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Abstract: The dynamics of QCD matter is often described using effective mean field (MF) models
based on Boltzmann–Gibbs (BG) extensive statistics. However, such matter is normally produced in
small packets and in violent collisions where the usual conditions justifying the use of BG statistics are
not fulfilled and the systems produced are not extensive. This can be accounted for either by enriching
the original dynamics or by replacing the BG statistics by its nonextensive counterpart described by
a nonextensivity parameter q 6= 1 (for q → 1, one returns to the extensive situation). In this work,
we investigate the interplay between the effects of dynamics and nonextensivity. Since the complexity
of the nonextensive MF models prevents their simple visualization, we instead use some simple
quasi-particle description of QCD matter in which the interaction is modeled phenomenologically
by some effective fugacities, z. Embedding such a model in a nonextensive environment allows for
a well-defined separation of the dynamics (represented by z) and the nonextensivity (represented by
q) and a better understanding of their relationship.
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1. Introduction

Dense hadronic matter is usually described using relativistic mean field (MF) theory models
(like, for example, the Walecka model for nucleons [1–3] or the Nambu–Jona-Lasinio model (NJL)
for quarks [4–7]). All of them use the Boltzmann–Gibbs (BG) statistics, which means that they
assume a homogeneous and infinite heat bath, and in their original versions, they do not account
for any intrinsic fluctuations or long-range correlations. However, this kind of matter is typically
produced in violent collision processes and in rather small packets, which rapidly evolve in a highly
nonhomogeneous way and whose spatial configurations (like the correlations between quarks located
in different nucleons in NJL models) remain far from being uniform (in fact, there is no global
equilibrium established, cf. [8–10] and the references therein). As a result, some quantities become
non-extensive and develop power-law tailed rather than exponential distributions, making application
of the usual BG statistics questionable (cf., [11,12] and the references therein). The remedy is either to
supplement the BG statistics by some additional dynamical input or, when it is not known, to use some
form of nonextensive statistics generalizing the BG one, for example Tsallis statistics [13,14]. The latter
is characterized by a nonextensivity parameter q 6= 1 (for q = 1, one recovers the usual BG statistics).
In fact, such an approach has already been investigated some time ago, and the q-versions of essentially
all types of MF models were formulated (see [15–18] and the references therein). In the meantime,
the validity of the nonextensive q-thermodynamics used in such cases was also confirmed [19–22],
and the conditions for its thermodynamical consistency were established [23–26].
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In the nonextensive approach, one investigates the way in which some selected observables
change when one departs from the extensive statistics with the value of q = 1. The goal is to disclose
how, and to what extent, these changes are correlated with the possible modifications of the dynamics
governing the model considered or with the possible influence of some external factors caused by the
surroundings in which the formation of dense QCD matter takes place and which is not accounted for
in the usual extensive approach. In fact, it is expected that when these factors are gradually identified
and their impact is accounted for by a suitable modification of the original model, the value of |q− 1|
obtained from comparison with the experiment gradually diminishes, and |q− 1| = 0 signals that our
improved dynamical model fully reproduces all aspects of the process considered [27].

The investigation of the interplay between these two factors is the subject of our work. However,
in the case of the MF models, such a procedure is not transparent because of the complexity of the
dynamics of MF models (for example, as shown in our nonextensive NJL model [16], particles acquire
dynamical masses that implicitly depend on the nonextensivity parameter). This prevents a clear
interpretation of the role played by the parameter q and its interplay with the dynamics. There is
therefore a need to simplify the dynamics, for example by reducing it to a number of well-defined
(temperature-dependent) parameters. Such a possibility is offered by quasi-particle models (QPM)
in which the interacting particles (quarks and gluons) are replaced by free quasi-particles. They can
be formulated in a number of ways, the most popular approaches being: the model encoding the
interaction in the effective masses [28,29], the model using the Polyakov loop concept [30,31], and the
model based on the Landau theory of Fermi liquids where the effects of the interaction are modeled
by some temperature-dependent factors called effective fugacities, z(i)(T), which distort the original
Bose–Einstein or Fermi–Dirac distributions [32–37]. We will continue to use this model and call it the
z-QPM (note that there are also quite a number of other works on the QPM, cf., for example, [38–42]).
This choice is motivated by the fact that in z-QPM, the masses of quasi-particles are not modified by
the interaction (they do not depend on the fugacities z(i)), which allows us to avoid the problems
encountered in other approaches.

In the z-QPM, the effective fugacities z(i)(T) (z(i) ≤ 1, the z(i) = 1 corresponds to a noninteracting
gas of gluons and quarks) are obtained from fits to lattice QCD results [43–45], which serve as a
kind of experimental input [32–35]. Note that the effective fugacities have nothing to do with the
usually-used fugacities corresponding to the observation of particle number and are therefore not
related to the chemical potential. They just encode the effects of the interactions between quarks
and gluons. Because there are problems with allowing for a nonzero chemical potential in lattice
simulations [46,47], the z-QPM was initially formulated assuming a vanishing chemical potential,
µ = 0. Starting from [36], a small amount of non-vanishing chemical potential µ was introduced in the
matter sector (to reproduce a realistic equation of state of the QGP) and assumed to be a constant whose
value varies between µ = 0 and 100 MeV (depending on the circumstances, but such that µ/T << 1).
However, so far, in all fits to lattice data used by the z-QPM, the chemical potential µ was neglected.

The aim of this paper (which is an extension of our previous work [48]) is two-fold. Firstly,
after embedding the z-QPM in a nonextensive environment characterized by a nonextensive parameter
q, we investigate the qz-QPM created in this way in terms of the changes in the effective fugacities,
z(i) → z(i)q , necessary to fit the same lattice data. Secondly, we use our qz-QPM, but retain the same
effective fugacities z(i) as in the z-QMP model and calculate the changes in the densities and pressure
induced only by the changes in the nonextensivity q. This parallels, in a sense, our nonextensive q-NJL
model [16] with its dynamics replaced by a phenomenological parametrization in terms of fugacities
z. However, unlike in the q-NJL model, in both cases, our investigations are limited to T above the
critical temperature Tc because only these are considered in lattice simulations.

Please note that, in terms of dynamics, we do not introduce here any new model. We have
just adapted for our purposes the widely-known z-QPM [32–35], accepting its physical motivation,
which, when combined with its transparency and simplicity, makes this model especially useful for
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our purposes. However, this also means that the conclusions of this work have, at most, the same level
of credibility as those of the z-QPM.

