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Abstract: As there are more and more available Web services with the same or similar functionalities
but different Quality of Service (QoS), the challenge of QoS-aware service composition is to efficiently
select appropriate component services to achieve maximum utility and meet the global QoS
constraints with low time cost. In this paper, we propose a dynamic service selection approach
based on adaptive global QoS constraints decomposition. Fuzzy logic technology and Cultural
Genetic Algorithm are used to adaptively decompose global QoS constraints into near-optimal
local constraints. According to the near-optimal local constraints, the optimal service is selected for
each service class during the running time efficiently. Experimental results show that the proposed
approach not only achieves the near-optimal solution, but also significantly reduces the computation
time, and has good adaptability and scalability.

Keywords: dynamic service selection; global QoS constraints decomposition; fuzzy logic technology;
Cultural Genetic Algorithm

1. Introduction

Service-oriented architecture (SOA) is a modern paradigm to develop software systems that are
often described as composite Web services [1]. Currently, composite Web services have been widely
used in various areas, such as virtual enterprise, supply chain, accounting, finances, and e-Science.
With the emergence of massive Web services, there are more and more candidate services that can
provide the same or similar functionality. As a result, it is essential to consider Quality of Service
(QoS) such as response time, price, availability, and so on [2,3]. In recent years, QoS-aware service
composition has been widely studied [4,5].

Since Web services are invoked in a dynamic environment, the QoS attributes and user’s
preferences are changing at runtime. In order to deal with the above runtime changes more efficiently
and flexibly, dynamic service composition is proposed. It is described as a process containing a set of
abstract services, and a concrete service is selected, bound, and invoked for each abstract service
at runtime [6]. Moreover, users always put forward global QoS requirements, and as a result, it is
demanded to select a concrete service for each abstract service that can satisfy global QoS constraints [7].
Service selection based on global QoS constraints is a combination optimization problem. The time
complexity for the global optimization increases exponentially with the increasing of services or QoS
attributes. Thus, it is a challenge to develop an efficient QoS-aware dynamic service selection approach
that can maximize the utility and satisfy the global QoS constraints and user’s preferences as well.

Recently, researchers have carried out intensive studies on service selection based on global QoS
constraints. The existing studies can be classified as optimization-based approaches and heuristic-based
approaches. Optimization-based approaches aim at finding the optimization solution based on user’s
QoS constraints [8,9]. These methods usually suffer from poor scalability due to the exponential time
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complexity. Heuristic-based approaches search for near-optimal solutions with a polynomial time
complexity [10,11]. However, as these heuristic-based methods usually require a large number of
global data and high cost of communication, they are not appropriate in distributed environments [12].

Currently, there are several heuristic-based methods based on global constraints
decomposition [1,6,13,14]. In these methods, the value range of each QoS attribute of each
service class is divided into a set of discrete values, which are called quality levels. The global QoS
constraints are decomposed into local constraints for each service class by solving the optimal quality
level scheme. Finally, local constraints are used to select local component service. These methods can
achieve an approximate utility in dramatically reduced time and meet the global constraints as well.
However, the above approaches do not discuss the number of quality levels, which is very important
for service composition. Due to the constant number of quality levels, the above approaches are
short of adaptability. As a result, the user’s preferences cannot be satisfied well. For example, some
users need to find the composite service quickly instead of high quality; however, some users hope to
get a trade-off between searching time and high quality.

To overcome the problems above, this paper proposes a dynamic service selection approach
based on adaptive QoS constraints decomposition (AQCD). The main idea is to decompose global QoS
constraints into local constraints, and according to the local constraints, select a component service for
each service class independently. According to user’s preferences, utility function values, and time
cost, we use fuzzy logic technology to automatically adjust the number of quality levels in order to
generate the optimal quality level scheme. Finally, we use Cultural Genetic Algorithm (CGA) to solve
the near-optimal global QoS constraints decomposition. In order to verify the effectiveness of our
AQCD approach, extensive experiments were conducted on the real Web services data set QWS and the
randomly generated data set RQWS. We compare the performances of AQCD, QCD, and the integer
programming-based approach (WS-IP) by the running time and approximation ratio. Experimental
results show that AQCD can efficiently solve the QoS-aware service composition problem with
near-optimal solutions and low time cost. Further, it can fit well to user’s preferences and the increase
in candidate services; that is to say, our approach has a good adaptability and scalability.

The remainder of this paper is organized as follows. Section 2 reviews related works. Section 3
briefly describes some basic concepts and formulates the service selection problem. Section 4 describes
the process of dynamic service selection based on global QoS constraints decomposition. Section 5
proposes the adaptive adjustment approach based on fuzzy logic technology. Section 6 proposes the
global QoS constraints decomposition approach based on CGA. Section 7 proposes the local service
selection method. Section 8 presents experimental results. Finally, Section 9 concludes this paper.

2. Related Work

Web-service selection based on global QoS constraints considers the overall constraints provided
by users, to find the optimal set of services. It is at the expense of high computation complexity
to evaluate all the possible service compositions. To address this problem, a variety of approaches
have been proposed. In References [8,9,15], QoS-aware service selection problem was modeled as a
multidimensional multi-choice knapsack problem (MMKP). Integer programming methods [8,9,16]
have been used to search for the optimal solution. The above approaches are very effective for
small-scale problems. However, as the increasing of services, these approaches suffer from poor
scalability because of the exponential time complexity.

