)g
+ ρm −

ψ

2
(ρc + ρm), (4b)

νe(z, g, ψ) = (νc − νm)

(
z
h
+

1
2

)g
+ νm −

ψ

2
(νc + νm). (4c)
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For the functionally graded circular plate with unevenly (u) distributed porosities [16], the material
properties in Equations (4) can be replaced by the following forms:

Eu(z, g, ψ) = (Ec − Em)

(
z
h
+

1
2

)g
+ Em −

ψ

2
(Ec + Em)

(
1− 2|z|

h

)
, (5a)

ρu(z, g, ψ) = (ρc − ρm)

(
z
h
+

1
2

)g
+ ρm −

ψ

2
(ρc + ρm)

(
1− 2|z|

h

)
, (5b)

νu(z, g, ψ) = (νc − νm)

(
z
h
+

1
2

)g
+ νm −

ψ

2
(νc + νm)

(
1− 2|z|

h

)
. (5c)

In this case, the porosity linearly decreases to zero at the top and the bottom of the cross-section
of the plate. The effect of Poisson’s ratio is much less on the mechanical behavior of FGM plates than
the Young’s modulus [32,33], thus the Poisson’s ratio will assume to be constant νe = νu = ν in the
whole volume of the porous FGM circular plate.

4. Constitutive Relations and Governing Equations

In most practical applications, the ratio of the radius R to the thickness h of the plate is more than
10; then, the assumptions of classical plate theory (CPT) are applicable and rotary inertia and shear
deformation can be successfully omitted.

For a thin circular plate, the displacement field has the form:

ur(r, θ, z, t) = u(r, θ, t)− z
∂w(r, θ, t)

∂r
, (6a)

uθ(r, θ, z, t) = v(r, θ, t)− z
r

∂w(r, θ, t)
∂θ

, (6b)

w(r, θ, z, t) = w(r, θ, t), (6c)

where u, v and w are the radial, circumferential and transverse displacements of the midplane (z = 0)
of the plate at time t. Based on the linear strain–displacement relations and Hook’s law, the resultant
forces and the moments for porous FGM circular plate (i = {e, u}) can be expressed in the following
form [34]:  Ni

rr
Ni

θθ

Ni
rθ

 =

 Ai
11 Ai

12 0
Ai

12 Ai
11 0

0 0 Ai
33


 ε0

rr
ε0

θθ

γ0
rθ

+

 Bi
11 Bi

12 0
Bi

12 Bi
11 0

0 0 Bi
33


 κrr

κθθ

κrθ

, (7a)

 Mi
rr

Mi
θθ

Mi
rθ

 =

 Bi
11 Bi

12 0
Bi

12 Bi
11 0

0 0 Bi
33


 ε0

rr
ε0

θθ

γ0
rθ

+

 Di
11 Di

12 0
Di

12 Di
11 0

0 0 Di
33


 κrr

κθθ

κrθ

, (7b)

where (
ε0

rr, ε0
θθ , γ0

rθ

)
=

(
∂u
∂r

,
1
r

∂v
∂θ

+
u
r

,
1
r

∂u
∂θ

+
∂v
∂r
− v

r

)
, (8a)

(κrr, κθθ , κrθ) =

(
−∂2w

∂r2 , − 1
r2

∂2w
∂θ2 −

1
r

∂w
∂r

,−2
r

∂2w
∂r∂θ

+
2
r2

∂w
∂θ

)
(8b)

are the in-plane strains and curvatures of midplane, respectively.
We assume that the material properties are varied from the bottom surface (z = −h/2) to the top

surface (z = h/2) of the plate; then, the coefficients of extensional stiffness Ai
kl , bending-extensional
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coupling stiffness Bi
kl and bending stiffness Di

kl can be defined for FGM circular plate with i-th
distribution of porosities in the general forms:

(
Ai

11, Bi
11, Di

11

)
=
∫ h/2

−h/2

Ei(z, g, ψ)

1− ν2

(
1, z, z2

)
dz, (9a)

(
Ai

12, Bi
12, Di

12

)
=
∫ h/2

−h/2

νEi(z, g, ψ)

1− ν2

(
1, z, z2

)
dz, (9b)

(
Ai

33, Bi
33, Di

33

)
=
∫ h/2

−h/2

Ei(z, g, ψ)

2(1 + ν)

(
1, z, z2

)
dz. (9c)

Additionally, the stiffness coefficients from Equation (9) satisfy the equations

Ai
12 + 2Ai

33 = Ai
11, Bi

12 + 2Bi
33 = Bi

11, Di
12 + 2Di

33 = Di
11. (10)

The resultant forces and the moments can be also defined by

(
Ni

rr, Ni
θθ , Ni

rθ

)
=
∫ h/2

−h/2

(
σi

rr, σi
θθ , τi

rθ

)
dz, (11a)

(
Mi

rr, Mi
θθ , Mi

rθ

)
=
∫ h/2

−h/2

(
σi

rrz, σi
θθz, τi

rθz
)

dz, (11b)

where the stress components and the strain components have the form:

 σi
rr

σi
θθ

τi
rθ

 =


Ei(z,g,ψ)

1−ν2 (εrr + νεθθ)
Ei(z,g,ψ)

1−ν2 (εθθ + νεrr)
Ei(z,g,ψ)
2(1+ν) (2γrθ)

, (12)

 εrr

εθθ

2γrθ

 =

 ε0
rr + zκrr

ε0
θθ + zκθθ

γ0
rθ + zκrθ

. (13)

