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Abstract: A generalization of the famous Dirac belt trick opens up the way to a haptic model for
quantum phases of fermions and bosons in Hilbert space based on knot theory. We introduce a simple
paper strip model as an aid for visualization of the quantum phases before and after Hopf-mapping,
which can be extended to arbitrary spin states with almost no mathematical formalism. Knot theory
arises naturally, leading to the Jones polynomials derived from Artin’s braid group for fermionic
knots and for bosonic links. The paper strip model explicitly illuminates the relation between these
knots and links within the SU(2)-representation of spin-jstates in C2j+1 before Hopf-mapping and
the number p = 2j of nodes in the stellar representation in CP1 after Hopf mapping.
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1. Introduction

The relation between quantum states in Hilbert space and observables is highly non-trivial.
As an illustrative example, we consider the case of spin 1

2 . Using the unitary operator U ∈ SU(2),
we can reach all pure spin states from the “spin up” state |0〉 as an orbit U|0〉 = u|0〉 + v|1〉,
with complex amplitudes (u, v) ∈ C2 fulfilling |u|2 + |v|2 = 1. Geometrically, all these spin states form
the hypersphere S3 in four dimensions. Thus, seen as a manifold, the complex rotation group SU(2)
is isomorphic to S3. It is well known that the periodicity of spin- 1

2 states in S3 is (4π) rather than
(2π), meaning that after a (2π)-rotation, the spinor changes its sign, and only after a (4π)-rotation,
the spinor is mapped onto itself. Dirac proposed a geometric interpretation of spin- 1

2 states in C2, the
so-called “Dirac belt” [1]. After Hopf-mapping, the SU(2)-operation U is mapped to a rotation SO(3)
in three dimensions due to SO(3) ' SU(2)/Z2. For the Hopf-mapping, the two-to-one mapping Z2 is
essential, which identifies the spinor with a positive and with a negative sign. After this identification,
the orbit of the state |0〉 can be represented on the Bloch sphere S2, with a periodicity of (2π). Due to
this mapping, the Dirac belt is related to a Möbius strip [2]. It is important to distinguish the geometry
of S3 carefully, which allows for a (4π)-periodicity, and the description after Hopf-mapping to S2,
where the usual (2π)-periodicity emerges. In order to emphasize this difference, we will call the sphere
S3 the “(4π)-realm” and the sphere S2 the “(2π)-realm”. All observables are part of the (2π)-realm.
Thus, in order to understand the relation between quantum states in Hilbert space and observables,
it is important to understand the (generalized) Hopf-mapping S3 → S2 from the (4π)-realm to the
(2π)-realm. In the present paper, we generalize the Dirac belt in Hilbert space to arbitrary spin states,
and show how the mapping from the (4π)-realm to the (2π)-realm can be encoded in a simple haptic
model, which we denote as the paper strip model.

In Section 2, we discuss the simplest possible model, that is representations of the group U(1) in
the (2π)-realm. In Section 3, based on Artin’s braid group, a close relation between the phase changes
upon rotation of fermionic and bosonic states in Hilbert space is derived, leading to explicit formulas
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for the corresponding Jones polynomials. In Section 4, we generalize the construction of the Dirac belt
to all spin states in the (4π)-realm, revealing an explicit mapping from fermionic knots and bosonic
links of SU(2)-representations in Hilbert space to observable nodes in wave functions, e.g., in the
stellar representation. Possible applications are mentioned in the summary and outlook (Section 7).

2. Great Circles and Double Windings in the (2π)-Realm

Our discussion begins with the simplest possible geometric model—that of a circle S1 in ordinary
R3-space—as the most prominent example for the (2π)-realm. Consider a differentiable function g(φ)
on S1. The rotation by an angle θ can be described by the Taylor series:

exp[iθ
1
i

∂φ]g(φ) = g(φ + θ). (1)

Thus, 1
i ∂φ is the generator of rotations on S1. We search for a spectral decomposition of the rotation

operator. We can decompose the function g(φ) in its Fourier components as g(φ) = ∑m∈Z am exp[imφ].
The spectral decomposition of the generator of rotations is then given by the diagonal matrix:

dkp = 〈k|1
i

∂φ|p〉 ≡
1

2π

∫ 2π
0 exp[−ikφ]

1
i

∂φ exp[+ipφ] = δkp p.
(2)