To address the above problem, several bio-inspired algorithms [17] have been used to deal with
QoS-aware service selection problem. There are three common bio-inspired algorithms used for
service composition—genetic algorithm (GA) [18,19], ant colony optimization (ACO) algorithm [20,21],
and particle swarm optimization (PSO) algorithm [22]. Furthermore, several researchers proposed
improved bio-inspired algorithms to get better solutions with less time. References [11,23] provided
a hybrid GA to solve the optimal service composition problem. Reference [24] proposed a variable
length chromosome GA to deal with QoS-aware service selection. In Reference [25], QoS-aware service
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selection problem was modeled as a multi-objective optimization problem, and a multi-objective chaos
ACO algorithm was proposed to solve it. Reference [26] proposed an immune optimization algorithm
based on PSO and verified the better performances in aspects of the convergence rate, the searching
ability, and the stability. Reference [10] proposed a cross-modified artificial bee colony algorithm to
solve QoS-aware service selection. However, because of the requirement of global data visibility, it is
difficult to apply these approaches in a distributed environment.

Recently, several QoS-aware service selection approaches based on global constraints
decomposition have been proposed. From the viewpoint of computation time, the approach based on
decomposition can be more appropriate and it can be applied in a distributed environment. The global
constraints can be transformed to the local constraints through different approaches. Reference [27]
discussed the constraints decomposition in the sequential, parallel, and condition structures, and
then presented an approach for determining the local constraints in a general structure. Most
works [1,6,13,14] divided the value range of each QoS attribute of each service class into discrete
values, which were called quality levels. These approaches mapped global constraint into a set of
quality levels. Finally, these quality levels were used as local constraints to select component service.
However, all of the above approaches neglected the effect of the user’s preferences on the global
constraints’ decomposition.

To overcome the above problem, this paper proposes a novel dynamic service selection approach
based on adaptive global QoS constraints decomposition, in which the number of quality level is
automatically adjusted.

3. Problem Formulation

In order to introduce the process of dynamic service selection based on global QoS constraints
decomposition, this paper lists some basic concepts as below.

Definition 1. Component service (s): It is the basic unit in service composition, providing services to users.

Definition 2. Service class (Si): A service class Si = {si1, si2, si3, · · · , sim} denotes the ith abstract
service of a composite Web service. It has m candidate services, which have the same functionality but differ in
QoS attributes.

Definition 3. QoS vector (Q(s)): A QoS vector Q(s) = {q1(s), q2(s), · · · , qr(s)} contains r QoS
attributes of service s.

Definition 4. QoS aggregation for a composite service (CQ): CQ = {Cq1, Cq2, · · · , Cqr} contains r QoS
attributes of a composite service. It can be calculated in terms of QoS values of component services and the
composition structures.

Definition 5. User preferences W: W = {w1, w2, · · · , wr} represents user preferences, where wk (1 ≤ k ≤ r)
is user’s preference for the kth QoS attributes. ∑r

k=1 wk = 1, and wk ∈ (0, 1).

Definition 6. Global QoS Constraints (C): C = {C1, C2, · · · , Cr} is the set of user’s global QoS constraints,
which contains r constraints and Ck (1 ≤ k ≤ r) is a global constraint over qk. Ck can be shown according to
upper and/or lower bounds for the QoS aggregation value Cqk.

3.1. QoS Aggregation for a Composite Service

There has been much research about service composition structures and QoS aggregation
formulas. In Reference [27], the QoS attributes were divided into three different categories—additive
attributes, multiplicative attributes, and max-operator attributes. There are four basic composition
structures—sequential, parallel, conditional, and loop structures [27]. This paper only considers the
sequential composition structure. Other composition structures can be converted to the sequential
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composition structure through the methods mentioned in Reference [27]. In this paper, we study
five QoS attributes, including price, response time, availability, and throughput. We assume that
a composite service is sequentially constructed by n component services. The QoS aggregation
formulas of five QoS attributes are as shown in Table 1.

Table 1. Quality of Service (QoS) aggregation formulas for the sequential composition structure.

Price Response Time Availability Throughput Successful
Execution Rate

P =
n
∑

i=1
Pi T =

n
∑

i=1
Ti A =

n
∏
i=1

Ai R = minn
i=1{Ri} S =

n
∏
i=1

Si

3.2. Utility Function

There are many candidate services with multiple QoS attributes in service composition. In order to
calculate the QoS attributes of candidate services, we use the Simple Additive Weighting (SAW)
approach [28] to map the QoS vector Q(s) into a single real value.

Firstly, we should transform each QoS attribute into a real value between 0 and 1, which is called
normalization. QoS attributes can be divided into two categories—negative attributes and positive
attributes. For negative attributes (e.g., price), the lower the value, the higher the quality. On the
contrary, for positive attributes (e.g., throughput), the higher the value, the higher the quality. Negative
attributes can be easily converted into positive attributes by multiplying their values by −1. Therefore,
this paper only considers the positive attributes. We define Rk

(
sij
)

as the normalized value of the kth
QoS attribute of service sij and it can be calculated by Equation (1).

Rk
(
sij
)
=

Qmax
i,k − qk

(
sij
)

Qmax
i,k −Qmin

i,k
(1)

Qmax
i,k and Qmin

i,k are the maximum and minimum values of the kth attribute of service class Si.
qk
(
sij
)

is the value of the kth attribute of candidate service sij.
Secondly, the utility function of component service s (s ∈ Si) is shown as Equation (2), where wk

represents the user’s preference assigned to the kth QoS attribute.