4.1. Coupled Equations of Motion

Using the Hamilton’s principle [34] and ignoring in-plane inertia forces, the equilibrium equations
of motion of the porous FGM thin circular plate have the forms:

∂Ni
rr

∂r
+

1
r

(
∂Ni

rθ

∂θ
+ Ni

rr − Ni
θθ

)
= 0, (14a)

∂Ni
rθ

∂r
+

1
r

∂Ni
θθ

∂θ
+

2
r

Ni
rθ = 0, (14b)

∂2Mi
rr

∂r2 +
2
r

∂Mi
rr

∂r
+

1
r2

∂2Mi
θθ

∂θ2 − 1
r

∂Mi
θθ

∂r
+

2
r

∂2Mi
rθ

∂r∂θ
+

2
r2

∂Mi
rθ

∂θ
= ρih

∂2w
∂t2 , (14c)

where the resultants forces and the moments can be obtained using Equations (7) and (8), and can be
presented in the following form:

Ni
rr = Ai

11
∂u
∂r

+ Ai
12

(
1
r

∂v
∂θ

+
u
r

)
− Bi

11
∂2w
∂r2 − Bi

12

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (15a)

Ni
θθ = Ai

12
∂u
∂r

+ Ai
11

(
1
r

∂v
∂θ

+
u
r

)
− Bi

12
∂2w
∂r2 − Bi

11

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (15b)
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Ni
rθ = Ai

33

(
1
r

∂u
∂θ

+
∂v
∂r
− v

r

)
− Bi

33

(
2
r

∂2w
∂r∂θ

− 2
r2

∂w
∂θ

)
, (15c)

Mi
rr = Bi

11
∂u
∂r

+ B12

(
1
r

∂v
∂θ

+
u
r

)
− Di

11
∂2w
∂r2 − Di

12

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (16a)

Mi
θθ = Bi

12
∂u
∂r

+ Bi
11

(
1
r

∂v
∂θ

+
u
r

)
− Di

12
∂2w
∂r2 − Di

11

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (16b)

Mi
rθ = Bi

33

(
1
r

∂u
∂θ

+
∂v
∂r
− v

r

)
− Di

33

(
2
r

∂2w
∂r∂θ

− 2
r2

∂w
∂θ

)
. (16c)

In Equation (14c), ρi is the averaged material density of the FGM circular plate for the i-th
distribution of porosities presented in the general form:

ρi ≡ ρi(g, ψ) =
1
h

∫ h/2

−h/2
ρi(z, g, ψ)dz, i = {e, u}. (17)

Substituting Equations (15) and (16) into Equation (14), and using relations given in Equation (10),
we get the coupled equilibrium equations of motion of the porous FGM circular plate presented in
terms of displacement components:

Ai
11

(
∂2u
∂r2 +

1
r

∂u
∂r
− u

r2 −
1
r2

∂v
∂θ

+
1
r

∂2v
∂r∂θ

)
+ Ai

33

(
1
r2

∂2u
∂θ2 −

1
r

∂2v
∂r∂θ

− 1
r2

∂v
∂θ

)
− Bi

11
∂∇2w

∂r
= 0, (18a)

Ai
11

(
1
r2

∂u
∂θ + 1

r
∂2u
∂r∂θ +

1
r2

∂2v
∂θ2

)
+ Ai

33

(
1
r2

∂u
∂θ −

1
r

∂2u
∂r∂θ +

∂2v
∂r2 + 1

r
∂v
∂r −

v2

r

)
− Bi

11
1
r

∂∇2w
∂θ = 0, (18b)

Di
11∇2∇2w− Bi

11∇2ε = −ρih
∂2w
∂t2 , (18c)

where ∇2 = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 is the Laplace operator presented in polar coordinates and

ε =
∂u
∂r

+
1
r

∂v
∂θ

+
u
r

. (19)

4.2. Decoupled Equation of Motion

Equation (18) show that the in-plane stretching and bending are coupled because the reference
surface is a geometrical midplane. We can eliminate this coupling by introducing the physical neutral
surface, where the in-plane displacements will be omitted. The in-plane displacements of the midplane
can be expressed in terms of the slopes of deflection in the following form:

u(r, θ, t) = z0
∂w(r, θ, t)

∂r
, (20a)

v(r, θ, t) = z0
1
r

∂w(r, θ, t)
∂θ

, (20b)

where z0 is the distance between the midplane and the physical neutral surface. By substituting
Equation (20) into Equations (6) and (15) and introducing z = z0, the in-plane displacements u, v and
the in-plane forces Ni

rr, Ni
θθ , Ni

rθ must equal zero based on properties of the physical neutral surface.
By substituting Equation (20) into Equation (15)

Ni
rr =

(
z0 Ai

11 − Bi
11

)∂2w
∂r2 +

(
z0 Ai

12 − Bi
12

)( 1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
= 0, (21a)

Ni
θθ =

(
z0 Ai

12 − Bi
12

)∂2w
∂r2 +

(
z0 Ai

11 − Bi
11

)( 1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
= 0, (21b)
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Ni
rθ =

(
z0 Ai

33 − Bi
33

)(2
r

∂2w
∂r∂θ

− 2
r2

∂w
∂θ

)
= 0 (21c)

and assuming that the Poisson’s ratio is constant, distance z0 can be obtained from relations:

z0 Ai
11 − Bi

11 = z0 Ai
12 − Bi

12 = z0 Ai
33 − Bi

33 = 0, (22)

where

z0 =
Bi

11

Ai
11

=
Bi

12

Ai
12

=
Bi

33

Ai
33

=

∫ h/2
−h/2 Ei(z, g, ψ)zdz∫ h/2
−h/2 Ei(z, g, ψ)dz

. (23)