We introduce a haptic model for the matrix dpp ∝ (...,−2,−1, 0, 1, 2, ...) using a simple paper
strip. The complex phase exp[+ipφ] is winding 2p times around the circle S1. In our model, the paper
strip of “length” 2π has to be twisted 2p-times clockwise (R: rightwards k > 0) or counter-clockwise
(L: leftwards k < 0). Afterwards, the starting point φ = 0 and the end point φ = 2π are glued
together to close the circle. In terms of the homotopy group, this decomposition into Fourier modes
just corresponds to π1(S1) = Z. This simple model can now be generalized to great circles in D ≥ 4
dimensions. Here, the 2π-periodicity is extended to a 4π-periodicity. For the modes dkk, at first sight,
nothing should change beside the fact that the paper strip is traversed twice. However, more modes
emerge, since:

dkp = 〈 k
2
|1

i
∂φ|

p
2
〉 ≡

1
4π

∫ 4π
0 exp[−i

k
2

φ] 1
i ∂φexp[+i

p
2

φ] = δkp
p
2

(3)

leads to modes with “half-integer” windings. In the paper strip model, beyond modes with an even
number of twists, those with an odd number of twists emerge, where the complex phase exp[+i(p/2)φ]
is winding p times around the circle S1. As shown in Figure 1, gluing together the “start point” φ = 0
and the “end point” φ = 2π leads to those new modes with an odd number of twists to Möbius strips
with only one surface. Based on this simple model, many characteristics of elementary particles can be
modeled [3].
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Figure 1. The paper strip model for the phase factor exp[+i(p/2)φ]: An odd number of twists
(|p| = 1, 3) leads to a Möbius strip topology of the paper strip with only one surface. On a Möbius
strip, after a rotation of 2π, the original position is reached upside-down. The modes with an even
number of twists (|p| = 0, 2, 4) have two surfaces. A rotation of 2π leads to the original position on the
paper strip. Right-moving twists (R) emerge for p > 0, while left-moving twists (L) have p < 0.

3. Jones Polynomials of Bosonic and Fermionic States in the (4π)-Realm

The three-sphere S3 can be defined using four real parameters (X, Y, Z, U) as:

X2 + Y2 + Z2 + U2 = 1 (4)

In what follows, (p, 2)-torus knots turn out to be crucial for the generalization of the Dirac belt
to the case of general spin j = p/2. It is well known that knots and links can be described in terms
of algebraic curves [4,5]. Consider the holomorphic function C2 → C given by g(u, w) = up + w2.
The intersection of the set of solutions of g(u, v) = 0 with the three-sphere S3 describes the (p, 2)-torus
knot. Using a stereographic projection S3 → R3, it is possible to visualize the (p, 2)-torus knots
emerging in S3 projected to R3 as:

(X, Y, Z, U)→ (λ1, λ2, λ3) = (
X

(1−U)
,

Y
(1−U)

,
Z

(1−U)
). (5)

Note that the north pole U = 1 has to be added as a point “at infinity”. It is well known that
the geodesic flow leaves tori of revolution invariant [6]. Explicitly, we may consider for example
the parameterization:

(
√

λ2
1 + λ2

2 − a)2 + λ2
3 = r2 (6)

We parameterize a general (p, q)-torus knot embedded in R3 as:

λ
j
1 = (a + r cos[pt]) cos[qt]

λ
j
2 = (a + r cos[pt]) sin[qt]

λ
j
3 = r sin[pt]

(7)

Similar to Avrin [3], we consider the (p, 2)-torus knots for the spin j state by selecting p = 2j, q = 2.
The simple paper strip model in the (2π)-realm introduced in the last section naturally leads to knot
theory. Indeed, the two edges of the paper strip then correspond to the principal bundle, leading either
to a connected knot in R3 (equivalently, in S3) for half-integer j after a 4π-rotation in η ≡ qt = 2t or to a
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disconnected link for integer j after a 2π-rotation in η for two curves r1 > r2 describing the two strands
at the boundary of the paper strip. For integer j, the link is part of what we call the (2π)× (2π)-realm,
since each of the two geodesics of the link have a period of (2π).