U(s) =
r

∑
k=1

Rk(s)× wk (2)

The utility function of a composite service CS can be defined as Equation (3)

U(CS) =
r

∑
k=1

Qmax
k − Cqk

Qmax
k −Qmin

k
× wk (3)

Qmax
k and Qmin

k are the maximum and the minimum values of the kth attribute for CS.
According to the formulas in Table 1, they can be calculated by aggregating the maximum and
the minimum values of the kth attribute of each service class.

4. Dynamic Service Selection Based on Global QoS Constraints Decomposition

The process of dynamic service composition in sequential composition structure is illustrated in
Figure 1. There are n service classes. Each service class has m candidate services associated with r QoS
attributes. The concrete component service is selected and bounded from each corresponding abstract
service class. The composite service needs to satisfy two conditions, as follows.
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(1) The utility function value of the composite service U(CS) is maximum.
(2) The QoS aggregation for the composite service must satisfy the global QoS constraints, i.e.,

Cqk meets Ck (1 ≤ k ≤ r).Symmetry 2019, 11, x FOR PEER REVIEW 5 of 22 
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Figure 1. Dynamic service composition in sequential composition structure.

Recently, a number of service selection approaches based on global QoS constraints decomposition
have been proposed, which can optimize the utility function value of the composite service while
meeting the global constraints. As shown in Figure 2, these approaches basically have two
components—global constraints decomposition and local service selection. Firstly, each global QoS
constraint Ci is decomposed into n local constraints c1, c2, · · · , cn, where n is the number of service
classes. Secondly, the local constraints are used to select the optimal component service. The local
constraints need to ensure that, as long as they are achieved, the global constraints are achieved.
Furthermore, the local constraints should be general enough, in order to avoid ignoring any possible
candidate service.
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5. Adaptive Adjustment Approach Based on Fuzzy Logic

In this section, we propose an adaptive adjustment approach, which uses fuzzy logic technology
to adjust the number of quality levels automatically.

5.1. The Initialization of Quality Level

Quality levels are initialized for each QoS attribute of each service class by dividing the value
range of each QoS attribute into discrete quality values as shown in Figure 3. qm

ik represents the kth
QoS attribute value of the mth candidate service of service class Si; Ld

ik indicates the dth quality level of
the kth QoS attribute of service class Si. It can be calculated as

Ld
ik = Ld−1

ik + d× ∆ (4)
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d ∈ [1, pk], and pk is the number of quality levels of the kth QoS attribute of service class Si. ∆ can
computed as shown in Equation (5).

∆ =
qmax

ik − qmin
ik

pk
(5)

qmax
ik and qmin

ik are, respectively, the maximum and minimum quality value of service class i for
QoS attribute k, and qmin

ik = L0
ik.
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In this section, we exemplify the QoS constraints decomposition process by a composite service
containing three sequential service classes with three QoS attributes. As shown in Table 2, each QoS
attribute is associated to a weight and a constraint.

Table 2. Global QoS constraints and weights.

QoS k1 = Price k2 = Response Time k3 = Throughput

Weight 0.2 0.5 0.3
Constraint ≤ 140 ≤ 400 ≥ 75

We assume that the number of quality levels of each QoS attribute of each service class is 3.
Figure 4 describes the procedure of the constraints’ decomposition. For service class S1, the global
price constraint is divided into three local constraints −35 ≤ k1 ≤ 40, 40 ≤ k1 ≤ 45, and 45 ≤ k1 ≤ 50.
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5.2. General Fuzzy Logic System

Fuzzy logic is an approximate reasoning technology based on multi-valued logic, which is suitable
to deal with uncertainty [29]. It is able to support decision-making and evaluate uncertain parameters.
In the existing researches [30–33], fuzzy logic technology has been used for service ranking in the
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process of service selection. In this paper, we propose an adaptive adjustment method for the number of
quality level based on fuzzy logic (AAQL).

The general fuzzy logic system (FLS) includes four basic parts—fuzzification, fuzzy rule base,
fuzzy inference, and defuzzification, as shown in Figure 5. The first step is fuzzification, in which
crisp inputs are mapped into the fuzzy set. The fuzzy set can be defined by the membership function.
Assuming that U is a normal set, any function f () that can map U to [0,1], can determine a fuzzy set A.
f () is called the membership function. For any u ∈ U, f (u) is the membership of u, which describes the
degree of u belonging to U. The next step is fuzzy inference, which determines what extent each rule in
the fuzzy rule base applies to the current fuzzified inputs. IF–THEN rule is the common fuzzy rule to
represent human knowledge in the general FLS. The IF part includes memberships of attributes of an
individual, and the THEN part is a special concept called Rank. A fuzzy rule shows which composition
of attributes a user is willing to accept to which degree, where attributes and degree of acceptance are
vague [34]. A simple IF–THEN fuzzy rule can be:

IF Price = Expensive and Time = Slow THEN Rank = Bad.
Finally, the fuzzified output is converted into a crisp output. This step is called “defuzzification”.
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Figure 5. General fuzzy logic system.

5.3. Adaptive Quality Level Based on Fuzzy Logic

AAQL can automatically adjust the number of quality levels according to user’s preferences [35],
utility function values, and time cost. We assume that there are two input variables and one output
variable. The input variables are the normalized number of quality levels of the kth QoS attribute Npk
and the normalized function value of the quality levels NFp. The output variable is cpk, the change
ratio of Npk. Npk and NFp can be defined as below:

Npk =
pmax

k − pk

pmax
k − pmin

k
, NFp =

Fpmax − Fp
Fpmax − Fpmin

(6)

where pmax
k or pmin

k is the maximum or the minimum number of quality levels and pk is the current
number of quality levels. Fpmax or Fpmin is the maximum or the minimum function value of the
current quality levels. Fp is the current function value of the quality levels, and it can be calculated as
Equation (7).

