
symmetryS S

Article

An Efficient Knowledge-Graph-Based Web Service
Recommendation Algorithm

Zhiying Cao, Xinghao Qiao *, Shuo Jiang and Xiuguo Zhang *

School of Information Science and Technology, Dalian Maritime University, Dalian 116033, China;
czysophy@dlmu.edu.cn (Z.C.); jsgg@dlmu.edu.cn (S.J.);
* Correspondence: qxh@dlmu.edu.cn (X.Q.); Zhangxg@dlmu.edu.cn (X.Z.)

Received: 14 February 2019; Accepted: 14 March 2019; Published: 18 March 2019
����������
�������

Abstract: Using semantic information can help to accurately find suitable services from a variety
of available (different semantics) services, and the semantic information of Web services can be
described in detail in a Web service knowledge graph. In this paper, a Web service recommendation
algorithm based on knowledge graph representation learning (kg-WSR) is proposed. The algorithm
embeds the entities and relationships of the knowledge graph into the low-dimensional vector
space. By calculating the distance between service entities in low-dimensional space, the relationship
information of services which is not considered in recommendation approaches using a collaborative
filtering algorithm is incorporated into the recommendation algorithm to enhance the accurateness of
the result. The experimental results show that this algorithm can not only effectively improve the
accuracy rate, recall rate, and coverage rate of recommendation but also solve the cold start problem
to some extent.

Keywords: Web service; Web services relationships; knowledge graph; representation learning;
recommender systems

1. Introduction

The recommender system plays an important role in a personalized services research field.
By mining the relationship between items or users, users can discover the items they may be interested
in from a large number of different items.

With the rapid development of technologies such as cloud computing, mobile computing, service
computing, the Internet, and big data, the emergence of a large number of Web services has caused
users to face information overload problems. Finding relevant services among a large number of
choices has become an important issue in the field of service computing and has been attempted to be
solved by service recommendation [1,2].

Currently, most mainstream service recommendation algorithms are generally based on
collaborative filtering (CF). Sreenath and Singh [3], Karta [4], and others adopted user-based CF
to make recommendations. Herlocker et al. [5] proposed a K-nearest-neighbor model based on CF to
improve recommendation accuracy, which is currently the most popular collaborative recommendation
system model.

Quality of service (QoS) is a key factor in evaluating a service. Because we cannot obtain QoS
data intuitively, many Web service recommendation systems use collaborative filtering algorithms
to mine QoS attribute information, find users who are similar to the current requester, and predict
the QoS values of unused services for the current requester. Shao et al. [6] proposed a user-based CF
algorithm to predict service QoS values. Zheng et al. [7] combined user-based CF and item-based CF
to improve recommendation accuracy.

Symmetry 2019, 11, 392; doi:10.3390/sym11030392 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/11/3/392?type=check_update&version=1
http://dx.doi.org/10.3390/sym11030392
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 392 2 of 16

The above Web service recommendation methods have the cold start and data sparse problems and
do not consider relationships between services in the recommendation process. The service relationship
is an important factor in the process of users utilizing a service; therefore, considering the service
relationship in the recommendation process can give users more accurate recommendation results.

A Web service recommendation algorithm based on knowledge graph representation learning
(kg-WSR) is proposed in this paper to solve the abovementioned problems. It fully considers the
semantic relationship between Web services and has a good solution to the cold start problem.
It uses knowledge graph representation learning to get the low-dimensional vector representation
of service and user nodes, calculates the distance between services used by the user to obtain user
classification, and sorts the candidate services according to the user’s QoS preference to obtain a better
recommendation set.

2. Related Works

Research on service recommendation has been published in the proceedings of numerous
conferences and journals. Most of these methods are based on collaborative filtering, which provides
recommendations through user similarity or service similarity. So, we discuss in this section several
typical Web service recommendation algorithms based on collaborative filtering. Recently, many
algorithms predict the quality of Web services by adding geographic location, text evaluation, and
other factors to improve the recommendation effect. Thus, we also introduce here some related
algorithms. In order to add semantic information to the recommendation process, in this study,
we used knowledge graph representation learning to obtain the low-dimensional vectors which
contain the semantic information of the corresponding entity; several typical representation learning
algorithms are discussed below.