The paper is organized as follows. In Section 2, we provide a short reminder of z-QPM. Section 3
contains a formulation of the qz-QPM. Our results are presented in Section 4, and Section 5 concludes
and summarizes our work. Technical details are placed in Appendices A–D.

2. A Short Reminder of the z-QPM

We start with a short reminder of the z-QPM proposed and used in [32–37]. It is based on the
following effective equilibrium distribution function for quasi-partons (i = q, s, g for, respectively,
u and d quarks, strange quarks, and gluons):

n
[

x(i)
]

=
z(i)e

[
−x(i)

]
1− ξ · z(i)e

[
−x(i)

] = 1
1

z(i)
e
[
x(i)
]
− ξ

=
1

e
[
x̃(i)
]
− ξ

, (1)

x(i) =

{
β
[

Ei − µ(i)
]

if i = q, s,

βEi if i = g.
and x̃(i) = x(i) − ln z(i)(τ) (2)

Here, e(x) = exp(x), ξ = +1 for bosons, and−1 for fermions and β = 1/T. In the z-QPM, u and d
quarks are assumed massless, Ei=q = p, and strange quarks have mass m, Es =

√
m2 + p2; for gluons,

Eg = p. The z(i) ≤ 1 denote the effective fugacity describing the interactions; they are assumed
to depend only on the scaled temperature, τ = T/Tc, where Tc is the temperature of transition to
the deconfined phase of QCD. The dynamics described by the lattice QCD data is encoded in z(i).
For z(i) = 1, one has free particles.

The appearance of a chemical potential needs some comment. In the equation of state, the fugacity
z, which is connected with the interactions between particles, changes the pressure P and is therefore
connected with the change of the chemical potential µ. It reflects the evolution of the system from some
initial state, described by µ0 and P0, to a state described by µ and P with ∆(µ) = µ− µ0 = T ln (P/P0),
which can be derived from the equation of state for constant temperature T. For a noninteracting gas
where the relative pressure (P/P0)→ 1, this correction vanishes, ln(P/P0)→ 0. In the z-QPM [32–37],
one considers a gas of quarks and gluons above the critical temperature, T > Tc, and assumes
a quasi-particle description of the lattice QCD equation of state, which in the limit of high temperature
(T → ∞), is given by a noninteracting gas of quarks and gluons. The correction ∆(µ) is replaced
here by the fugacity z = exp[−∆(µ)] multiplying distribution function. By analogy to a perfect gas,
the effective pressure becomes unity in the limit of the large T and z(T → ∞) → 1. Consequently,
in the isothermal evolution of a hadron gas for finite temperatures, the chemical potential, or a single
particle energy, are corrected by ∆(µ) = T ln(z). Note that whereas usually, the chemical potential
µ enters together with the energy E, cf. Equation (2), it can also be associated with the fugacity x(τ)
modifying it by an exponential, temperature-dependent, factor:

z(i) → z̃(i) = z(i) · e
[

βµ(i)
]

. (3)

The effective fugacity, z̃(i)q , obtained this way combines the action of the original effective fugacity
and that of the chemical potential.

Some remarks concerning the way the effective fugacities are obtained from the lattice data used
in z-QPM [32–37] are in order here. The QCD thermodynamics at high temperature can be described
in terms of a grand canonical ensemble, which can be expressed in terms of the distribution functions,
which in turn, depend on the fugacities, cf. Equation (1). One of the most important quantities
calculated on the lattice is pressure. The pressures of the gluons and quarks (expressed as functions of
the fugacities) were therefore compared with the corresponding pressures obtained from the lattice
data; in this way, one gets effective fugacities as functions of scaled temperature, z(τ) (τ = T/Tcr,
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with Tcr being the critical temperature). Because it turns out there is no single universal functional
form describing the lattice QCD data over the whole range of τ, the low and high τ domains were
therefore described by different functional forms with the cross-over points at τg = 1.68 for gluons
and τq = 1.7 for quarks and were chosen as:

z(g,q)(τ) = a(g,q) exp
[
−b(g,q)/τ5

]
·Θ
(

τ(g,q) − τ
)
+ a′(g,q) exp

[
−b′(g,q)/τ2

]
·Θ
(

τ − τ(g,q)

)
. (4)

They were then used to describe the QCD lattice data [43–45] with the parameters listed in Table 1.

Table 1. Numerical values of coefficients a(i), b(i), a′
(i), and b′

(i) (i = q, g) in Equation (4) obtained
in [32].

q (i) a(i) b(i) a′(i) b′(i)

q = 1 i = g 0.803 1.837 0.978 0.942
q = 1 i = q 0.810 1.721 0.960 0.846

3. Formulation of the qz-QPM

To formulate the qz-QPM, one has to replace the previous extensive effective distribution function
for quasi-partons by its nonextensive equivalent,

nq

[
x̃q

(i)
]
=

1

eq

[
x̃q

(i)
]
− ξ

=
e2−q

[
−x̃(i)2−q

]
1− ξe2−q

[
− ˜x2−q

(i)
] with x̃(i)q = x(i) − ln

[
z(i)q

]
, (5)

where:

eq(x) = [1 + (q− 1)x]
1

q−1
q→1
=⇒ e(x) and e2−q(−x) = [1 + (1− q)(−x)]

1
1−q

q→1
=⇒ e(−x), (6)

eq(−x) · e2−q(x) = 1
q→1
=⇒ e(−x) · e(x) = 1, (7)

nq(x) + n2−q(−x) = −ξ
q→1
=⇒ n(x) + n(−x) = −ξ. (8)

Thermodynamical consistency demands that the nq(x) obtained in this way must be replaced by
nq(x)q [25,26,49] (this requirement follows from the proper theoretical formulation of the nonextensive
thermodynamics provided in [15,17], cf. Equation (10) below).

A comment on the conditions of validity of the qz-QPM is in order here. The tacit assumption of
the z-QPM is that both x and (−x) remain positive, i.e., that z(i)(τ) ≤ 1 [32]. However, immersing our
system in a nonextensive environment means that some part of the dynamics is now modeled by the
parameter q; therefore, the above constraints are not sufficient because eq(x) and e2−q(x) must always
be nonnegative real valued, and the allowed range of x is given by the condition that [1+ (q− 1)x] ≥ 0,
which must be satisfied and which can limit the available phase space [16]. Referring for details
to [16,49], we say only that out of three possibilities of introducing nonextensivity discussed in [16],
only two (one for particles and one for antiparticles) limiting appropriately the available phase space
are applicable for our purpose. The third method, which does not limit the available phase space (and
which was discussed in detail in [17]), introduces some novel dynamical effects, not observed in dense
nuclear matter; therefore, we shall not use it here [16].