Fp = ηk ×
NU
NT

(7)

ηk is the user’s preference for the kth attribute, and ηk ∈ (0, 1). ηk can be dynamically obtained
and normalized through the method in Reference [29]. Both NU and NT are the normalization value
NU ∈ (0, 1) and NT ∈ (0, 1), and they can be calculated by Equation (8).

NU =
Umax −Ucur

Umax −Umin
, NT =

Tmax − Tcur

Tmax − Tmin
(8)
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Umax and Umin are, respectively, the maximum and the minimum utility function values of the
composite service under the current quality levels. Ucur is the current utility function value. Tmax

and Tmin are, respectively, the maximum and the minimum time cost of the process of quality level
initialization and quality level combination. Tcur is the current time cost.

Firstly, AAQL maps the input variables NFp and Npk into the fuzzy set. We assume that there
are three fuzzy labels—L, M, and B, where L denotes “Little”, M denotes “Middle”, and B denotes
“Big”. This paper uses the triangular and trapezoidal shapes to define membership functions of NFp,
Npk, and cpk, as shown in Figure 6.
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Secondly, according to the fuzzy rules, AAQL uses the fuzzy inference to get the fuzzy output
variable cpk. The nine fuzzy rules of AAQL are as listed in Table 3, and the surface projection is
shown as Figure 7. The basic fuzzy inference algorithm is Min–Max algorithm. However, the IF part
consists of multiple attributes, which have different effects on the conclusion. For the Min algorithm,
the conclusion is only determined by the attribute with the least membership. No matter how the
membership of the other attributes change, as long as the minimum membership remains unchanged,
the conclusion does not change. That is to say, Min–Max algorithm is insensitive to the changes of
input facts. As a result, the common Min–Max algorithm is not suitable for AAQL. In this paper,
we assign weights to NFp and Npk, respectively. Based on the weighted sum of NFp and Npk, we can
infer the membership of the corresponding conclusion. Obviously, the weights are very important.
At present, there is no definite method to get the exact weights. We designed a number of experiments
by setting different user preferences and other parameters, and we conducted experiments to search
for the optimal number of quality levels for each experiment. By summarizing the experimental
results, we assign the weight of NFp 0.7 and the weight of Npk 0.3. Obviously, as the weights are set
empirically, they are still not accurate. In our future work, we will improve the method for assigning
the weights.

Table 3. The fuzzy rules.

IF THEN

NFp Npk cpk

B B M
B M M
B L M
M B L
M M L
M L B
L B L
L M L
L L B
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This paper adopts the center of gravity (COG) defuzzification method [36] to get the accurate and
concrete value of cpk. According to cpk, the new number of quality levels can be adaptively adjusted
as Equation (9), where Npnew

k is the new Npk and Npold
k is the original one.

Npnew
k = Npold

k × (1 + cpk) (9)

For example, we assume that NFp = 0.63 and Npk = 0.37. The calculation process of cpk is
as follows:

(1) Fuzzification of the input variables.
According to the membership functions in Figure 6, we can get the membership values of NFp

and Npk, as shown in Tables 4 and 5.

Table 4. The membership values of NFp.

Fuzzy Label Membership

L 0
M 0.35
B 0.1

Table 5. The membership values of Npk.

Fuzzy Label Membership

L 0.1
M 0.35
B 0

(2) Invoking the corresponding fuzzy rules.
When the fuzzy label of NFp is L, the membership value is 0, and when the fuzzy label of Npk

is B, the membership value is 0. So, the fuzzy rules in Table 4, of which IF parts contain the fuzzy
label of NFp is L or the fuzzy label Npk is B, are not be invoked. Finally, there are four rules invoked,
which are listed in Table 6.
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Table 6. The activated rules.

IF THEN

NFp Npk cpk

M L B
M M L
B L M
B M M

Rule 1: The membership value of NFp belonging to “M” is 0.35, and the membership value of
Npk belonging to “L” is 0.1, so the degree of Rule 1 can be calculated as: degree(R1) = 0.35× 0.7 +

0.1× 0.3 = 0.275.
Rule 2: The membership value of NFp belonging to “M” is 0.35, and the membership value of

Npk belonging to “M” is 0.35, so the degree of Rule 2 can be calculated as: degree(R2) = 0.35× 0.7 +
0.35× 0.3 = 0.35.

Rule 3: The membership value of NFp belonging to “B” is 0.1, and the membership value of Npk
belonging to “L” is 0.1, so the degree of Rule 3 can be calculated as: degree(R3) = 0.1× 0.7 + 0.1× 0.3 = 0.1.

Rule 4: The membership value of NFp belonging to “B” is 0.1, and the membership value of Npk
belonging to “M” is 0.35, so the degree of Rule 4 can be calculated as: degree(R4) = 0.1× 0.7 + 0.35×
0.3 = 0.175.

The conclusion of Rule 1 is the fuzzy label of cpk is B, so the membership value of cpk belonging to
“B” is 0.275. For Rule 2, the fuzzy label of cpk is L, so the membership value of cpk belonging to “L” is
0.35. For Rule 3 and Rule 4, the fuzzy label is M, so the membership value of cpk belonging to “M” is
max(0.1, 0.175) = 0.175.