2.1. Research on Knowledge Representation Learning

Mikolov et al. [8] proposed the word2vec word representation learning model and toolkit in 2013.
Through this model, they found that the word vector space has translation invariance. After that,
representation learning has gained widespread attention.

The main methods of knowledge representation learning include the distance model [9],
single-layer neural network [10], tensor neural network model [10,11], matrix decomposition
model [12], and translation model [13–17]. Due to the huge performance improvement of the
translation model, through which not only the training parameters are greatly reduced but also
the accuracy is improved, the translation model has become the representative model of knowledge
representation learning.

The TransE algorithm proposed by Bordes et al. [14] is the most representative algorithm of the
translation model. It treats relationships in the knowledge base as a certain kind of translation vector
between entities. For each triple (h, r, t), TransE uses the relation vector R as the translation between
the head entity vector H and the tail entity vector T. We can also regard R as a translation from H to T.
TransE implements the digitization of the entity, so knowledge representation learning can quickly
calculate the semantic relevance of the entities.

The TransE algorithm has good results for one-to-one relationships between entities, but it is
less effective for the one-to-many, many-to-one, and many-to-many relationships [18]. The important
reason is that TransE represents both entities and relationships in the same plane, and the interaction
between entities and relationships cannot be clarified, which in turn makes it impossible to distinguish
complex relationships.

In order to deal with the complex relationship between entities, Wang et al. [19] proposed the
TransH algorithm, which establishes a relationship-oriented hyperplane model. For a relation r,
a relation-specific translation vector lr is placed on the relationship-specific hyperplane lnr (normal
vector) instead of being represented in the same space as the entity. TransH can solve the problems
faced by TransE when complex relationships occur.

Symmetry 2019, 11, 392 3 of 16

2.2. Research on Web Service Recommendation

Zheng et al. [7,19] proposed a recommendation system based on a user feedback collaborative
filtering algorithm (WSRec algorithm), which uses a collaborative filtering algorithm to predict QoS
values and a linear combination of user-based and item-based collaborative filtering to improve the
accuracy of QoS prediction. However, there are limitations in the recommendation system caused
by the use of collaborative filtering algorithms; that is, sparse data seriously affects the accuracy of
QoS prediction.

Sreenath and Singh [3], Karta [4], and others used user-based CF to recommend services, but these
only consider user similarity and the recommendation is not comprehensive.

Ma et al. [20] predicted QoS values by tensor decomposition, marked services by a user preference
learning method, and implemented service recommendation using service scores.

Herlocker et al. [5] proposed a K-nearest-neighbor (KNN) model based on collaborative filtering,
namely, the UPCC algorithm, which is presently the most popular collaborative recommendation
algorithm. However, it has serious data sparseness and cold start problems. For new users,
new services cannot be given a reasonable recommendation.

Salakhutdinov et al. [21] proposed a product-based KNN model called the IPCC algorithm.
This type of KNN model assumes that a user’s present and past interests are similar; that is, if a service
is similar to a service that a user liked in the past, then this service is now very likely to be liked by him.
The breadth of recommendations for such algorithms is very low, for it is not possible to recommend
other types of services that users may like but only to recommend a certain type of service.

Jhaveri et al. [22] proposed a composite model for two-way Web service recommendation using
QoS and quality of experience (QoE). The model analyzes the positive or negative aspects of the
evaluation text and combines the user’s emotional score with the satisfaction score to improve the
accuracy of the recommendation.

Papadakis et al. [23] proposed a recommendation algorithm based on the Vivaldi algorithm
(SCoR), which maps users and items to nodes on the coordinate axes and calculates the distance of the
nodes. The algorithm can solve the cold start problem to a certain extent.

Liu et al. [24] proposed a QoS prediction algorithm that considers the location and geographic
factors affecting QoS in the recommendation algorithm to improve prediction accuracy.

Nilashi et al. [25] proposed a collaborative filtering recommendation algorithm based on ontology
and dimensionality reduction. However, the establishment of ontology is complex, and there are very
few existing Web service ontologies.