Both the form of nq(x) and the fact that it effectively emerges as nq
q(x) can be derived from the

formulation of the nonextensive thermodynamics in which one starts from the nonextensive partition
function Ξq (the meaning of the index i and the parameter ξ is the same as in Equations (1), (2) and (5))
taken as [15,17] (V denotes the volume, i = g, q, s for, respectively, gluons, light quarks (u and d),
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and strange quarks, and νi are the corresponding degeneracy factors, which we take the same as in [32],
νg = 16, νq = 24, and νs = 12):

lnq
(
Ξq
)
= −V

∫ d3 p
(2π)3 ∑

i
νiξLq

[
x̃(i)q

]
where Lq(x) = ln2−q

[
1− ξe2−q(−x)

]
. (9)

Integrating by parts,∫ ∞

0
p2dp ln2−q

[
1− ξe2−q(−x)

]
= −1

3

∫ ∞

0
p3dp

∂

∂p
{

ln2−q
[
1− ξe2−q(−x)

]}
,

and noting that:

∂ ln2−q(x)
∂x

= ξ
[
1− ξe2−q(−x)

]−q ·
[
e2−q(−x)

]q
=

ξ[
eq(x)− ξ

]q = ξ
[
nq(x)

]q ,

one arrives at the following alternative expression for the nonextensive partition function,

lnq
(
Ξq
)

=
V
3

∫ d3 p
(2π)3 ∑

i
νi p
[
nq

(
x̃(i)q

)]q ∂x̃(i)q

∂p
, (10)

∂x̃(g,q)
q

∂p
= β,

∂x̃(s)q

∂p
= β

√
1 +

(
m
p

)2
,

with the effective distribution functions equal now
[
nq(x)

]q (A note of caution is necessary here.
After closer inspection, one realizes that the definition of eq(x) used in [15], when used together

with the duality relation (7), leads to
[
n2−q

]2−q in Equation (10), instead of nq
q presented in [15]

(cf., their Equation (35))). The nonextensive versions of the particle density ρq and the energy
density, εq, are defined, respectively, as (we use Equations (9), (A12), (A14) and (A15) with
∂xq/∂zq → ∂xq/∂µ = β),

ρq =
1

βV
∂

∂µ

[
lnq
(
Ξq
)]

= − 1
β

∫ d3 p
(2π)3 ∑

i
νiξ

∂

∂µ

{
ln2−q

[
1− ξe2−q(−x)

]}
=

∫ d3 p
(2π)3 ∑

i
νi

[
nq

(
x̃(i)q

)]q
= ∑

i
νiρ

(i)
q , (11)

εq = − 1
V

∂

∂β

[
lnq
(
Ξq
)]

+ ∑
i

νiµ
(i)ρ

(i)
q

=
∫ d3 p

(2π)3 ∑
i

νiξ
∂

∂β

{
ln2−q

[
1− ξe2−q(−x)

]}
+ ∑

i
νiµ

(i)
[
nq

(
x̃(i)q

)]q

=
∫ d3 p

(2π)3 ∑
i

νi

[
Ei −

∂

∂β
ln z(i)q (β)

]
·
[
nq

(
x̃(i)q

)]q
(12)

Note that the energy density in our qz-QPM depends explicitly on the nonextensivity via the
nonextensive particle density and implicitly via a possible q-dependence of the effective fugacities
mentioned previously. In the extensive limit, q→ 1, Equation (12) becomes equal to the corresponding
Equation (10) from the z-QPM [32].

The physical significance of the effective nonextensive fugacities is best seen when looking at the
corresponding nonextensive dispersion relations defined as (cf., Equation (12)):

ω
(i)
q = Ei −

∂

∂β
ln
[
z(i)q (β)

]
= Ei + T2

 1

z(i)q

∂z(i)q

∂T

 . (13)
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Note that the masses of the quasiparticles remain intact, and the single quasiparticle energies
ω
(i)
q are modified only by the action of the effective fugacities, z(i)q (T). In both extensive and

nonextensive cases, this results in some additional contributions to the quasiparticle energies, which
can be interpreted as coming from the collective excitations. They occur because of the temperature
dependence of the effective fugacities (deduced from the lattice calculations), which can be interpreted
as representing the action of the gap equation in [16] taken at constant energy Ei.

Because in the version of q-thermodynamics used here, all thermodynamic relations are preserved,
the pressure Pq is given by the usual thermodynamic relation,

PqβV = lnq
(
Ξq
)

. (14)

From Equations (12) and (14), one gets an expression for the trace anomaly (β = 1/T):

Tq =
εq − 3Pq

T4 = T
∂

∂T

(
Pq

T4

)
= −β

∂

∂β

(
Pqβ4

)
. (15)

4. Results

We shall now calculate the nonextensive effective fugacities, zq(τ), which for a given value of
the nonextensivity parameter q, reproduce the original z-QPM results [32]. These results, in turn,
were obtained from a comparison with the lattice QCD simulations from [43] using Relation (14)
to match the pressures in the z-QPM and in the lattice QCD simulations. Note that this procedure
assumes in fact that the trace anomaly in the z-QPM (Equation (15) with q = 1) is the same as that
resulting from the QCD lattice data [32]. We adopt the same procedure and use Equation (14) to match
the pressures calculated, respectively, for q = 1 (as in [32]) and for q 6= 1,

Pq=1(T) = Pq(T) (16)

(it is tacitly assumed that in both extensive and nonextensive environments, the temperature T remains
the same). This means that in our case, the trace anomaly remains the same as in the z-QPM (and as in
the lattice data) and does not depend on the nonextensivity. To this end, the following conditions must
be satisfied: ∫ ∞

0
dpp2 ln

[
1− e

(
−x̃(g)

)]
=
∫ ∞

0
dpp2 ln2−q

[
1− e2−q

(
−x̃(g)

q

)]
Θ (p; g)) , (17)

for gluons (with νg = 16) and:

νq

∫ ∞

0
dpp2 ln

[
1 + e

(
−x̃(q)

)]
+ νs

∫ ∞

0
dpp2 ln

[
1 + e

(
−x̃(s)

)]
= νq

∫ ∞

0
dpp2 ln2−q

[
1 + e2−q

(
−x̃(q)q

)]
Θ(p; q) + νs

∫ ∞

0
dpp2 ln2−q

[
1 + e2−q

(
−x̃(s)q

)]
Θ(p; s), (18)

for quarks. They give us the τ and q-dependent relations between the extensive fugacities obtained
in [32], z(i)(τ) (which are our input), and the nonextensive fugacities, z(i)q (τ) (which are our results).
The function Θ(q, q) defines the allowed phase space; its details are presented in Appendix A.