By substituting Equations (20) and (23) into Equations (18c) and (19), we obtain the decoupled
equation of transverse vibration of the porous FGM thin circular plate in the form:

Di∇2∇2w = −ρih
∂2w
∂t2 , (24)

where

Di = Di
11 −

(
Bi

11
)2

Ai
11

. (25)

5. Solution of the Problem

Taking into account a harmonic solution, the small vibration of the porous FGM circular plate
may be expressed as follows:

w(r, θ, t) = W(r) cos(nθ) cos(ωt), (26)

where W(r) is the radial mode function as the small deflection compared with the thickness h of
the plate, n is the integer number of diagonal nodal lines, θ is the angular coordinate, and ω is the
natural frequency. By substituting Equation (26) into Equation (24) using the dimensionless coordinate
ξ = r/R (0 < ξ ≤ 1), the general governing differential equation assumes the following form:

Ln(W) = ρihω2W, (27)

where Ln(·) is the differential operator defined by

Ln(·) ≡ Di d4

dξ4 +
2Di

ξ

d3

dξ3 −
(
1 + 2n2)Di

ξ2
d2

dξ2 +

(
1 + 2n2)Di

ξ3
d

dξ
+

(
n4 − 4n2)Di

ξ4 . (28)

The calculated general forms of material density ρi and the coefficients of extensional stiffness(
Ai

11
)
, extensional-bending coupling stiffness

(
Bi

11
)

and bending stiffness
(

Di
11
)

for the porous FGM
circular plate are presented in the following general forms:

ρi =
ρc(2x− ψ− gψ) + ρm(2xg− ψ− ψg)

2x(1 + g)
, (29a)

Ai
11 =

Ech
1− ν2

[
(2x− ψ− gψ) + Em

Ec
(2xg− ψ− gψ)

2x(1 + g)

]
, (29b)

Be
11 = Bu

11 =
Ech2

(1− ν2)

 g
(

1− Em
Ec

)
2(1 + g)(2 + g)

, (29c)

Di = Ech3

12(1−ν2)

[
y(6g2+6g+12)−ψ(1+g)(2+g)(3+g)+ Em

Ec [y(2g3+6g2+16g)−ψ(1+g)(2+g)(3+g)]
2y(1+g)(2+g)(3+g)

]
, (29d)
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where x = y = 1 for the even distribution (i = e) of porosities and x = 2, y = 4 for the uneven (i = u)
distribution of porosities. The extensional-bending coupling stiffness Bi

11 has the same form for both
types of porosities.

By substituting the obtained forms from Equation (29) into Equation (27), the generalized ordinary
differential equation with variable coefficients is obtained as:

Ln(W)χ = λ2µiW, (30)

where

Ln(·)χ ≡
(
χi

1 + χi
2
) d4

dξ4 +
2(χi

1+χi
2)

ξ
d3

dξ3 −
(1+2n2)(χi

1+χi
2)

ξ2
d2

dξ2 +
(1+2n2)(χi

1+χi
2)

ξ3
d

dξ +
(n4−4n2)(χi

1+χi
2)

ξ4 , (31)

χi
1 =

6xg2(Ec − Em)
2

Ec(1 + g)(2 + g)2[Ec(ψ + gψ− 2x) + Em(ψ + gψ− 2xg)]
, (32)

χi
2 =

Ec[y(12+6g+6g2)−ψ(1+g)(2+g)(3+g)]+Em[y(16g+6g2+2g3)−ψ(1+g)(2+g)(3+g)]
2yEc(1+g)(2+g)(3+g) , (33)

µi =
(−gψ− ψ + 2x)− ρm

ρc
(gψ + ψ− 2xg)

2x(1 + g)
, (34)

λ = ωR2
√

ρch/Dc, (35)

Dc =
Ech3

12(1− ν2)
. (36)

The boundary conditions on the outer edge (ξ = 1) of the porous FGM circular plate may be one
of the following: clamped, simply supported, sliding supported and free. These conditions may be
written in terms of the radial mode function W(ξ) in the following form:

• Clamped:
W(ξ)

∣∣
ξ=1 = 0, (37a)

dW
dξ

∣∣∣∣ξ=1 = 0. (37b)

• Simply supported:
W(ξ)

∣∣
ξ=1 = 0, (38a)

M(W)

∣∣∣∣∣ξ=1 =

[
d2W
dξ2 +

ν

ξ

dW
dξ
− νn2

ξ2 W
]

ξ=1
= 0. (38b)

• Sliding supported:
dW
dξ

∣∣∣∣ξ=1 = 0, (39a)

V(W)

∣∣∣∣∣ξ=1 =

[
d3W
dξ3 +

1
ξ

d2W
dξ2 −

(
1 + 2n2 − νn2

ξ2

)
dW
dξ

+

(
3n2 − νn2

ξ3

)
W
]

ξ=1
= 0, (39b)

• Free:
M(W)

∣∣
ξ=1 = 0, (40a)

V(W)
∣∣
ξ=1 = 0. (40b)

The static forces M(W) and V(W) are the normalized radial bending moment and the normalized
effective shear force, respectively.
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The one multiparametric general solution of the defined differential Equation (30) for FGM
circular/annular plates with the two various types of distribution of porosities (i = {e, u}) is obtained
in the following form:

Wi
n(ξ, λ, g, ψ) = C1 Jn

[(
λ
√
Mi
)1/2

ξ
]
+ C2 In

[(
λ
√
Mi
)1/2

ξ
]
+ C3Yn

[(
λ
√
Mi
)1/2

ξ
]
+ C4Kn

[(
λ
√
Mi
)1/2

ξ
]
, (41)

where n (n ∈ N+) is the number of nodal lines, C1, C2, C3, C4 are the constants of integration,
Jn

[(
λ
√
Mi
)1/2

ξ
]
, In

[(
λ
√
Mi
)1/2

ξ
]
, Yn

[(
λ
√
Mi
)1/2

ξ
]
, Kn

[(
λ
√
Mi
)1/2

ξ
]

are the Bessel functions as
particular solutions of Equation (30), and Mi is the generalized multiparametric function defined as:

Mi ≡Mi(x, y, g, ψ, Em, Ec, ρm, ρc) =
Ωi

1

Ωi
2 + Ωi

3
, Mi ≥ 1∀g ∈ [0, ∞] ∧ ∀ψ ∈ [0, 1) , (42)

where
Ωi

1 = −Ecx(2 + g)2[ρc(gψ + ψ− 2x) + ρm(gψ + ψ− 2xg)], (43a)

Ωi
2 =

12xyg2(Ec − Em)
2ρc

Ec(gψ + ψ− 2x) + Em(gψ + ψ− 2xg)
, (43b)

Ωi
3 =

(2+g)ρc[Ec[y(12+6g+6g2)−ψ(1+g)(2+g)(3+g)]+Em[y(16g+6g2+2g3)−ψ(1+g)(2+g)(3+g)]]
3+g . (43c)

The functions Jn

[(
λ
√
Mi
)1/2

ξ
]

and In

[(
λ
√
Mi
)1/2

ξ
]

are the limited linear independent solutions(
lim
ξ→0

Jn

[(
λ
√
Mi
)1/2

ξ
]
< ∞, lim

ξ→0
In

[(
λ
√
Mi
)1/2

ξ
]
< ∞

)
of Equation (30) for the axisymmetric and

non-axisymmetric deflections at center (ξ = 0) of the porous FGM circular plate and diverse values
of the physically justified parameters λ, g and ψ. The particular solutions Yn

[(
λ
√
Mi
)1/2

ξ
]

and

Kn

[(
λ
√
Mi
)1/2

ξ
]

are unlimited
(

lim
ξ→0

Yn

[(
λ
√
Mi
)1/2

ξ
]
= −∞, lim

ξ→0
Kn

[(
λ
√
Mi
)1/2

ξ
]
= ∞

)
for the

deflection at the center of the plate, then, the general solution (41) for the porous FGM circular plate
can be presented in the new form:

Wi
n(ξ, λ, g, ψ) = C1Ψ1 + C2Ψ2, (44)

where

Ψ1 ≡ Jn

[(
λ
√

Mi

)1/2
ξ

]
, (45a)

Ψ2 ≡ In

[(
λ
√

Mi

)1/2
ξ

]
. (45b)

By applying the general solution (44) and the boundary conditions (37–40) as well as assuming the
existence of the non-trivial constants C1 and C2, the general nonlinear multiparametric characteristic
equations of the FGM circular plate with the two various types of distribution of porosities were
obtained in the form:

• Clamped (C):

∆i
C(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣ Ψ1 Ψ2
∂Ψ1
∂ξ

∂Ψ2
∂ξ

∣∣∣∣∣
ξ=1

= 0; (46a)

• Simply supported (SS):

∆i
SS(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣ Ψ1 Ψ2

M[Ψ1] M[Ψ2]

∣∣∣∣∣
ξ=1

= 0; (46b)
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• Sliding supported (S):

∆i
S(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣ ∂Ψ1
∂ξ

∂Ψ2
∂ξ

V[Ψ1] V[Ψ2]

∣∣∣∣∣
ξ=1

= 0; (46c)

• Free (F):

∆i
F(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣ M[Ψ1] M[Ψ2]

V[Ψ1] V[Ψ2]

∣∣∣∣∣
ξ=1

= 0. (46d)

If x = y = 1 is introduced to Equations (42) and (45), then the obtained characteristic Equation (46)
will be valid for the FGM circular plates with even (i = e) distribution of porosities. If x = 2, y = 4 is
introduced to Equations (42) and (45), then the obtained characteristic equations (46) will be valid for
the FGM circular plates with uneven (i = u) distribution of porosities.

The general solution for the perfect (without porosity) FGM circular plate can be obtained from
Equation (44) and presented in the following form:

Wn(ξ, λ, g) ≡ lim
ψ→0

Wi
n(ξ, λ, g, ψ) = C1 lim

ψ→0
Jn

[(
λ
√

Mi

)1/2
ξ

]
+ C2 lim

ψ→0
In

[(
λ
√

Mi

)1/2
ξ

]
. (47)

After calculations, the final form of general solution for the perfect FGM circular plate is
expressed as

Wn(ξ, λ, g) = Jn

[(
λ
√

Y
)1/2

ξ

]
+ In

[(
λ
√

Y
)1/2

ξ

]
, (48)

where

Y =
Ec(2 + g)2(3 + g)(Ec + gEm)(ρc + gρm)

ρc(1 + g)[12E2
c + (28g + 16g2 + 4g3)EcEm + (7g2 + 4g3 + g4)E2

m]
. (49)

The general solution for the perfect FGM circular plate with negligible effect of the coupling
in-plane and transverse displacements ( Ai

11 → 0, Bi
11 → 0) has the form:

Wn(ξ, λ, g) = C1 Jn

[(
λ
√

P
)1/2

ξ

]
+ C2 In

[(
λ
√

P
)1/2

ξ

]
, (50)

where

P =
Ec(2 + g)(3 + g)(ρc + gρm)

ρc[3Ec(2 + g + g2) + Em(8g + 3g2 + g3)]
. (51)

6. Parametric Study

The every single fundamental and lower dimensionless frequencies of the free axisymmetric
and non-axisymmetric vibrations of porous FGM circular plate were calculated for diverse values of
the power-law index g, the porosity volume fraction ψ and different boundary conditions using the
Newton method aided by a calculation software.