(3) Defuzzification of the output variable.

cpk =
0.3× 0.275 + (−0.3)× 0.35 + 0× 0.175

0.275 + 0.35 + 0.175
≈ −0.03

6. Global QoS Constraints Decomposition Based on CGA

6.1. Near-Optimal Quality Level Scheme

The nature of the optimal global QoS constraints decomposition is to search for an optimal quality
level combination for each service class. Each service class has a number of QoS attributes and each
QoS attribute has a set of quality levels, so there are many quality level schemes. It is a challenging
problem to search for the optimal quality level scheme. It is a constrained multi-objected combinatorial
optimization problem [37,38]. For large-scale searching space, in order to deal with this problem
quickly, we use a novel evolution CGA by integrating Genetic Algorithm into the framework of
Cultural Algorithm [1].

6.2. Cultural Genetic Algorithm

On account of parallelism and effective utilization of global information, GA is very suitable to
solve combinatorial optimization problems. However, the prematurity phenomenon of GA is the
biggest shortcoming. In order to assure the whole astringency, some approaches should be proposed
to obtain the global optimal solution.

Cultural Algorithm (CA) is a new evolutionary algorithm to simulate the evolution of human
society, proposed by Reynolds in 1994. As shown in Figure 8, CA is mainly composed of three
parts—belief space, population space, and operation function. Belief space and population space
can evolve at different speeds, which are relatively independent and interrelated. At the micro level,
the population space simulates biological evolution and uses the evolutionary function PEvolve () to
produce experiential knowledge. The evaluation function Evaluate () evaluates the information of the
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individuals in the population space, and then the useful information is passed to the belief space by
function Accept (). Finally, the selection function Select () gives the optimal or approximate optimal
solution. At the macro level, belief space uses Update () to receive, integrate, and preserve the
empirical knowledge transmitted by the population space. Finally, the useful empirical knowledge is
transferred to the population space by Influence (), so as to guide the evolution of individuals in the
population space.
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Figure 8. The framework for Cultural Algorithm (CA).

To solve the constrained combinatorial optimization problem, it is the key problem how to transfer
the constraints of the problem to the empirical knowledge and store it in the belief space. CA divides
the searching space into several regions with different characteristics by using the constraint conditions.

We divide the searching space into smaller areas called cells. Some units are completely in the
feasible domain, some units are completely in the infeasible domain, and the others are in both the
feasible domain and infeasible domain. These units are the basic units that constitute the belief space of
CA, called Belief Cells (BC). The belief space uses BC to represent and store the constraint conditions of
the problem, in order to guide the evolution in the population space.

We take a constrained combinatorial optimization problem with two independent variables as an
example. As shown in Figure 9, the solution space is a region in a two-dimensional plane. By several
searching operations, a region that most likely produces excellent individuals is generated. We use a
curve to represent the constraint boundary. The outer part of the curve is the feasible region and the
inner part is the infeasible region. As shown in Figure 9b, the whole region is divided into smaller
regions, which are BC. The BC belonging to the feasible region and infeasible region are represented
by white and black squares, respectively, and the BC belonging to semi-feasible region are represented
by gray squares. Constraint boundary and its internal constraint knowledge are saved as empirical
knowledge to guide the population evolution in the population space, so that more individuals are
generated in the feasible domain and semi-feasible domain, and the generation of individuals in the
infeasible domain is restrained.
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For an n-dimensional belief space containing m BC, its structure is defined as below:

BS = 〈N[n], C[m]〉

N[n] is the regional information set, and N[j] represents the regional information of dimension j;
C[m] is the set of BC, and C[i] is the ith belief unit.

N[j] can be represented as follows:

N[j] = 〈Ii, Lj, Uj
〉

Ij is a closed interval that represents the value range of independent variables in the region of
dimension j. Ij =

[
lj, uj

]
=
{

x
∣∣lj ≤ x ≤ uj, x ∈ R

}
, where lj is the upper limit value, and uj is the

lower limit value. Lj and Uj are presented the evaluation function value of lj and uj, respectively.
C[i] can be represented as follows:

C[i] = 〈Classi, Cnt1i, Cnt2i , Wi, Posi, sizei〉

Classi represents characteristics of the ith belief cell, and the value set of Classi is S = {0, 1, 2, 3}. 0
is feasible, 1 is not feasible, 2 is semi-feasible, and 3 is unknown. Cnt1i and Cnt2i are two counters that
record the number of feasible and infeasible individuals in C[i], respectively. Wi is the weight of belief
cell. The higher the credibility, the higher the weight of the belief cell. Posi is the left-most angular
position coordinate of the ith belief unit and sizei represents the size of the belief unit.

GA realizes population evolution by iterative operation through genetic operations such as
selection, crossover, and mutation. This process is unguided and completely randomly. It ignores
the important influence of feature information generated in the process of population evolution on
solving problems. As a result, we take GA as the evolutionary algorithm of population space in
CA and proposes knowledge guidance-based GA, namely Cultural Genetic Algorithm. CGA retains
the selection and crossover operations of GA, and guides mutation operations with the empirical
knowledge of the belief space, so as to effectively improve the convergence speed and the quality of
results and reduce the computation time as well.

6.3. Global QoS Constraints Decomposition Algorithm Based on CGA

Suppose a composite service contains n service classes and m QoS attributes, and each QoS
attribute is divided into t constraint partitions. The flow chart of CGA is as shown in Figure 10.
The optimal global QoS constraint decomposition algorithm based on CGA mainly includes two
parts—the renewal of belief space and the evolution of population space.
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6.3.1. Belief Space Renewal

Belief space can be regarded as a hypercube composed of belief units in n-dimensional space.
Through the functions Accept () and Update (), the belief space receives and integrates the empirical
knowledge generated by the evolution of individuals in the population space, so as to constantly
update the size of the hypercube.