A famous theorem of Alexander [7] states that every knot or link can be represented as a closed
braid. Thus, the knot structure of fermionic and bosonic states can be constructed using Artin’s braid
group. For the derivation of Jones polynomials J j(t) characterizing the type of knot as a function of
a phase variable t for the homotopy of the highest weight state |j, j〉, Artin’s braid group describing
crossings between the two strands as shown in Figure 2 is sufficient. We can derive a recursion relation
from the definition of the Jones polynomial, as shown in Figure 2. The result is:

t−1 J j+1/2(t)− tJ j−1/2(t) = (t1/2 − t−1/2)J j(t), (8)

leading for fermionic knots with j 6= 1/2 and for bosonic links with j 6= 0 to the explicit expression:

J j(t) = (−1)2j+1
(

t
2j−1

2 +
2j−1

∑
k=1

(−1)k+1tk+ 2j+1
2

)
(9)

for integer and half-integer j ≥ 1. For j = 0, the Jones polynomial is given by J j=l=0(t) = −t−1/2− t1/2;
for spin j = 1/2, the Jones polynomial is trivial, J j=+1/2(t) = 1. At first sight, for bosons, the distinction
between the (2π)-realm and the (2π)× (2π)-realm (equivalently, the distinction between SU(2)/Z2

operations and SU(2) operations) seems irrelevant, since the behavior for observables is not changed
due to the mapping. However, the close relation between bosons and fermions can only be understood
when the full quantum state in Hilbert space is considered. Indeed, the links describing the bosonic
homotopy and the knots describing the fermionic homotopy are intimately related, since the bosonic
state |l, l〉 with integer l in the (2π)× (2π)-realm becomes the state j = l ± 1/2 in the (4π)-realm just
by a local change of crossings between the two strands, as shown in Figure 2. In such a way, the origin
of the boson-fermion correspondence, which is mathematically related to the Jacobi triple product
identity [8], can be traced back to knot theory.

Figure 2. On the left: Derivation of the recursive formula for the Jones polynomials for the highest
weight states |j,±j〉. The general spin states j = {l − 1/2, l, l + 1/2} (with integer spin l) are obtained
from the braid with 2l twists by insertion of one of the three boxes, respectively. On the right: Paper
strips with p = 1, 2, 3 twists (R, RR, RRR) embedded in a torus, corresponding to spin j = 1/2, 1, 3/2,
respectively. The red and blue edges of the paper strip correspond to the braids.
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Each knot corresponding to the highest-weight state |j, j〉 can be mirrored, which in the strip
model is achieved by replacing R twists with L twists in the (2π)-realm. The corresponding Jones
polynomials for |j,−j〉 are obtained by the mapping t→ t−1.

4. A Generalization of the “Dirac Belt” Trick in the (4π)-Realm

Our starting point will be the case j = 1
2 . Following Dirac, we introduce a “belt”, which is

nothing but our paper strip extended from “length” 2π to 4π [1]. The two sides of the belt may
be associated with two complex variables (u, v) ∈ C2. We introduce the complex homogeneous
coordinates (Z1, Z2) as:

Z1 ≡ u = ei τ
2 +i φ

2 cos[
θ

2
]

Z2 ≡ v = ei τ
2−i φ

2 sin[
θ

2
].

(10)

A little calculation (The coordinates λi are projected back to S3 as X = λ1
ρa , Y = λ2

ρa , Z = λ3
ρa , U =

1− 1
ρa with ρ =

√
λ2

1 + λ2
2. For u = X + iY, we find a = 1

cos[θ/2] for r2 = a2 − 1 > 0.) confirms

1/a = cos[θ/2] for the tori defined in Equation (7) for the subset fulfilling r2 = a2 − 1.
With a general quaternion q, a unitary operator Uq ∈ SU(2) acting on the qubit state |Q〉 =

u|1/2, 1/2〉+ v|1/2,−1/2〉 is given by:

Uq(α) = exp[(α/2)q] = cos[α/2] + q sin[α/2]. (11)

A basis I, J, K of the quaternions is given by I ≡ −iσ1, J ≡ −iσ2, K ≡ −iσ3, where σi are the
Pauli matrices. Crucially, operations acting on the qubit state |Q〉 can be translated into motions of the
Dirac belt describing the phase change, as shown in Figure 3.

Figure 3. In the (4π)-realm of SU(2), the paper strip describing the quantum phase has a length of
(4π) and always has two surfaces. In other words, in contrast to the (2π)-realm, no double-valuedness
of the wave function can emerge. Inner twists can be performed in three different “directions”, which
can be described using the quaternions I ≡ −iσ1, J ≡ −iσ2 and K ≡ −iσ3. The non-commutativity is
reproduced by the motion of the paper strip in the (4π)-realm shown here, since the order of operations
matters for the result. In particular, I JK|∗〉 = −1|∗〉 for an arbitrary initial state |∗〉.