The Poisson’s ratio is taken as ν = 0.3 and its variation is assumed to be negligible. In the present
study, aluminum is taken as the metal and alumina is taken as the ceramic material. The values of
Young’s modulus and densities are taken as follows: Em = 70 GPa, Ec = 380 GPa, ρm = 2702 kg/m3,
ρc = 3800 kg/m3.

6.1. Imperfect FGM Circular Plate

The obtained numerical results for the first three dimensionless frequencies λ = ωR2
√

ρch/Dc

of the axisymmetric (n = 0) and non-axisymmetric (n = 1) vibrations of the perfect (ψ→ 0)
homogeneous (g→ 0) circular plate with various boundary conditions are presented in Table 1
and compared with the results obtained by Wu and Liu [35], Yalcin et al. [36], Zhou et al. [37] and
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Duan et al. [38]. The obtained numerical results for the perfect homogeneous circular plate are in
excellent agreement with those available in the literature.

Table 1. The dimensionless frequencies of the perfect homogeneous circular plate.

λ

Clamped Simply
Supported

Sliding
Supported Free

n

0 1 0 1 0 1 0 1

λ0

Present 10.215 21.260 4.935 13.898 14.682 3.082 9.003 20.474
[35] 10.216 21.260 4.935 13.898 14.682 3.082 9.003 20.475
[36] 10.215 21.260 4.935 13.898 - - 9.003 20.474
[37] 10.215 21.260 4.935 13.898 - - 9.003 20.474
[38] 10.215 21.260 4.935 13.898 - - 9.003 20.474

λ1

Present 39.771 60.828 29.720 48.478 49.218 28.398 38.443 59.812
[35] 39.771 60.829 29.720 48.478 49.218 28.399 38.443 59.812
[36] 39.771 60.828 29.720 48.479 - - 38.443 59.811
[37] 39.771 60.828 29.720 48.478 - - 38.443 59.811
[38] 39.771 60.828 29.719 48.478 - - 38.443 59.812

λ2

Present 89.104 120.079 74.156 102.773 103.499 72.859 87.750 118.957
[35] 89.104 120.079 74.156 102.772 103.499 72.859 87.750 118.957
[36] 89.104 120.079 74.156 102.773 - - 87.705 118.957
[37] 89.104 120.080 74.156 102.773 - - 87.750 118.957
[38] 89.104 120.079 74.156 102.773 - - 87.750 118.957

The calculated fundamental dimensionless frequencies λ0 of the axisymmetric (n = 0) and
non-axisymmetric (n = 1) vibrations of the FGM circular plate with evenly (i = e) and unevenly
(i = u) distributed porosity are presented in Tables 2–5. In the parametric study, values of the
power-law index of FGMs is taken as g = {0, 0.2, 0.4, 0.6, 1, 2, 3, 4, 5} and values of the porosity
volume fraction is taken as ψ = {0, 0.05, 0.1, 0.2, 0.3}.

Table 2. The dimensionless fundamental frequencies of the clamped porous FGM circular plate.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 10.215 9.481 8.896 8.436 7.797 7.090 6.867 6.777 6.724
0.05 10.286 9.522 8.905 8.414 7.718 6.920 6.661 6.559 6.503
0.1 10.362 9.566 8.914 8.387 7.623 6.712 6.401 6.280 6.219
0.2 10.535 9.668 8.932 8.315 7.374 6.113 5.612 5.402 5.305
0.3 10.745 9.792 8.948 8.207 6.993 5.034 3.949 3.312 2.923

1

0 21.260 19.731 18.514 17.557 16.228 14.756 14.292 14.105 13.993
0.05 21.406 19.816 18.533 17.510 16.062 14.402 13.863 13.650 13.533
0.1 21.564 19.909 18.552 17.454 15.866 13.968 13.222 13.069 12.942
0.2 21.925 20.121 18.590 17.304 15.346 12.723 11.680 11.242 11.041
0.3 22.362 20.380 18.622 17.081 14.554 10.478 8.220 6.894 6.084

u

0

0 10.215 9.481 8.896 8.436 7.797 7.090 6.867 6.777 6.724
0.05 10.288 9.544 8.949 8.478 7.819 7.079 6.844 6.751 6.698
0.1 10.364 9.611 9.004 8.521 7.840 7.065 6.816 6.719 6.666
0.2 10.523 9.751 9.120 8.612 7.882 7.023 6.738 6.630 6.577
0.3 10.696 9.903 9.246 8.710 7.923 6.959 6.622 6.495 6.438

1

0 21.260 19.731 18.514 17.557 16.228 14.756 14.292 14.105 13.993
0.05 21.411 19.864 18.624 17.644 16.272 14.733 14.244 14.050 13.940
0.1 21.568 20.001 18.738 17.734 16.316 14.703 14.182 13.983 13.874
0.2 21.901 20.293 18.980 17.923 16.404 14.617 14.023 13.798 13.688
0.3 22.260 20.610 19.243 18.127 16.490 14.483 13.782 13.517 13.399
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Table 3. The dimensionless fundamental frequencies of the simply supported porous FGM
circular plate.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 4.935 4.580 4.297 4.075 3.767 3.425 3.317 3.274 3.248
0.05 4.969 4.600 4.302 4.064 3.728 3.343 3.218 3.168 3.141
0.1 5.005 4.621 4.306 4.051 3.683 3.242 3.092 3.033 3.004
0.2 5.089 4.670 4.315 4.017 3.562 2.953 2.711 2.609 2.563
0.3 5.190 4.730 4.322 3.965 3.378 2.432 1.908 1.600 1.412