Figure 1 shows the resulting effective fugacities, zq = z(q)q (τ) and zg = z(g)
q (τ), as functions

of the scaled temperature, τ = T/Tc. They can be fitted using the same parametrization as before,
i.e., Equation (4), with the parameters displayed in Table 2. Since the values of z(i)q=1 obtained in [32]

were obtained assuming µ = 0, the same assumption was used in obtaining our z(i)q here. Note that for
the nonextensivities q used here, the changes in the fugacities are small,

δz(q,g)
q = z(q,g)

q − z(q,g)
q=1 < 1, (19)
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and can be approximated (with very good accuracy of a few percent) by (cf. Appendix B),

δzq ' zq=1(1− q) · F
(
q = 1, zq=1

)
where F =

∫ ∞
0 dpp2

{
ln2[1− ξe(−x; z)] + n(x; z)x2

}
2
∫ ∞

0 dpp2n(x; z)
. (20)
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Figure 1. (Color online) Upper panels: Results for z(q)q (τ) and z(g)
q (τ) as a function of the scaled

temperature τ = T/Tc (calculated for µ = 0). Lower panels: As above, but shown in more detail and
with an enlarged range of the nonextensivity parameter q.

Table 2. Numerical values of the coefficients a(i), b(i), a′
(i), and b′

(i) (i = q, g) in Equation (4) when used
for different values of q resulting in the curves displayed in the lower panels of Figure 1.

q (i) a(i) b(i) a′
(i) b′

(i)

q = 0.96 i = g 0.985 1.581 1.168 0.860
q = 0.96 i = q 1.030 1.510 1.200 0.747

q = 0.98 i = g 0.897 1.702 1.078 0.870
q = 0.98 i = q 0.924 1.603 1.073 0.770

q = 0.99 i = g 0.850 1.760 1.028 0.904
q = 0.99 i = q 0.867 1.662 1.018 0.799

q = 1.01 i = g 0.753 1.916 0.927 0.990
q = 1.01 i = q 0.751 1.791 0.896 0.879

q = 1.02 i = g 0.704 2.006 0.876 1.059
q = 1.02 i = q 0.694 1.862 0.835 0.925

q = 1.04 i = g 0.600 2.221 0.766 1.180
q = 1.04 i = q 0.580 2.061 0.712 1.050
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Equation (20), together with Figure 1, allows for a better understanding of the interrelation
between the dynamics (represented by the fugacities z) and the nonextensivity described by q.
The central point is that all the zq must describe the lattice QCD data (directly for q = 1 in z-QPM
and indirectly for q 6= 1 in qz-QPM, where they are forced to reproduce the results of z-QPM).
The τ-dependence of z(τ) starts from small values (corresponding to strong attraction) towards z = 1
(corresponding to free, noninteracting particles). The case of z > 1 would formally mean the emergence
of repulsive forces and is not allowed in z-QPM; therefore, we shall also keep this limitation in our
qz-QPM. The replacement of extensive media by not extensive media means adding some repulsive
interaction (in the case of q < 1) or an attractive one (for q > 1). Therefore, in the first case, it must
be compensated by an increase in z (i.e., δzq > 0) and in the second case by a decrease (i.e., δzq < 0).
Note now that whereas in the latter case, we have zq(τ) < zq=1(τ) < 1, in the former, there is limiting
value of τ = τlim(q), depending on q, for which zq (τlim) = 1. This means that for τ > τlim(q),
the attraction represented by z(τ) is already too weak to compensate the repulsion introduced by
q < 1. The value of τlim diminishes with the increase of this repulsion (i.e., with the increase of |q− 1|).
Not wanting to introduce the problem of repulsion, we limit our considerations to τ > τlim only.

So far, results for z(τ) and zq(τ) have been obtained with µ = 0. The formal introduction of
the chemical potential µ in z-QPM [36] makes z-QPM more flexible and applicable to possible future
lattice QCD data with the chemical potential accounted for. Following this new development in
z-QPM, we have also formally introduced µ into our z-QPM. We can therefore check what would be
the value of our zq in the case when part of the dynamics is shifted from fugacity z to the chemical
potential µ. Equation (3) shows the effective fugacity with the chemical potential included. It is
visualized in Figure 2, where we plot a number of results for different values of the chemical potential
µ and for two values of the nonextensivity parameter: q = 0.99 and q = 1.01. As one can see,
nonzero µ diminishes the real values of the fugacity because, according to Equation (3) (valid also in
a nonextensive environment with z̃→ z̃q), the effective value z̃q now contains an exponential factor
greater than unity, which modifies the original fugacity z.
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Figure 2. (Color online) Illustration of the changes introduced by the chemical potential µ for q = 1.01
and q = 0.99.

The introduction of the chemical potential µ also changes the q-dependence of the relative density
of the quarks, Rρ =

ρq
ρq=1

, where ρq is given by Equation (11). As can be seen in the left panel of Figure 3,
in a nonextensive environment, one observes a clear separation of the situations with Rρ > 1 and
Rρ < 1. The first occurs for q < 1, and the observed increase of density is consistent with lowering
of the entropy, which in turn, is connected with the tighter packing of the quarks in this case [16].
The second occurs for q > 1, and the picture is reversed; it is consistent with an increase of the entropy
and with looser packing of the quarks in this case. Note that this behavior of Rρ = Rρ(q) is fully
consistent with the behavior of the nonextensive fugacities presented in Figure 1. Essentially, the same
result can be obtained using the linear approximation of the nq

q in (q− 1) as given by Equations (A31)
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and (A32). Using now the same values of zq but adding some amount of the chemical potential µ

yields the results shown in the right panel of Figure 3. We observe some increase of the relative density
with µ with a possible trace of a small upper bending.
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Figure 3. (Color online) Left panel: Relative density, ρq/ρq=1, of quarks and gluons as a function of the
nonextensivity q for µ = 0. Right panel: Dependence of the relative density, ρq/ρq=1, on the chemical
potential µ.