The function Accept () sorts the individuals in the current population according to the size of their
objective function values, and transfers the excellent individuals with large objective function values
to the belief space. The number of individuals transferred to Accept () changes with the generations of
population evolution. If the value of the overall objective function of the current population is
greater than that of the previous generation, the number of individuals to be transferred will decrease.
If it remains unchanged, the number of individuals to be transferred will remain unchanged. If it is
less than that of the previous generation, the number of individuals to be transferred will increase.
The number of excellent individuals transferred by the function Accept () in the paper is expressed by
naccept. The specific calculation formula is as follows:

naccept = N × p +
h× (1− p)× N

g
(10)

N represents the number of individuals in the population; p is a parameter set up according to
experience, generally 0.2. g is the algebra of evolution; h is a multiple of expansion. If the value of
the overall objective function of the current population P(t) is larger than that of the population
P(t− 1) of the previous generation, or if the value of the overall objective function is constant, then
h = 1. Otherwise, h = 2; that is, the number of selected individuals is increased. With the increase of
population evolution algebra, when the population gradually converges to the optimal solution or
approximate optimal solution, the computation amount and search time are gradually reduced, and
the number of individuals is increased when the value of the objective function is not ideal.

According to the individual experience knowledge transferred by Accept (), Update () updates
the belief space BS = 〈 N[n], C[m] 〉. Suppose that the ith outstanding individual Xi transferred
in generation t determines the lower limit of the independent variable value of N[j], and the pth
outstanding individual Xp determines the upper limit of the independent variable value of N[j].
Update N[j] by the following calculation formula:

lt+1
j =

{
xt

i,j, if xt
i,j ≤ lt

j or Evaluate
(
xt

i
)
< Lt

j
Lt

j, otherwise
(11)

Lt+1
j =

{
Evaluate

(
xt

i
)
, if xt

i,j ≤ lt
j or Evaluate

(
xt

i
)
< Lt

j
Lt

j, otherwise
(12)

ut+1
j =

{
xt

p,j, if xt
p,j ≤ ut

j or Evaluate
(
xp
)
< Ut

j
Ut

j , otherwise
(13)

Ut+1
j =

{
Evaluate

(
xp
)
, if xp,j ≤ ut

j or Evaluate
(
xp
)
> Ut

j
Ut

j , otherwise
(14)

Among them, the xt
i,j and xt

p,j represent the jth independent variable of Xi and Xp in the tth
generation; and lt

j and ut
j , respectively, represent lower limit and upper limit of independent variables

in the tth generation of Lt
j and Ut

j , respectively, represent the utility function value of lt
j and ut

j.

6.3.2. Population Space Evolution

CGA takes GA as the evolutionary algorithm for population evolution in population space, which
mainly includes the following key steps:
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1. Encoding

The purpose of global QoS constraint decomposition is to find an appropriate constraint partition
for each QoS attribute of each service class. A service composition scheme contains a number of service
classes. There is a corresponding constraint partition set for each service class. Therefore, this paper
designs a two-dimensional coding method to decompose a real, global QoS constraint. As shown in
Figure 11, lx

nr represents the xth constraints division of the rth QoS attribute Cqr of service class Sn.
Each column represents constraints division set of a service class.
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2. Evaluation Function

The evaluation function of CGA is to calculate the individual objective function value in the
population. The specific calculation formula is as follows:

Evaluate() = max
n

∑
i=1

m

∑
k=1

t

∑
d=1

ld
i,k × xd

i,k × wk (15)

Among them, ld
i,k represents the dth constraint division of the kth QoS attributes of service class.

xd
i,k represents if ld

i,k is selected or not, if selected xd
i,k = 1 or xd

i,k = 0; wk represents the user preference
for the kth QoS attribute. Ck represents the constraint condition for attribute k of composite service,
and the evaluation function needs to meet the following conditions:

∀k :
n

∑
i=1

t

∑
d=1

ld
i,k × xd

i,k ≥ Ck, 1 ≤ k ≤ m (16)

∀i, k :
t

∑
d=1

xd
i,k = 1, 1 ≤ k ≤ m (17)

3. Selection Operation

According to the law of biological evolution, the larger the value of the objective function is, the
greater the chance that individuals will be retained. That is to say, the probability of individuals being
selected is directly proportional to the value of the objective function. The roulette selection method is
adopted for individual selection operation. Let the population size be N, and the probability of the ith
individual Xi being selected pi is:

pi =
Evaluate(Xi)

∑N
i=1 Evaluate(Xi)

(18)
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4. Crossover and Mutation Operation

After the selection operation, we select two individuals from the current population and perform
the following operations:

Xt+1
i = α× Xt

i + (1− α)× Xt
j (19)

Xt+1
j = α× Xt

j + (1− α)× Xt
i (20)

Among them, Xt
i and Xt

j are two individuals of the tth generation, Xt+1
i and Xt+1

j are new
individuals, and a ∈ (0, 1) is a random number. Choose one individual Xt

i in the current population as
parent individual. Its mutation operation is shown as follows, where Xt+1

i is a new individual, β is
mutation step length, and d is the variation direction.

Xt+1
i = Xt

i + β× d (21)

5. Mutation Operation Based on Influence ()

New individuals generated by the basic mutation operation based on Equation (21) often violate
the constraint conditions. In this paper, a mutation operation guided by the function Influence () in CA
is used to generate new individuals. The specific calculation formula is divided into two situations:

• If the parent individual Xt
i belongs to the feasible region or semi-feasible region, it continues

mutating near the feasible region. Its computation formula is as follows:

xt+1
i,j = xt

i,j + γ×
(

ut
j − lt

j

)
× a (22)

Among them, the xt
i,j is the jth independent variable of the tth generation individual Xi; γ is

a artificial positive value; ut
j and lt

j , respectively, respect the upper limit and lower limit of the
independent variable of tth generation for N[j]; a represents a random value between 0 and 1.