1

0 13.898 12.898 12.103 11.477 10.608 9.646 9.343 9.220 9.147
0.05 13.993 12.954 12.115 11.446 10.500 9.415 9.062 8.923 8.847
0.1 14.097 13.015 12.127 11.410 10.372 9.131 8.708 8.543 8.460
0.2 14.333 13.153 12.152 11.312 10.032 8.317 7.635 7.349 7.218
0.3 14.618 13.322 12.173 11.166 9.514 6.849 5.373 4.506 3.977

u

0

0 4.935 4.580 4.297 4.075 3.767 3.425 3.317 3.274 3.248
0.05 4.970 4.611 4.323 4.095 3.777 3.420 3.306 3.261 3.236
0.1 5.006 4.643 4.349 4.116 3.787 3.413 3.292 3.246 3.220
0.2 5.083 4.710 4.406 4.160 3.808 3.393 3.255 3.203 3.177
0.3 5.167 4.784 4.467 4.207 3.828 3.362 3.199 3.137 3.110

1

0 13.898 12.898 12.103 11.477 10.608 9.646 9.343 9.220 9.147
0.05 13.997 12.985 12.174 11.534 10.637 9.631 9.311 9.185 9.113
0.1 14.099 13.075 12.249 11.592 10.666 9.611 9.273 9.141 9.069
0.2 14.317 13.266 12.408 11.716 10.724 9.555 9.167 9.020 8.948
0.3 14.551 13.473 12.580 11.850 10.780 9.468 9.009 8.836 8.759

Table 4. The dimensionless fundamental frequencies of the porous FGM circular plate with
sliding support.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 14.682 13.626 12.785 12.124 11.206 10.190 9.870 9.740 9.663
0.05 14.782 13.685 12.798 12.092 11.092 9.946 9.573 9.426 9.346
0.1 14.892 13.749 12.811 12.053 10.956 9.646 9.199 9.025 8.938
0.2 15.141 13.895 12.837 11.950 10.597 8.786 8.066 7.764 7.625
0.3 15.442 14.074 12.860 11.796 10.051 7.236 5.676 4.761 4.201

1

0 3.082 2.860 2.684 2.545 2.352 2.139 2.072 2.045 2.029
0.05 3.103 2.873 2.687 2.538 2.328 2.088 2.010 1.980 1.962
0.1 3.126 2.886 2.690 2.530 2.300 2.025 1.931 1.894 1.876
0.2 3.178 2.917 2.695 2.509 2.225 1.844 1.693 1.630 1.600
0.3 3.242 2.954 2.700 2.476 2.110 1.519 1.191 0.999 0.882

u

0

0 14.682 13.626 12.785 12.124 11.206 10.190 9.870 9.740 9.663
0.05 14.786 13.717 12.861 12.184 11.237 10.174 9.836 9.703 9.627
0.1 14.895 13.812 12.940 12.246 11.268 10.154 9.795 9.656 9.581
0.2 15.124 14.014 13.107 12.377 11.328 10.094 9.684 9.529 9.453
0.3 15.372 14.233 13.289 12.518 11.388 10.002 9.518 9.334 9.253

1

0 3.082 2.860 2.684 2.545 2.352 2.139 2.072 2.045 2.029
0.05 3.104 2.880 2.700 2.558 2.359 2.136 2.065 2.037 2.021
0.1 3.127 2.890 2.716 2.571 2.365 2.131 2.056 2.027 2.011
0.2 3.175 2.942 2.752 2.598 2.378 2.119 2.033 2.000 1.984
0.3 3.227 2.988 2.790 2.628 2.391 2.100 1.998 1.960 1.942
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Table 5. The dimensionless fundamental frequencies of the free porous FGM circular plate.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 9.003 8.355 7.840 7.435 6.872 6.248 6.052 5.973 5.926
0.05 9.064 8.391 7.848 7.415 6.802 6.099 5.870 5.780 5.731
0.1 9.132 8.431 7.856 7.391 6.718 5.915 5.641 5.534 5.480
0.2 9.284 8.521 7.872 7.328 6.498 5.388 4.946 4.761 4.675
0.3 9.469 8.630 7.886 7.233 6.163 4.437 3.481 2.919 2.576

1

0 20.474 19.002 17.830 16.908 15.628 14.211 13.764 13.584 13.476
0.05 20.615 19.084 17.848 16.863 15.468 13.870 13.350 13.145 13.033
0.1 20.767 19.173 17.866 16.809 15.280 13.452 12.829 12.586 12.464
0.2 21.115 19.378 17.902 16.665 14.779 12.253 11.248 10.827 10.633
0.3 21.535 19.628 17.934 16.450 14.016 10.091 7.916 6.639 5.859

u

0

0 9.003 8.355 7.840 7.435 6.872 6.248 6.052 5.973 5.926
0.05 9.067 8.411 7.886 7.471 6.890 6.239 6.032 5.950 5.903
0.1 9.133 8.470 7.935 7.509 6.909 6.226 6.007 5.921 5.875
0.2 9.274 8.593 8.037 7.590 6.947 6.190 5.938 5.843 5.796
0.3 9.426 8.728 8.149 7.676 6.983 6.133 5.836 5.724 5.674