It was first pointed out by P. Dirac that (−1) can be represented equivalently by a double-twist
rotating clockwise or counter-clockwise (Figure 4). Four twists lead back to the identity operator,
I4 = +1; therefore, I2 = I−2 = −1. In our model, this is achieved by cutting the “Dirac belt” open,
stretching it out, and pulling one end through the emerging loop, so that the loop becomes a mirrored
version of itself, before closing it again “the other way round”. This operation changes the number of
twists in the (4π)-realm by four. For a single complex variable in the (2π)-realm, this identification
corresponds to e+iπ = e−iπ at the position where two Riemannian sheets are glued together. In this
sense, the Dirac belt trick generalizes the construction of Riemannian sheets in one complex variable
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z in the (2π)-realm to the case of two complex variables (Z1, Z2) ∈ C2 in the (4π)-realm. Explicitly,
the mapping C2 → CP1 can be expressed as (Z1, Z2)→ (1, Z2/Z1) with:

z =
Z2

Z1
= tan[

θ

2
]eiφ. (12)

Figure 4. The operation I2 = I−2 = −1 introduces a single loop in the trivial state. The loop is
equivalent to two clockwise twists (++) or two counter-clockwise twists (−−). Note that twists in the
(4π)-realm (denoted ±) must carefully be distinguished from those in the (2π)-realm (denoted R/L).

The coordinate z can be mapped by stereographic projection onto the Bloch sphere parameterized
with the usual coordinates of S2, that is (x1 = cos[φ] sin[θ], x2 = sin[φ] sin[θ], x3 = cos[θ]).
The operator Uq(α) acting on the fundamental representation (Z1, Z2) = (u, v) in C2 (the 4π-realm)
acts on the adjoint representation X ≡ xiσi on the Bloch sphere (the 2π-realm) as:

U†
q XUq = X′. (13)

Explicitly, the rotation matrix O(Uq) ∈ SO(3) acting on the vector (x1, x2, x3) ∈ S2 in the
(2π)-realm with = x2

1 + x2
2 + x2

3 = 1 is given by:

Okl(Uq) =
1

tr(1)
tr(σkU†

q σlUq). (14)

The two-to-one mapping in the Hopf-mapping S3 → S2 becomes evident in this equation due to
O(Uq) = O(−Uq). Note that this equation holds for the case of general spin j, when U is replaced by
the corresponding (2j + 1)× (2j + 1) matrix representation of the rotation operator, and tr(1) = 2j + 1
(in terms of the coordinate z ∈ CP1, this rotation is described by a Möbius transformation matrix Uq).

The two-to-one mapping can also be found in the paper strip model: Indeed, the Dirac belt
representation in the (4π)-realm can be mapped to the Möbius strip by gluing it together as shown in
Figure 5. Inversely, by cutting the Möbius strip once in the middle, the Dirac belt with two surfaces
emerges, where the phase is doubled from 2π to 4π (Figure 5). In such a way, we can extend the strip
model from the (2π)-realm, which is directly related to observables, to the (4π)-realm, which is more
abstract, but directly related to quantum phases in Hilbert space.

Next, let us generalize the Dirac belt to the case j = 1 by applying the same operation to our
paper strip representation of a state with two twists T = +2, (RR) in the (2π)-realm; see Figure 1.
The “doubling” of the bosonic state indeed is reproduced by the paper strip model, which decomposes
into two identical copies of itself in the (4π)-realm. Thus, in Hilbert space C3, the phase of the bosonic
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state j = 1 is described by two identical copies in a Hopf link; see Figure 5. Each copy has two twists,
with T′ = T × T in the (2π)× (2π)-realm; see Figures 2 and 6. In this sense, bosons never explore the
full (4π)-realm, in contrast to fermions.

Figure 5. Upper row: Cutting the Möbius band j = 1/2 (R in Figure 1) in the middle leads to a Dirac
belt with four twists T′ = 4, denoted by (+ +++). Due to this operation, the length 2π of the paper
strip is extended to 4π, and the Möbius band-topology disappears. Lower row: The same operation
for j = 1 (RR in Figure 1) leads to two intertwined, identical copies of the original state (Hopf link),
each again with two twists T′ = T× T, in this case (++)× (++). The phase 2π is not extended to 4π.