• If the parent individual Xt
i belongs to the infeasible region, we adopt the concept of the sliding

window based on interval, Xt
i move to four BC according to different probability. The computation

formula is as follows:
xt+1

i,j = moveTo(choose(C[m])) (23)

moreTo () is a migration function that moves the parent generation of an unfeasible domain to the
selected target belief unit. choose(C[m]) represents that according to the probability Wi of each BC
C[i], selecting the target BC by the roulette selection method for moreTo () invoking. When the ith
BC is selected, the formula of moreTo () is as follows:

Xt+1
i = Le f ti + uni f orm(0, 1)× sizei (24)

Le f ti is a 1× n array, representing the most left position of the BC C[i]; sizei is a 1× n array,
representing the size of BC C[i] in each dimension. uni f orm(0, 1) is a 1× n array generated
according to uniform distribution.

The pseudo code of the optimal global QoS constraints decomposition based on CGA is listed in
Algorithm 1. For the scenario in Figure 4, we apply Algorithm 1 to obtain the near-optimal constraints
decomposition scheme. The quality level matrix is the input set and the final result is shown in Table 7.
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Algorithm 1 The optimal global QoS constraints decomposition based on CGA

Input: The initial quality partition set of each service class
Output: The optimal global QoS constraints decomposition scheme
1. Initialize the population space
2. Initialize the belief space
3. Do
4. Evaluate the individuals in the population space by Equation (15)
7. Do selection operation by Equation (18)
8. Do crossover operation by Equations (19) and (20)
9. Do mutation operation by Equations (22) and (23)
10. Calculate the number of excellent individuals transferred to the belief space Equation (10)
11. Update the constraints knowledge in the belief space by Equation (11)–(14)
10. While the termination condition is not met
11. Return the optimal constraints decomposition scheme

Table 7. Optimal quality level combination.

Optimal Quality Level k1 k2 k3

S1 50 100 75
S2 52 148 86
S3 44 123 98

Therefore, the global QoS constraints in Table 2 are decomposed into local ones for each service
class as shown in Table 8.

Table 8. Local QoS constraints.

QoS k1 = Price k2 = Response Time k3 = Throughput

S1 45 ≤ k1 ≤ 50 90 ≤ k2 ≤ 100 75 ≤ k3 ≤ 80
S2 43 ≤ k1 ≤ 52 140 ≤ k2 ≤ 148 81 ≤ k3 ≤ 86
S3 36 ≤ k1 ≤ 44 110 ≤ k2 ≤ 123 94 ≤ k3 ≤ 98

7. Local Service Selection

The local constraints are used to select component services from each service class in parallel.
By the local constraints, we can reduce the number of the candidate services in each service class.
In the reduced set of candidate services, the service with the biggest utility is selected as the final local
component service. The utility function of component service can be defined as follows:

U
(
sij
)
=

r

∑
k=1

Qmax
i,k − qk

ij

Qmax
k −Qmin

k
× wk (25)

where qk
ij is the kth QoS attribute value of service sij, Qmax

i,k is the maximum value of the kth QoS attribute
values of service class Si, and wk is the weight of the kth QoS attribute. Note that in Equation (25), we
use the global utility function Qmax

k − Qmin
k as the denominator, instead of the local utility function

Qmax
i, k − Qmin

i, k in Equation (1), so as to make the utility functions of the candidate services focus on
global attributes.

According to the local constraints in Table 8, for service class S1, only the candidate service s13 can
meet the local constraints. Therefore, the candidate service s13 is optimal to be bound to service class S1.
Finally, the service combination (s13, s23, s32) is generated as the optimal service composition scheme.
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8. Experimental Evaluation

So as to evaluate the performance of the proposed approach (ACQD), we compare it with the
integer programming-based approach (WS-IP) [16] and the QoS constraints decomposition approach
based on CGA (QCD), in which the number of quality level is constant. Integer programming is widely
applied for service selection [8,9,16].

Assuming that a service composition process in sequential structure contains six service classes,
each service class has m candidate services and m varies from 100 to 1000. The data set consists of
two parts: (1) QWS, a data set containing 2508 real Web services with 10 QoS attributes [39], and (2)
RQWS, a data set artificially simulated and expanded according to QWS by Eclipse programming tool.
In RQWS, the attributes and their ranges of services are the same as those of QWS. There are three
global QoS attributes including price, response time, and availability. For RQWS, the QoS attribute
values for each Web service are randomly generated, following Reference [40]. Table 9 shows the
global QoS constraints and user’s QoS preferences in detail.

Table 9. Global QoS constraints and user’s QoS preferences.

Item Price Response Time Availability

constraints < 140 dollars < 130 s > 0.7
preferences 0.45 0.3 0.25

In our experiments, WS-IP was implemented by the open source system LpSolve (lp_solve
version 5.5). For QCD and AQCD, we implemented them by Microsoft’s Visual C. Net and the rates of
crossover and mutation operators were set as 0.80 and 0.10, respectively. All of the experiments were
conducted on a PC with an Inter Core i5 (1.6 GHz) CPU and 4 GB RAM.

We evaluate the above approaches according to two metrics—running time and
approximation ratio.