3. Knowledge-Graph-Based Web Service Recommendation Algorithm

In order to solve the cold start problem of traditional service recommendation and the problem of
semantic associations between services not being taken into consideration, we developed the kg-WSR
algorithm. In this algorithm, firstly, the entity relationships of a Web service knowledge graph are
analyzed. There are two types of entity nodes in the Web service knowledge graph: Web services and
users. The relationship between different services is judged by the input and output of the service;
users and services are linked by rating. Secondly, the entities in the knowledge graph are embedded
into a low-dimensional space by using the TransH algorithm. Then, the similarities between users
are calculated to identify the neighbors and the nearest K users for a user, and the distances between
services are calculated to find semantically similar services for each service. The smaller the distance,
the greater the degree of association. For the user receiving the recommendation, the highly rated
services of his neighbors are defined as set US, the semantically similar services of services that he
marked highly form the recommended set RS, and his QoS preference is calculated according to
the user rating vector and service QoS matrix. According to preference, the US and RS are sorted
into ordered sequences L and K, respectively. A preliminary recommendation set is generated by
integrating L and K in the proportion of p:q, and the final ranking is performed to create the final

Symmetry 2019, 11, 392 4 of 16

recommendation set C. The values of p and q are adjusted according to whether the user receiving the
recommendation is a positive user or a negative user.

The main steps of the proposed method are shown in Figure 1.

Symmetry 2019, 11, x FOR PEER REVIEW 4 of 16

The main steps of the proposed method are shown in Figure 1.

Triples in the
knowledge

graph

Embedding triples
into low-

dimensional space
by TransH

Low dimensional
vector

Calculating user
similarity

Calculating service
similarity

Get user's high
rating services

The set of similar
services for high

rating services,RS

Neighbor userGet high rating
services

Initial
recommendation

set US

User rating
Vector and QoS

Matrix
User preference

Using fusion
algorithm to fuse

L and K

Final
recommendation

set C

Ordered
sequence L, KSort

Figure 1. The main steps of the Web service recommendation algorithm based on knowledge graph
representation learning (kg-WSR).

3.1. Web Service Knowledge Graph Representation Learning

3.1.1. Analyzing Service Relations

The service entities in the Web service knowledge graph are related through service
relationships, so determining the service relationship is a crucial step in the Web service knowledge
graph. From the perspective of a Web Services Description Language (WSDL) document, a Web
service can be abstracted into a conceptual model consisting of three layers of components: service,
operation, and parameter. The definition of service relationships is also divided into three levels,
namely, parameter, operation, and service levels. This paper considers service-level relationships.
Service-level relationships focus on describing interactions and constraints between services. On the
Web, multiple services are functionally equivalent or similar, and there must be competition between
them. On the other hand, the service process determines the existence of collaboration between
services, which is the basis for control flow in composite services and business processes [26].
Therefore, according to the competition and collaboration relationship, there are five categories of
service relationships, as shown in Table 1.

Figure 1. The main steps of the Web service recommendation algorithm based on knowledge graph
representation learning (kg-WSR).

3.1. Web Service Knowledge Graph Representation Learning

3.1.1. Analyzing Service Relations

The service entities in the Web service knowledge graph are related through service relationships,
so determining the service relationship is a crucial step in the Web service knowledge graph. From the
perspective of a Web Services Description Language (WSDL) document, a Web service can be abstracted
into a conceptual model consisting of three layers of components: service, operation, and parameter.
The definition of service relationships is also divided into three levels, namely, parameter, operation,
and service levels. This paper considers service-level relationships. Service-level relationships focus on
describing interactions and constraints between services. On the Web, multiple services are functionally
equivalent or similar, and there must be competition between them. On the other hand, the service
process determines the existence of collaboration between services, which is the basis for control
flow in composite services and business processes [26]. Therefore, according to the competition and
collaboration relationship, there are five categories of service relationships, as shown in Table 1.

As for the relationship between users and services, they are linked by rating. There are five rating
levels corresponding to this relationship: extremely dissatisfied, dissatisfied, medium satisfaction,
satisfied, and very satisfied.

The relationship between services and the relationship between users and services are illustrated
in the Web service knowledge graph shown in Figure 2.

Symmetry 2019, 11, 392 5 of 16

Table 1. Service relationship.