We shall now calculate the modifications of partonic charges in a hot QCD medium embedded in
a nonextensive environment calculating the corresponding Debye mass, MqD. Following [32], we use
for the extensive Debye mass the expression derived in semiclassical transport theory in which MD is
given in terms of equilibrium parton distribution functions (Nc denotes the number of colors):

M2
D = −2NcQ2

∫ d3 p
8π3 ∂pn(g) −Q2

∫ d3 p
8π3 ∂p

(
4n(q) + 2n(s)

)
=

NcQ2

π2 n(g) −Q2
(

2n(q) + n(s)
)

. (21)

In the nonextensive environment described by the nonextensivity parameter q, we simply

replace n(i=g,q,s)(x; z) by
[
n(i)

q
(

x; zq
)]q

. In Figure 4, following [32], we present the ratio of MD/MI
D

where MI
D denotes the Debye mass for the ideal EOScase (i.e., with zg = 1 and zq = 1),

which, following [32], equals:

MI
D = QT

√
Nc

3
+

1
2
− m2

4π2T2 ln 2. (22)
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Figure 4. (Color online) Left panel: Results for the ratio MD/MI
D of the Debye masses (as defined

by Equations (21) and (22)), respectively) in the nonextensive environment as functions of the scaled
temperature, τ = T/Tc for q = 0.96, 1, 1.04, calculated for µ = 0. Right panel: The same as above,
but shown in more detail and with an enlarged range of the nonextensivity parameter q.
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Note that because the Debye mass is essentially a combination of the densities of quarks and
gluons, the above results resemble those for the effective fugacities, and all previous remarks also
apply here.

We now proceed to the second part of our work in which we keep the original dynamics of
the qz-QPM intact using the same effective fugacities as in [32] (i.e., we assume that zq(i) → z(i)

as given by Equation (4) with the parameters listed in Table 1). This parallels to some extent our
approach in the nonextensive q-NJL model [16] (but now, the dynamics is simplified and represented
by the temperature-dependent fugacities z(τ) reproducing the lattice QCD results) and allows us to
investigate the sensitivity of the selected observables to the nonextensive environment only. The only
drawback is the limitations in the temperatures allowed because the fugacities are only defined for
τ > 1, i.e., above the critical temperature Tc.

To start with, we present in Figure 5 the corresponding relative pressure Pq/Pq=1 and relative
density ρq/ρq=1 as functions of the nonextensivity parameter q at fixed temperature (left panel) and
their dependencies on T for some fixed nonextensivity q (right panel). Note that whereas before,
the pressure was assumed to be the same for extensive and nonextensive environments, Pq/Pq=1 = 1,
it now increases linearly with q in the same way as in the q-NJL model [16]. The relative density also
increases with the nonextensivity q, contrary to its previous behavior (demonstrated in the left panel
of Figure 3), where it decreased with q.
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Figure 5. (Color online) Dependencies of relative pressure Pq/Pq=1 and density ρq/ρq=1 on the
nonextensivity parameter q at fixed temperature (left panel) and on the temperature T for fixed q
(right panel).

We now proceed to the trace anomaly, Tq, Equation (15). Note that now, it acquires some explicit
dependence on the nonextensive parameter q. Using the definitions of energy density, εq, Equation (12),
and pressure Pq, (Equation (14) (and additionally, Equations (2) and (10))), we obtain that:

Tq = β4
∫ d3 p

(2π)3 ∑
i

νi

[
Ei − p

∂x̃(i)

∂p
− ∂

∂β
ln z(i)(β)

]
·
[
nq

(
x̃(i)
)]q

= −β4 ∂

∂β
ln z(i)(β) ·

∫ d3 p
(2π)3 ∑

i
νi

[
nq

(
x̃(i)
)]q

. (23)



Symmetry 2019, 11, 401 11 of 20

The change in the trace anomaly generated by the nonextensivity q is given by (see
Equations (A31) and (A32)):

∆
[
Tq
]

= Tq −Tq=1 = −β4 ∂

∂β
ln z(i)(β) ·

∫ d3 p
(2π)3 ∑

i
νi∆(i)

[
nq

q; n
]

; (24)

∆(i)
[
nq

q; n
]

=
{[

nq

(
x̃(i)
)]q
−
[
n
(

x̃(i)
)]}

' (q− 1)n
(

x̃(i)
){

ln n
(

x̃(i)
)
+

1
2

[
1 + ξn

(
x̃(i)
)] (

x̃(i)
)2
}

. (25)

Figure 6 shows the dependence of the trace anomaly on the nonextensivity q (left panel) and
chemical potential µ (right panel). Note that for large values of the scaled temperature τ, the effects
caused by the nonextensivity and by the chemical potential gradually vanish.
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Figure 6. (Color online) The behavior of the change in the trace anomaly in the qz-quasi-particle model
(QPM) with zq = zq=1 as a function of τ for some selected values of q (left panel) and the same, but for
some selected values of the chemical potential µ (right panel).

In Figure 7, we present the τ dependence of the ratio MD/MI
D of the Debye masses (as defined

by Equations (21) and (22) for different nonextensivities q (left panel) and chemical potentials µ (right
panel). Unlike the results presented in Figure 4, this time, they are caused solely by the action of the
nonextensive environment with zq = zq=1 = z as used in the z-QPM.
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Figure 7. (Color online) The behavior of the ratio MD/MI
D of the Debye masses (as defined by

Equations (21) and (22) as a function of τ for some selected values of q (left panel) and the same, but for
some selected values of the chemical potential µ (right panel). The dynamics is the same as in the
z-QPM, i.e., zq = zq=1 = z.
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5. Summary and Conclusions

In this work, we investigated the interrelation between nonextensive statistics and the effects of
dynamics in dense QCD matter. This continues our previous analysis of this problem on the example
of the nonextensive version of the NJL model, the q-NJL. However, the complexity of its dynamics does
not allow for a clear separation of the purely dynamical effects from the nonextensive ones. Therefore,
in this work, following some specific quasi-particle models (z-QPM) [32–37], we used simplified
dynamics reduced to a number of well-defined parameters, the effective fugacities, z ∈ (0, 1). In this
kind of QPM, the masses of the quasi-particles are not modified by the interaction, which enables the
problems and inconsistencies encountered in other approaches to be avoided. The fugacities z increase
with temperature T from very small values in the vicinity of the critical temperature, Tcr (which
corresponds to strong interactions between quarks and gluons), towards unity (which corresponds to
a free gas of quarks and gluons). They modify only the argument of the exponent in the corresponding
Bose–Einstein or Fermi–Dirac distributions: e(x) → e(x − ln z). The action of nonextensivity is
different: it changes the functional form of the exponent, e(x) → eq(x), leaving the argument x
unchanged. This means that the actions of nonextensivity and dynamics are complementary and cannot
be replaced by each other (although sometimes, they describe the same, or comparable, situations).
The fugacity z therefore models phenomenologically the dynamics of the mean field theory in the
extensive environment and does not account for intrinsic correlations and fluctuations present in
the system, while these are most naturally described phenomenologically by the nonextensivity q.
Phenomenologically, both approaches nicely complement each other as concerns the description of the
dense QCD system (If we wanted to replace the action of nonextensivity, q, by the respective action of
dynamics, z (or vice versa), then either z or q would have to acquire energy dependence, which we
consider as untenable).