Figure 6. The paper strip visualization for spin j = 1/2, . . . 3 in the full Hilbert space, which is obtained
from the model in the (2π)-realm shown in Figure 1 by cutting the strip once lengthwise in the middle
to double the phase. For fermions, a generalized Dirac belt emerges, described by a single knot.
For bosons, two identical, intertwined copies of the original state shown in Figure 1 are obtained,
leading to a generalized Hopf-link. Note that this is only possible for knots with inner twists T′ = 4j+ 2
or links with inner twists T′ = 2j× 2j (here, j = l must be integer). After Hopf-mapping, these twists
are mapped to 2j nodes in the stellar representation; see Figure 7.
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Figure 7. Relation between the stellar representation in the (2π)-realm and of the the knot structure
in the (4π)-realm, illustrated for j = 1/2, j = 1 and j = 3/2. Note that the number p = 2j of nodes
(sometimes called “stars”) in the stellar representation on S2 (corresponding to the number of twists Tin
the paper strip model in the (2π)-realm; see Figure 1) determines the knot structure in the (4π)-realm.
The mapping h is the Hopf mapping (h−1 being the inverse Hopf mapping). In Figure 6, the knot
structure in the (4π)-realm is represented in the paper strip model. The two-to-one Hopf mapping is
achieved in the paper strip model by gluing the strips together, as shown in Figure 5.

5. Relation Between Nodes, Twists and Knots

Note that we have to distinguish carefully twists T of the strip model in the (2π)-realm and twists
T′ in the (4π)-realm: twists T in the (2π)-realm are denoted by R, L and can be observed as nodes
of the quantum state. Twists T′ in the (4π)-realm are denoted by ±. They are not directly related
to observables. For this reason, twists in the (4π)-realm are denoted as inner twists. Fermions with
j = 1/2 only appear to live on a Möbius strip with T = 1, corresponding to one node. The antipode of
the single node of the spin j = 1/2 state defines the direction of the spin on the Bloch sphere. However,
this is just our (2π)-realm viewpoint of a states that indeed explores the full (4π)-realm in the Hilbert
space with T′ = 4 inner twists in the quantum phase, which is nothing but the Dirac belt.

Mathematically, various approaches exist to describe states with spin j both in the (4π)-realm
and in the (2π)-realm. We may extend the Hilbert space C2 for j = 1

2 to C2j+1, introducing the
homogeneous coordinates Z1, Z2, . . . Z2j+1. For SU(2)-representations, the full hypersphere S4j+1 of
possible quantum states is not explored (this would be the orbit of a pure state rotated by the full
group U(2j + 1)). Rather, following Kramer [6,9], the submanifold where S3 is wrapped 2j times onto
itself leads to a representation of the spin j state in the (4π)-realm, with homogeneous coordinates Zk
(k = 1, . . . 2j + 1) given by:

Zk =

(
2j
k

)
1/2ukv2j−k. (15)

Indeed, |Z|2 = ∑
2j
k=0 Z∗k Zk = (|u|2 + |v|2)2j = 12j = 1 defines a (2j)-to-one mapping S3 → S3.

Together with the operator Uq, the explicit form of the (2j + 1) × (2j + 1) representation of the
generators [Jz, J±] = ±h̄J±, [J+, J−] = 2h̄Jz of the group SU(2) can be deduced [9].

The Hopf-mapping from the (4π)-realm C2j+1 to the (2π)-realm CP1 (equivalently, on S2) can be
done in various ways. The adjoint representation given in Equation (13) is one explicit example of the
mapping on S2. In such a way, the knot structure shown in Figure 6 is mapped to p = 2j nodes on S2.
These nodes can be represented in the so-called stellar representation as zeros of a complex polynomial
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in one complex variable z of order p, as first advocated by Majorana [6,10]. A similar approach is given
by the co-called coherent state representation:

|z〉= 1
(1 + |z|2)j ezJ− |j, j〉= 1

(1 + |z|2)j

m=+j

∑
m=−j

(
2j

j + m

)
1/2zj+m|j, m〉. (16)

Indeed, the polynomial in z is of order 2j, leading to p = 2j nodes, just as in the stellar
representation. Note that the number of p = 2j nodes exactly corresponds to the number of twists T in
the (2π)-realm. Using the paper strip model, the relation between these nodes in CP1 and the knot
structure in C2j+1 is illuminated.