Types Categories Description

Competitive relations
Exact
plugin
subsume

∀opik ∈ wsi, ∃opjm ∈ wsj ⇒ opik = opjm
∀opjk ∈ wsj, ∃opim ∈ wsi ⇒ opjk = opim
∀opik ∈ wsi, ∃opjm ∈ wsj ⇒ opik = opjm
∀opjk ∈ wsj, ∃opim ∈ wsi ⇒ opjk = opim

Collaborative relations
Rely-total ∃opim ∈ wsi, ∃opjn ∈ wsj ⇒ opout

im ⊇ opin
jn

Rely-part ∃opim ∈ wsi, ∃opjn ∈ wsj ⇒ opout
im ⊂ opin

jn

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 16

Table 1. Service relationship.

Types Categories Description

Competitive
relations

Exact

plugin
subsume

jmikjjmiik opopwsop,wsop =⇒∈∃∈∀

imjkiimjkj opopwsop,wsop =⇒∈∃∈∀

jmikjjmiik opopwsop,wsop =⇒∈∃∈∀

imjkiimjkj opopwsop,wsop =⇒∈∃∈∀

Collaborative
relations

Rely-total

Rely-part

in
jn

out
imjjniim opopwsop,wsop ⊇⇒∈∃∈∃

in
jn

out
imjjniim opopwsop,wsop ⊂⇒∈∃∈∃

As for the relationship between users and services, they are linked by rating. There are five rating
levels corresponding to this relationship: extremely dissatisfied, dissatisfied, medium satisfaction,
satisfied, and very satisfied.

The relationship between services and the relationship between users and services are illustrated
in the Web service knowledge graph shown in Figure 2.

USER1 USER2

S1 S3S2

vs

r
Figure 2. Simplified diagram of the knowledge graph.

3.1.2. Embedding Entities in Low-Dimensional Space

Based on the knowledge graph, the TransE algorithm is a representative algorithm in
representation learning. It embeds the entities and relationships in the knowledge graph into the low-
dimensional vector space.

For a triple (h, r, t) in knowledge graph G, let lh, lr, and lt represent vectors corresponding to h, r,
and t, respectively. TranE expects lh, lr, lt to satisfy Equation (1):

trh lll ≈+ . (1)

The score function is 2
trhtrh ||lll||)l,ll(-d +=+ , where 2||||• is the 2 norm of . , the Euclidean

distance.
Training the loss function is shown in Equation (2):

∑ ∑
∈ ∈K)t,r,h('K)'t,r,'h(

thtr))]l,rl(d)l,l(dλ[('' ++++= -lL h

 (2)

}E't/)'t,r,h{(}E'h/)t,r,'h{('K ∈∪∈=

where E is a set of entities in the knowledge graph, (h, r, t) is the correct triple from the training set,
K’ is a set of error triples, and λ is the separation distance between the score of the correct triple and
the score of the wrong triple, which is generally it is set to 1. The error triple is not randomly generated.
In order to select a representative error triple, TransE randomly replaces one of the header and tail
entities of each triple in K with other entities to get K’.

+]x[represents the hinge loss function, described in Equation (3):

0x,x
0x,0{]x[>

+ = ≤ . (3)

TransE adopts the principle of maximum distance and trains by enlarging distances between the
right and wrong samples. The loss function is optimized by a stochastic gradient descent algorithm.

Figure 2. Simplified diagram of the knowledge graph.

3.1.2. Embedding Entities in Low-Dimensional Space

Based on the knowledge graph, the TransE algorithm is a representative algorithm in
representation learning. It embeds the entities and relationships in the knowledge graph into the
low-dimensional vector space.

For a triple (h, r, t) in knowledge graph G, let lh, lr, and lt represent vectors corresponding to h, r,
and t, respectively. TranE expects lh, lr, lt to satisfy Equation (1):

lh + lr ≈ lt . (1)

The score function is d(lh + lr, lt) =||lh + lr − lt||2, where ||•||2 is the 2 norm of •, the
Euclidean distance.

Training the loss function is shown in Equation (2):

L = ∑
(h,r,t)∈K

∑
(h′,r,t′)∈K′

[(λ + d(lh + lr, lt)− d(lh′ + r, lt′))]+ (2)

K′ = {(h′, r, t)/h′ ∈ E} ∪ {(h, r, t′)/t′ ∈ E}

where E is a set of entities in the knowledge graph, (h, r, t) is the correct triple from the training set,
K’ is a set of error triples, and λ is the separation distance between the score of the correct triple and
the score of the wrong triple, which is generally it is set to 1. The error triple is not randomly generated.
In order to select a representative error triple, TransE randomly replaces one of the header and tail
entities of each triple in K with other entities to get K’.