Note that, contrary to the q-NJL model [16], the qz-QPM model is formulated in such a way as
to reproduce the effective fugacities of the original z-QPM [32], which, in turn, describes the lattice
QCD results [46,47]. This means that the qz-QPM also describes them; in fact, they serve as a kind of
experimental data. Such constraints were not present in the q-NJL model. Therefore, our conclusions
are more reliable than those presented in [16]. The interplay between dynamics and nonextensivity is
best seen in Figure 3 (left panel), which shows results for the relative densities, Rρ = ρq/ρq=1, in the
nonextensive environment. For q < 1 (which corresponds to a lowering of the entropy), one observes
Rρ > 1, which can be interpreted as caused by some positive (attractive) correlations in the system and
may be connected with a tighter packing of quarks. The opposite is observed for q > 1 (corresponding
to an increase of the entropy) where Rρ < 1. This can be interpreted as resulting from the repulsion of
the quarks and fluctuations developing in the system. Both of these correlations and fluctuations are
imposed on the effects of the interaction described by the fugacities zq. This is the clearest example of
dynamical effects introduced by the nonextensive environment and characterized by the nonextensivity
parameter q.

Let us now look more closely at the results on zq(τ) presented in Figure 1. Note that for q < 1,
when, according to the left panel of Figure 3, our system becomes more dense, one observes that
δzq = zq<1 − zq=1 > 0 and increases with |q− 1| (i.e., increases with density). This means that the
interaction represented by zq becomes weaker. As a result, the upper limit of zq = 1 (corresponding
to a noninteracting gas of quarks and gluons) is reached for a smaller temperature T, the more so
the bigger |q − 1| (i.e., the smaller q). This means that to obtain the same pressure in the system,
one needs a weaker interaction described by fugacity; the increasing part of it is caused by the effect of
the nonextensivity q. In other words: the change of statistics from extensive (q = 1) to nonextensive
with q < 1 allows the attainment of the limit of the ideal gas with weaker correlations between
quarks and gluons caused by the fugacity z. For the q > 1 case, our system becomes, according
to the left-panel of Figure 3, less dense; the correction term needed to obtain the same pressure as
in the extensive case is now negative, δzq = zq>1 − zq=1 < 0, and |δzq| grows only very slowly
with increasing q (i.e., with decreasing density), becoming constant for higher T; the limit zq = 1
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is never reached for finite temperature T. This is because for q > 1, one expects some intrinsic
fluctuations (for example, temperature T fluctuations), which work against the dynamical interactions
represented by z. Therefore, these interactions cannot cease, and zq cannot grow too fast. In fact,
with increasing T, they seem to become constant, and one observes a kind of equilibrium between
dynamics and nonextensivity.

Because the z-QPM [32–37] uses the lattice QCD results [43–45] as its input and because there
are problems with nonzero chemical potential µ in the lattice calculations [46,47], the z-QPM was
initially formulated for zero chemical potential, µ = 0, which substantially limits its applications.
However, anticipating the possibility of the emergence of some new lattice QCD results with the
chemical potential included (if only partially), starting from [36], some small amount of non-vanishing
µ in the matter sector was introduced. We have therefore also allowed for some nonvanishing µ.
In Figure 2, we show how nonzero µ influences the extracted zq for q < 1 and q > 1. Figure 3 (right
panel) shows that the relative density (both for q < 1 and q > 1) increases (almost) linearly with the
chemical potential. Note that the possible introduction of the chemical potential in the lattice QCD
calculations will change profoundly the z-QPM (and the qz-QPM); it will therefore become a third
phenomenological parameter modeling the interaction. Our results shows in what direction these
changes will proceed, and in Appendix D, we provide a scheme of the expansion of the pressure in the
chemical potential to allow for the possible further application of our qz-QPM should similar results
occur in the lattice calculations [46,47].

Figure 4 presents the results for the Debye mass in a nonextensive environment. Note that because
it is essentially a combination of densities of quarks and gluons, the results therefore resemble those for
the effective fugacities. Calculations of more involved quantities, like, for example, dissipative effects
would be much more involved because they would demand the use of the nonextensive version of the
transport or hydrodynamic equations, which is beyond the scope of this work and will be presented
elsewhere. It would also be desirable to be able to compare directly the results of qz-QPM with some
future nonextensive lattice QCD simulations, which seems to be gaining some interest recently [50,51].

Finally, Figures 7 and 5 present some selected results on the, respectively, relative pressure and
density, trace anomaly and Debye mass obtained when we use the qz-QPM with the same effective
fugacities z(i) as in the z-QMP and calculate changes in densities and pressure induced only by changes
in the nonextensivity q. Because in this case, the original dynamics represented by z(i) remains intact,
all changes in the results are caused only by the nonextensivity, i.e., by the fact that |q − 1| 6= 0.
These results correspond, in a sense, to the results obtained in our q-NJL model [16], with the proviso
that now our investigations are limited to T above the critical temperature Tc (i.e., to τ = T/Tc > 1
because only these are considered in z-QMP). In both models, we observe similar dependencies of the
pressure and density on the nonextensivity parameter q while maintaining all dynamical parameters
for a given temperature T the same. They are reduced for q < 1 and enhanced for q > 1. This means
that when changing the amount of nonextensivity, one cannot keep the same pressure P in the system
without changing the dynamical parameters (or their temperature dependencies). Our qz-QPM is
therefore a simple example of such changes needed to achieve equalization of the pressure in extensive
and nonextensive systems. Note that now, as a result of the pressure equalization in extensive and
nonextensive systems, the relative densities, Rρ = ρq/ρq=1, change with q in opposite ways, becoming
higher for q < 1 and lower for q < 1 than the density in an extensive system. This observation could
be important for some new version of the q-NJL model, in which one could insist on keeping the same
pressure for different nonextensivities and looking for the corresponding changes in its dynamical
parameters (which would become q-dependent). Such an approach could have its further application
in investigations of the EoS of dense matter.
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Appendix A. Limitations of the Allowed Phase Space in the Nonextensive Approach