The paper strip model is a generalization of the Dirac belt construction to all spin states in the
(4π)-realm. Moreover, the two-to-one mapping of the quantum phase of a spin j-state from the Hilbert
space in the (4π)-realm to observables in the (2π)-realm is made explicit by gluing together the paper
strip, as shown in Figure 5. The number of twists T coincides with the number of nodes in stellar
representation, as shown in Figure 7 for T = 1 and T = 2. The generalization of this construction is
shown in Figures 2 and 6. Note that our approach generalizes the model introduced in [3], since the
two strands shown in Figure 2 are replaced by two strips shown in Figure 6, allowing for inner twists
even in the (4π)-realm and thus giving a description of the quantum phase in Hilbert space. As shown
in Figure 5, the state j = 1/2 is described as the Dirac belt with four twists T′ = 4, (+ +++). As is
obvious from the construction shown in Figure 2, if the two strands are replaced by two strips, each strip
in the braid has 2l twists. For bosons, this leads to T′ = 2l × 2l inner twists in the (2π)× (2π)-realm.
For the corresponding fermion with j = l + 1/2, four inner twists are added when the strips are
connected, leading to T′ = 4l + 4 = 4j + 2 inner twists in the (4π)-realm, as shown in Figure 6. The
number of inner twists T′ in the (4π)-realm or the (2π)× (2π)-realm has to adhere to these rules to
map to an observable state with T = 2j twists (equivalently, 2j nodes) in the (2π)-realm.

6. Observable Effects of the Möbius-Strip Topology

In the (2π)-realm, a rotation by θ = 2π leads for bosons back to the original state. For fermions,
however, this rotation leads to a sign change.

The sign change can be directly measured from the interference patterns of fermions
(i.e., as a relative phase) [11,12].

As can be seen in Figure 1, the Möbius strip-like topology for half-integer j (the number of twists
p = 2j is odd in this case) illustrates the double-valuedness of the spinor wave function, as one has to
travel along the strip for 4π to get back to the original point.

7. Summary and Outlook

The paper strip model introduced in Figure 6 naturally leads to knot theory, revealing the
knot-theoretic origin of the boson-fermion correspondence [8]. The dramatic difference between
bosons and fermions becomes relevant only after Hopf-mapping to the (2π)-realm. It is crucial to
distinguish carefully the (2π)-realm S2 (equivalently, CP1) from the (4π)-realm S3 (more generally,
C2j+1) for the description of quantum states. Spin- 1

2 states are described by the spinor (u, v) in the
(4π)-realm, but the corresponding observables are expressed on the Bloch sphere or by z = u/v ∈ CP1

after Hopf-mapping to the (2π)-realm. The two-to one mapping leads to a Möbius band topology for
fermions; see Figure 5.

Bosonic states are usually described in the (2π)-realm ignoring the identical copy of the state
in the (2π)× (2π)-realm. Note that Artin’s braid group describing bosonic and fermionic states as
shown in Figure 2 is extended by the strip model, since not only crossings and self-crossings have
to be taken into account, but also inner twists of each of the two paper strips, as shown in Figure 6,
which gives another prerequisite for (4π)-realm and (2π)× (2π)-realm states to be observable in the
(2π)-realm.
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In such a way, our model generalizes the Dirac belt [1] and also the rubber-band model introduced
by Finkelstein and Rubinstein [13], which both describe quantum phases in Hilbert space, that is,
in the (4π)-realm before Hopf-mapping. Moreover, our model clarifies and generalizes the relation of
the model for spin- 1

2 particles in the (2π)-realm introduced by J.Avrin [3] and the (generalized) Dirac
belt in the (4π)-realm. In contrast to Avrin, our model allows for inner twists T′ in the (4π)-realm.
Crucially, the mechanism of the two-to-one Hopf mapping from quantum phases in Hilbert space in
the (4π)-realm to observables in the (2π)-realm is illuminated by gluing together the knot, modeled
as a paper strip with T′ = 4j + 2 inner twists and a knot structure described by the Jones polynomial
J j(t) (9), as shown in Figures 5 and 6. The result of the mapping is a Möbius strip with T twists in
the (2π)-realm. For bosons with integer j = l, the link modeled as a paper strip with T′ = 2l × 2l
inner twists is mapped to itself, identifying both linked copies of the quantum state (in the model,
this is achieved by gluing together both identical pieces of the link, as shown in Figure 5 for l = 1).
For bosons and for fermions, the number of twists T in the (2π)-realm coincides with the number of
nodes in stellar representation, as shown in Figure 7 for T = 1, 2, 3.

Applications of the paper strip model and its underlying knot theoretical approach are possible,
e.g., for the description of topological charges in gauge theories, for the spin-statistics theorem, and for
entanglement, as will be shown elsewhere.

It must also be emphasized that the paper strip model might have merit in physics education due
to its haptic nature, allowing one to experience an abstract and important concept in mathematical
physics on a qualitative level.
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