• Running time: the CPU time consumed by an algorithm.
• Approximation ratio: the ratio of the global utility achieved by an algorithm to the optimal utility.

It can be computed as follows:

approximation ratio =
U(CS)

Uoptimal(CS)
(26)

U(CS) represents the utility function value and Uoptimal(CS) denotes the optimal utility function
value. The optimal utility function value is generated by WS-IP. As a result, the approximation ratio of
WS-IP is 1.

There are two experiments to evaluate the performance of AQCD. The first experiment evaluates
the adaptability of AQCD compared with QCD and WS-IP, which consists of two parts. The first
part evaluates how the number of quality levels affects QCD, in order to verify the importance of
adjusting the number of quality levels. By analyzing the experimental results, the optimal number of
quality number of quality levels is determined. The second part evaluates the performance of AQCD
compared with QCD and WS-IP with different user’s preferences. Different user’s preferences or
different numbers of candidate services per service class are set for every experiment. The average
value of each experiment running 50 times is used to evaluate the method’s performance.

8.1. Evaluation of Adaptability

In this section, we firstly verify the importance of the number of quality levels to the
performance of QCD. Then, we compare the performance of AQCD, QCD, and WS-IP with different
user preferences to evaluate the adaptability of our approach AQCD.
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8.1.1. The Number of Quality Level for QCD

The number of candidate services in each service class is set as 100 and the number of quality
levels varies from 10 to 40. The running time and approximation ratio of QCD are recorded as shown
in Figures 12 and 13.Symmetry 2019, 11, x FOR PEER REVIEW 18 of 22 
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As shown in Figures 12 and 13, the number of quality levels has a prominent effect on the
performance of service selection. In Figure 12, the running time increases rapidly with the increasing of
the number of quality levels. Figure 13 indicates that when the number of quality level is 10, QCD can
not only run fast, but also can obtain better solution. In other words, the optimal number of quality
levels is 10, which is set for QCD.

8.1.2. Adaptability

So as to evaluate the adaptability of AQCD, we compare the performance of AQCD and other
methods by changing the user’s preferences. We assume that there are 10 sets of user’s preferences.
Among them, the user’s preferences in set 1 are set as shown in Table 9, and other sets are randomly
generated. There are 100 candidate services in each service class and the number of quality levels for
QCD is set as 10. The running time and approximation ratio of AQCD, QCD, and WS-IP with different
user’s preferences are shown in Figures 14 and 15.
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As shown in Figure 14, the running time of AQCD, QCD and WS-IP is almost stable with different
user’s preference. The running time of AQCD is close to that of QCD all the time, and they are
significantly shorter than WS-IP. Figure 15 shows that the approximation ratio of AQCD is better than
QCD and close to the optimal method WS-IP. Furthermore, the approximation ratio of AQCD is stable
with different user’s preferences. However, QCD suffers from user’s preferences. The approximation
ratio of QCD changes with different user’s preferences.

8.2. Evaluation of Scalability

In order to evaluate the scalability of the proposed approach AQCD, we set the number of
candidate services per service class from 100 to 1000. The experimental results of running time and
approximate ration are shown in Figures 16 and 17.
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Figure 16 shows that with the increasing of candidate services, the running time of WS-IP is
far more than that of AQCD and QCD. The running time of AQCD and QCD increases slowly.
For a composite service composition with n service classes, each service class contains m candidate
services and each service consists of r QoS attribute. Each attribute can be divided into t quality
levels. In the worst case, the time complexity of WS-IP is O(2n×m). The running time of AQCD and
QCD consists of two parts, the time of global constraints decomposition and local service selection.
Among them, the local service selection is to select the component service for each service class in
parallel. Its time complexity is O(m). Therefore, the time complexity of AQCD and QCD mainly
comes from the decomposition process of global constraints. The system needs to select one scheme
from n× r × t possible schemes. The time complexity is O(n× r× t), which is independent of the
number of candidate services m. Therefore, when the number of quality levels t is less than m/r,
the search space of AQCD and QCD is small. The running time of AQCD is slightly higher than QCD
because it needs to adjust the number of quality level adaptively. However, this time is negligible.
Figure 17 indicates that the approximation ratio of AQCD is higher than QCD and close to WS-IP.
The approximation ratios of all the test cases are higher than 97%.

9. Conclusions

In this paper, a dynamic service selection approach based on adaptive global QoS constraints
decomposition is proposed. We divided the global QoS constraints into local ones, by which the
optimal component service for each service class is selected. We use fuzzy logic to automatically
adjust the number of quality level considering the user’s preferences. In order to improve the
efficiency of service selection, we use the Culture Genetic Algorithm to solve the near-optimal global
constraints decomposition schema. Based on the real dataset QWS and the artificial generated dataset
RQWS, we have evaluated the performance of the proposed approach AQCD in comparison with
QCD and WS-IP. The experimental results show that the number of quality levels has a prominent
effect on the performance of service selection. By adjusting the number of quality levels adaptively,
the approximation ratio of AQCD can be stable with uncertain user’s preferences. With the increase in
candidate services, AQCD can achieve near-optimal solutions with slowly increasing time, which is far
less than that of WS-IP. In conclusion, our AQCD approach can achieve the near-optimal solution and
significantly reduce the computation time. In addition, AQCD has good adaptability and scalability.

In our future work, we will increase the number of fuzzy sets and formulate more appropriate
fuzzy rules in order to enhance the inference ability and manage complex situations; we will also
apply the constraints decomposition approach to the problem of QoS-aware service composition in
distributed environment where QoS values are maintained by a group of distributed QoS registries.
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