The functions Θ(p; i) (i = g for gluons, i = q for light quarks, and q = s for strange quarks)
provide the limitations of the allowed phase space resulting from the condition:

[1 + (q− 1)x] ≥ 0, (A1)

In the q < 1 case, for gluons (with zero mass and zero chemical potential), we have that:

x̃(i) <
1

1− q
=⇒ p

T
<

1
1− q

+ ln z(g)
q . (A2)

Because z(g)
q < 1, our integral is non-vanishing (i.e., p > 0) only for:

1
1− q

+ ln z(g)
q > 0 =⇒ z(g)

q > e
(
− 1

1− q

)
. (A3)

Stronger interactions (corresponding to smaller values of the fugacity) are in this case not allowed
for the q used here. In the case of quarks (with chemical potential µ > 0 and with mass m for strange
quarks), Condition (A2) results in the following limitation:√

p2 + m2

T
<

1
1− q

+
µ

T
+ ln z(i)q , (i = q, s). (A4)

Now, the phase space is open if:

1
1− q

+
(µ±m)

T
+ ln z(i)q > 0 or

1
1− q

+
(µ±m)

T
+ ln z(i)q < 0. (A5)

In the first case, the (µ−m) choice is more restrictive and results in the condition that:

z(i)q > e
(
− 1

1− q

)
· e
(
−µ−m

T

)
, (A6)

which for µ = 0 and m = 0 coincides with the corresponding condition for gluons. In the second case,
the choice (µ + m) is more restrictive, for which:

z(i)q > e
(
− 1

1− q

)
· e
(
−µ + m

T

)
. (A7)

For nonzero mass (strange quarks), it is more restrictive than Condition (A6).
In the case of q > 1, we have for gluons that:

x(i) > − 1
q− 1

=⇒ p
T

> ln z(g)
q −

1
q− 1

. (A8)

In our case, it is always satisfied, and there are no limitations on z(g)
q . The same situation is now

in the quark sector, and there are also no limitations z(i)q . For gluons, which are bosons, one has an
additional condition, namely:

eq(x) > 1 =⇒ p > T ln z(i)q for all q. (A9)
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However, for zg < 1, it does not introduce any further limitations.

Appendix B. Approximate Calculation of zq

Let us denote zq = z + δ (where z = z(τ) are the fugacities obtained in [32] from lattice QCD
and δ = zq − z is the change in fugacity emerging from the nonextensive environment). We shall now
calculate δ/z for the case of small δ, |δ/z| << 1. We start by expanding Lq(x) from Equation (9),

Lq
(

xq; δ
)
= ln2−q

[
1− ξe2−q

(
−xq

)]
= ln2−q(X), (A10)

in δ and keeping only linear terms:

Lq
(

xq; δ
)
' Lq

(
xq; δ = 0

)
+

∂Lq
(

xq; δ
)

∂δ

∣∣∣∣
δ=0
· δ. (A11)

Denoting:
X = 1− ξE, E = e2−q

(
−xq

)
, xq = y− ln zq, (A12)

one can write that (cf., Equations (5) and (6)):

∂Lq
(

xq; δ
)

∂δ
=

∂Lq(X)

∂X
· ∂X

∂E
· ∂E

∂xq
·

∂xq

∂zq
·

∂zq

∂δ
, (A13)

∂Lq(X)

∂X
=

∂ ln2−q(X)

∂X
= X−q, (A14)

∂X
∂E

= −ξ,
∂E
∂xq

= −
[
e2−q(−xq)

]q ,
∂xq

∂zq
= − 1

zq
,

∂zq

∂δ
= 1 (A15)

obtaining (note that for δ = 0 xq → x− ln z):

∂Lq
(

xq; δ
)

∂δ

∣∣∣∣
δ=0

=− ξ

z
[
nq(x; z)

]q and Lq
(
xq; δ

)
' ln2−q

[
1− e2−q (−x; z)

]
− ξ

z
[
nq (x; z)

]q
δ. (A16)

The integrals of the type presented in Equations (17) and (18) can therefore be rewritten as
integrals over:

∆Lq = L(x; z)− Lq(x; δ) = ln[1− e(−x; z)]− ln2−q
[
1− ξe2−q

(
−xq; zq

)]
'

{
ln[1− e(−x; z)]− ln2−q

[
1− ξe2−q(−x; z)

]}
+ ξ

[
nq(x; z)

]q · δ

z

=
[
I(x; z)− Iq(x; z)

]
+ ξ

[
nq(x; z)

]q · δ

z
. (A17)

Because zq is obtained from the condition that ∆Lq = 0, in the first approximation, the correction
term δ is equal to:

δ = ξz ·
∫ ∞

0 dpp2 [I(x; z)− Iq(x; z)Θ(p)
]∫ ∞

0 dpp2
[
nq(x; z)

]q Θ(p)
. (A18)

Θ(p) represents the possible limitation of the phase space caused by the nonextensivity (cf.
Appendix A). It depends on the nonextensivity parameter q and on the type of particle considered
(gluons, light quarks, or strange quarks).

Formula (A18) can be further approximated by expanding it in q− 1 and retaining only the linear
terms in (q− 1). Following Equations (A40) and (A41), one obtains that:

Iq(x; z) ' I(x; z) +
1
2
(q− 1)∆I(x; z) where ∆I(x; z) = − ln2[1− ξe(−x)] + n(x; z)x2. (A19)
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Similarly, following Equations (A31) and (A32), one has that:

nq
q ' n(x; z) + (q− 1)n(x; z)∆q[n(x; x)] where ∆q[n(x; z)] = ln n(x; z) +

1
2
[1 + ξn(x; z)]x2. (A20)

Therefore:

ξ
δ

z
=

A(x; z)− (q− 1)B(x; z)
C(x; z) + (q− 1)D(x; z)

' A(x; z)
C(x; z)

− (q− 1)
{

B(x; z)
C(x; z)

+
A(x; z)D(x; z)
[C(x; z)]2

}
, (A21)

where:

A(x; z) =
∫ ∞

0
dpp2 I(x; z)[1−Θ(p)], (A22)