1

0 20.474 19.002 17.830 16.908 15.628 14.211 13.764 13.584 13.476
0.05 20.620 19.129 17.935 16.992 15.670 14.188 13.718 13.531 13.425
0.1 20.771 19.262 18.045 17.078 15.713 14.160 13.660 13.466 13.361
0.2 21.091 19.543 18.279 17.261 15.798 14.077 13.505 13.288 13.182
0.3 21.437 19.848 18.532 17.457 15.881 13.948 13.273 13.017 12.903

The dependences of the fundamental dimensionless frequencies λ0 of the free axisymmetric
(n = 0) and non-axisymmetric (n = 1) vibrations of the circular plate on selected values of
the power-law index and the porosities volume fraction are presented in Figures 3–6 as the
two-dimensional (2D) and three-dimensional (3D) graphs for the two various types of distribution of
porosity and all considered boundary conditions.

6.2. Perfect FGM Circular Plate

The obtained general solution (48) and the defined boundary conditions (37 ÷ 40) were used to
calculate the first three dimensionless frequencies λ of the axisymmetric (n = 0) and non-axisymmetric
(n = 1) vibrations of the perfect (ψ = 0) FGM circular plate with various boundary conditions.

The obtained numerical results are presented in Tables 6–9 for selected values of the power-law
index g. Numerical results obtained for the clamped and simply supported plates (Tables 6 and 7)
were compared with the results presented in the paper [27], where the effect of the coupling in-plane
and transverse displacements was omitted.
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Figure 5. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric
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Figure 6. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric
(n = 0) and non-axisymmetric (n = 1) vibrations on selected values of the power-law index and the
porosity volume fraction of the free circular plate with evenly and unevenly distributed porosities.



Symmetry 2019, 11, 429 19 of 24

Table 6. The dimensionless frequencies of the clamped perfect FGM circular plate.

n λ
g

1 2 3 4 5 ∞

0

λ0
Present 7.797 7.090 6.867 6.777 6.724 5.199

[27] 8.498 8.123 7.911 7.733 7.573 -

λ1
Present 30.357 27.604 26.737 26.386 26.177 20.243

[27] 33.086 31.625 30.798 30.107 29.485 -

λ2
Present 68.012 61.845 59.902 59.116 58.649 45.352

[27] 74.127 70.855 69.002 67.453 66.059 -

1
λ0 16.228 14.756 14.292 14.105 13.993 10.821
λ1 Present 46.430 42.219 40.893 40.357 40.038 30.961
λ2 91.655 83.344 80.725 79.667 79.037 61.118

Table 7. The dimensionless frequencies of the simply supported perfect FGM circular plate.

n λ
g

1 2 3 4 5 ∞

0

λ0
Present 3.767 3.425 3.317 3.274 3.248 2.512

[27] 4.105 3.924 3.821 3.736 3.658 -

λ1
Present 22.685 20.628 19.980 19.717 19.562 15.127

[27] 24.724 23.633 23.015 22.498 22.033 -

λ2
Present 56.602 51.470 49.853 49.199 48.810 37.744

[27] 61.692 58.968 57.426 56.137 54.977 -

1
λ0 10.608 9.646 9.343 9.220 9.147 7.074
λ1 Present 37.003 33.648 32.591 32.163 31.909 24.675
λ2 78.446 71.332 69.091 68.185 67.646 52.310

Table 8. The dimensionless frequencies of the free perfect FGM circular plate.

n λ
g

1 2 3 4 5 ∞

0
λ0 6.872 6.248 6.052 5.973 5.926 4.582
λ1 29.343 26.682 25.844 25.505 25.303 19.567
λ2 66.979 60.905 58.992 58.218 57.757 44.663

1
λ0 15.628 14.211 13.764 13.584 13.476 10.421
λ1 45.653 41.513 40.209 39.682 39.368 30.443
λ2 90.799 82.565 79.971 78.922 78.298 60.547

Table 9. The dimensionless frequencies of the perfect FGM circular plate with sliding support.

n λ
g

1 2 3 4 5 ∞

0
λ0 11.206 10.190 9.870 9.740 9.663 7.473
λ1 37.568 34.161 33.088 32.654 32.396 25.051
λ2 79.000 71.836 69.579 68.667 68.124 52.680

1
λ0 2.352 2.139 2.072 2.045 2.029 1.568
λ1 21.676 19.711 19.091 18.841 18.692 14.454
λ2 55.612 50.569 48.981 48.338 47.956 37.084

The fundamental dimensionless frequencies of the perfect FGM circular plates with and without
the effect of the coupling in-plane and transverse displacements obtained for selected values of
the power-law index and diverse boundary conditions are presented in Table 10. Additionally, the
differences (errors) between obtained results were calculated according to the equation:
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δ(%) =

∣∣∣∣∣λ
P
0 − λY

0

λP
0

∣∣∣∣∣·100%, (52)

where λP
0 and λY

0 are the fundamental dimensionless frequencies of the perfect FGM circular plate
without and with effect of the coupling in-plane and transverse displacements, respectively. Figure 7
presents the dependence of the differences (errors) between obtained results for the power-law index
g ≥ 0.

Table 10. The differences between the fundamental dimensionless frequencies of the perfect FGM
circular plates with and without effect of the coupling in-plane and transverse displacements.