B(x; z) =
ξ

2

∫ ∞

0
dpp2∆I(x; z)Θ(p), (A23)

C(x; z) =
∫ ∞

0
dpp2n(x; z)Θ(p), (A24)

D(x; z) =
∫ ∞

0
dpp2Θ(p)n(x; z) ·

{
ln n(x; z) +

1
2
[1 + ξn(x; z)]x2

}
. (A25)

In practical applications, it turns out that A(x; z) ' 0; therefore:

δ

z
' −ξ · (q− 1)

B(x; z)
C(x; z)

= (1− q) ·

∫ ∞
0 dpp2

{
ln2[1− ξe(−x; z)] + n(x; z)x2

}
2
∫ ∞

0 dpp2n(x; z)
. (A26)

Appendix C. Some Selected First Order Expansions in (q− 1)

We list of some useful first order expansions in q − 1 (We do not address the question of the
applicability of such an approach, assuming its validity for the range of variables used here (cf. [52])).

eq(x) = [1 + (q− 1)x]
1

q−1 ' e(x)− (q− 1)e(x)∆ [e(x)] , ∆ [e(x)] =
1
2

x2. (A27)

e2−q(−x) ' e(−x) + (q− 1)e(−x)∆[e(x)] (because ∆[e(−x)] = ∆[e(x)]), (A28)

nq(x) =
1

eq(x)− ξ
' 1

[e(x)− ξ]− 1
2 (q− 1)e(x)x2

' n(x) + (q− 1)n(x)∆[n(x)], (A29)

ln nq(x) ' ln n(x) + (q− 1)∆[n(x)] where ∆[n(x)] =
1
2
[1 + ξn(x)] x2, (A30)

nq
q = nq · e

[
(q− 1) ln nq

]
' nq

[
1 + (q− 1) ln nq

]
' n(x) + (q− 1)n(x)∆q[n(x)], (A31)

where ∆q[n(x)] = ln n(x) + ∆[n(x)]. (A32)

More involved expressions are:[
1− ξe2−q(−x)

]
' [1− ξe(−x)]− (q− 1)ξe(−x)∆[e(x)], (A33)

ln
[
1− ξe2−q(−x)

]
' ln[1−ξe(−x)] + (q− 1)

[
ξe(−x)

1−ξe(−x)

]
∆[e(x)]. (A34)

The corresponding q-logarithm and (2− q)-logarithm functions to be used in what follows are
connected with the q-exponential function eq(x) and its dual e2−q(x):
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lnq X =
Xq−1 − 1

q− 1
q→1
=⇒ ln X and ln2−q X =

X1−q − 1
1− q

q→1
=⇒ ln X, (A35)

lnq
[
eq(X)

]
= X, and ln2−q

[
e2−q(X)

]
= X, (A36)

ln2−q X = − lnq

(
1
X

)
. (A37)

From them, one gets that:

lnq X =
Xq−1 − 1

q− 1
=

e(q−1) ln X − 1
q− 1

' ln X +
1
2
(q− 1) ln2 X. (A38)

ln2−q X =
X1−q − 1

1− q
' ln X +

1
2
(1− q) ln2 X (A39)

L(ξ)
2−q(x) = ln2−q

[
1− ξe2−q(−x)

]
' ln

[
1− ξe2−q(−x)

]
+

1
2
(1− q) ln2 [1− ξe2−q(−x)

]
' ln[1− ξe(−x)] +

1
2
(q− 1)∆[ln(x)]; (A40)

∆[ln(x)] = − ln2[1− ξe(−x)] +
[

e(−x)
1− ξe(−x)

]
x2 = − ln2[1− ξe(−x)] + n(x; z)x2. (A41)

Finally, the generalization of the relation nq(x) + n2−q(−x) = 1 to the case where the effective
particle densities are given not by nq, but by nq

q is approximately given by:

nq
q(x) + n2−q

2−q(−x) = 1 + (q− 1)
{

n(x)∆q[n(x)]− n(−x)∆2−q[n(−x)]
}

(A42)

' 1 + (q− 1)
{

n(x) ln n(x)− n(−x) ln n(−x) +
1
2
(1 + ξ)x2[n(x)− n(−x)]

}
.

Appendix D. Expansion of Pressure in Chemical Potential µ

In the case when we allow for a chemical potential µ, in some applications, we need to know
the expansion of the pressure P (as given by Equation (14)) in the chemical potential µ (in fact,
in µ̃ = µ/T = βµ < 1). We present below the two first terms of such an expansion,

Pq =
1

βV
lnq
(
Ξq
)
' 1

βV

{
lnq
(
Ξq
) ∣∣∣∣

µ=0
+

∂ lnq
(
Ξq
)

∂µ

∣∣∣∣
µ=0
· µ +

1
2

∂2 lnq
(
Ξq
)

∂µ2

∣∣∣∣
µ=0
· µ2

}
(A43)

where lnq
(
Ξq
)

is given by Equation (9) and:

∂ lnq
(
Ξq
)

∂µ

∣∣∣∣
µ=0

=
∫ d3 p

(2π)3 ∑
i

νi

{
nq

[
x̃(i)q (µ = 0)

]}q
= ∑

i
νiρ

(i)
q (µ = 0), (A44)

∂2 lnq
(
Ξq
)

∂µ2

∣∣∣∣
µ=0

=
∫ d3 p

(2π)3 ∑
i

νi
∂

∂µ

{
nq

[
x̃(i)q (µ)

]}q
∣∣∣∣
µ=0

= βq
∫ d3 p

(2π)3 ∑
i

νi

{
nq

[
x̃(i)q (µ = 0)

]}q+1
·
{

eq

[
x̃(i)q (µ = 0)

]}2−q
. (A45)
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We have used here Equations (11), (A43)–(A48) (with nq
[
x̃q(µ)

]
, eq
[
x̃q(µ)

]
and xq(µ) are defined

by Equations (5) and (6) and
{

nq
[
x̃q(µ)

]}q
= Nq(µ)):

∂Nq

∂µ
=

∂Nq

∂nq
·

∂nq

∂eq
·

∂eq

∂x̃q
·

∂x̃q

∂µ
= βqnq+1

q · e2−q
q , (A46)

∂Nq

∂nq
= qnq−1

q ,
∂nq

∂eq
= −

(
eq − ξ

)−2
= −n2

q, (A47)

∂eq

∂x̃q
=

[
1 + (q− 1)x̃q

] 2−q
q−1 = e2−q

q ,
∂x̃q

∂µ
= −β. (A48)
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