BCs n λ
g

1 2 3 4 5 10 30 60 ∞

Clamped

0
λP

0 8.498 8.123 7.911 7.733 7.573 6.977 6.064 5.687 5.199
λY

0 7.797 7.090 6.867 6.777 6.724 6.512 5.960 5.654 5.199
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 17.687 16.906 16.464 16.094 15.762 14.520 12.621 11.835 10.821
λY

0 16.228 14.756 14.292 14.105 13.993 13.552 12.404 11.767 10.821
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

Simply
supported

0
λP

0 4.105 3.924 3.821 3.736 3.658 3.370 2.929 2.747 2.512
λY

0 3.767 3.425 3.317 3.274 3.248 3.145 2.879 2.731 2.512
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 11.562 11.051 10.762 10.521 10.303 9.492 8.250 7.737 7.074
λY

0 10.608 9.646 9.343 9.220 9.147 8.859 8.108 7.692 7.074
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

Sliding
supported

0
λP

0 12.214 11.675 11.369 11.114 10.885 10.027 8.716 8.173 7.473
λY

0 11.206 10.190 9.870 9.740 9.663 9.359 8.566 8.126 7.473
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 2.564 2.451 2.387 2.333 2.285 2.105 1.830 1.716 1.569
λY

0 2.352 2.139 2.072 2.045 2.029 1.964 1.798 1.706 1.569
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

Free

0
λP

0 7.489 7.159 6.972 6.815 6.674 6.149 5.344 5.012 4.582
λY

0 6.872 6.248 6.052 5.973 5.926 5.739 5.252 4.983 4.582
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 17.033 16.281 15.855 15.499 15.179 13.984 12.155 11.398 10.421
λY

0 15.628 14.211 13.764 13.584 13.476 13.051 11.945 11.332 10.421
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0
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7. Discussion

7.1. Imperfect FGM Circular Plate

The numerical results for the fundamental dimensionless frequencies of the porous FGM circular
plates presented in Tables 2–5 and Figures 3–6 show the following dependences:

• the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the
circular plate decreases with the increasing value of the power-law index g for the two considered
distributions of porosities and all considered values of the porosity volume fraction ψ;

• for the evenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric
and non-axisymmetric vibrations of the plate increases with the increasing value of the porosity
volume fraction ψ for g ∈ [0, 0.4] and decreases for g ∈ [0.6, 5];

• for the unevenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric
and non-axisymmetric vibrations of the plate increases with the increasing value of the porosity
volume fraction ψ for g ∈ [0, 1] and decreases for g ∈ [2, 5];

• the influence of values of the porosity volume fraction ψ on the values of the fundamental
eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the plate is smaller
for the unevenly distributed porosities than for the evenly distributed porosities;

• for the evenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric and
non-axisymmetric vibrations of plate decreases faster for ψ = 0.3 with the increasing values of
the power-law index g than for ψ = {0, 0.1, 0.2};

• for the unevenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric
and non-axisymmetric vibrations of the plate decreases slowly with the increasing values of the
power-law index g for all considered values of the porosity volume fraction ψ.

The observed dependences exist because of the diverse influence of porosity distributions, values
of the power-law index and the porosity volume fraction on decreasing (increasing) the ratios of mass
to stiffness of the considered circular plates. The all observed dependences are independent of the
considered boundary conditions which influence only the values of the dimensionless frequencies of
the plate.

7.2. Perfect FGM Circular Plate

It can be observed that the values of dimensionless frequencies of the perfect FGM circular plates
obtained by omitting the effect of coupling in-plane and transverse displacements are higher than the
values of the dimensionless frequencies of the considered plate with the coupling effect. The differences
(errors) between the calculated dimensionless frequencies of free axisymmetric and non-axisymmetric
vibration of the perfect FGM circular plate with and without the coupling effect are significant for the
power-law index g ∈ [0, 20], but, for g ∈ [20, ∞], these differences decrease from 2% to 0%. It can
be observed from Table 10 that the differences between the calculated dimensionless frequencies are
independent of the modes of vibrations and the boundary conditions of the considered circular plate.

8. Conclusions

This paper presents the influence of two different types of distribution of porosities on the free
vibrations of the thin functionally graded circular plate with clamped, simply supported, sliding
supported, and free edges. To this aim, the boundary value problem was formulated and a solution
was obtained in the exact form. The universal multiparametric characteristic equations were defined
using the properties of the multiparametric general solution obtained for the plate with even and
uneven distribution of porosities. The effects of the power-law index, the volume fraction index and
diverse boundary conditions on the values of the dimensionless frequencies of the free axisymmetric
and non-axisymmetric vibrations of the circular plate were comprehensively studied. Additionally, the
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influences of the power-law index and different boundary conditions on the values of dimensionless
frequencies of the FGM circular plate without porosities were also presented.

The presented multiparametric analytical approach can be effectively applying for free vibration
of circular and annular plates with other diverse models of an FGM and FGM porous material. The
material parameters can be modeled via the exponential or sigmoid functions, as well as Mori–Tanaka
functions or other homogenization techniques [39–44]. Diverse applied homogenization techniques
only have an influence on the forms of the final replaced plate’s stiffnesses and directly on the function
Mi presented in the obtained general solution in the present paper. It will be the goal of future papers.

The obtained multiparametric general solution will allow for studying the influences of diverse
additional complicating effects such as stepped thickness, cracks, additional mounted elements
expressed by only additional boundary conditions on the dynamic behavior of the porous functionally
graded circular and annular plates. The exact frequencies of vibration presented in non-dimensional
form can serve as benchmark values for researchers and engineers to validate their analytical and
numerical methods applied in design and analysis of porous functionally graded structural elements.
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