[x]+ represents the hinge loss function, described in Equation (3):

[x]+ =

{
0, x ≤ 0
x, x > 0

. (3)

TransE adopts the principle of maximum distance and trains by enlarging distances between
the right and wrong samples. The loss function is optimized by a stochastic gradient descent
algorithm. The resulting vector space has the following characteristics: (1) the head node vector
plus the corresponding triplet relationship vector is approximately equal to the triplet tail node vector;
(2) the closer the semantic of services in the knowledge graph, the smaller the entity distance [27]. The
vector representation of the TransE algorithm is shown in Figure 3.

Symmetry 2019, 11, 392 6 of 16

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 16

The resulting vector space has the following characteristics: (1) the head node vector plus the
corresponding triplet relationship vector is approximately equal to the triplet tail node vector; (2) the
closer the semantic of services in the knowledge graph, the smaller the entity distance [27]. The vector
representation of the TransE algorithm is shown in Figure 3.

Figure 3. Vector representation of the TransE algorithm.

TransH establishes a relationship-oriented hyperplane model in order to optimize TransE’s
weak ability to handle complex relationships. For a relation r, the vector lr corresponding to r is placed
on the relationship-specific hyperplane lnr (normal vector) instead of being represented in the same
space as the entity representation. For a triple (h, r, t), h and t are first mapped to lhr, ltr on the
hyperplane lnr. Equations (5) and (6) are used to link lhr, ltr, and lr on the hyperplane. The score function
is described in Equation (4):

2
trrhtrrhr ||lll||)l,ll(-d r +=+ , (4)

which can provide

nrh
T

nrhhr l*l*ll -l = (5)

nrt
T

nrtr l*l*ll -lt = . (6)

The above formula can be used in the scoring function after the trial of the hyperplane model:
2

nrt
T

nrtrnrh
T

nrhtrrhr)||l*l*ll(l)l*l*ll||()l,ll(---d +=+ . (7)

Consider the constraints of the vector:

1||l||,1||l||,Et,h 2t2h ≤≤∈∀ (8)

ε||l||/|l*l|,Rr 2rr
T

nr ≤∈∀ (9)

1||l||,Rr 2r =∈∀ . (10)

The final loss function is

∑∑

∑ ∑

∈∈

∈ ∈

Rr

2
2

r

2T
nr2

Ee

K)t,r,h('K)'t,r,'h(
thtrh

]ε-
||l||
)r*l(

[c||e||c

))]l,rl(d-)l,ll(dλ[(L ''

+

++++= +

 (11)

The second and third terms of the loss function are representations of the constraints. The
training principle is similar to TransE.

Different entities can be distinguished after using the hyperplane model to make the knowledge
representation more accurate. The vector representation of the TransH algorithm is shown in Figure
4.

Figure 3. Vector representation of the TransE algorithm.

TransH establishes a relationship-oriented hyperplane model in order to optimize TransE’s weak
ability to handle complex relationships. For a relation r, the vector lr corresponding to r is placed on
the relationship-specific hyperplane lnr (normal vector) instead of being represented in the same space
as the entity representation. For a triple (h, r, t), h and t are first mapped to lhr, ltr on the hyperplane lnr.
Equations (5) and (6) are used to link lhr, ltr, and lr on the hyperplane. The score function is described
in Equation (4):

d(lhr + lr, ltr) =||lhr + lr − ltr||2, (4)

which can provide
lhr = lh − lnr

T ∗ lh ∗ lnr (5)

ltr = lt − lnr
T ∗ lt ∗ lnr. (6)

The above formula can be used in the scoring function after the trial of the hyperplane model:

d(lhr + lr, ltr) =
∣∣∣∣∣∣(lh − lnr

T ∗ lh ∗ lnr) + lr − (lt − lnr
T ∗ lt ∗ lnr)

∣∣∣∣∣∣2. (7)

Consider the constraints of the vector:

∀h, t ∈ E, ||lh||2 ≤ 1, ||lt||2 ≤ 1 (8)

∀r ∈ R,
∣∣∣lnr

T ∗ lr
∣∣∣/∣∣∣∣∣∣lr∣∣∣∣∣∣2 ≤ ε (9)

∀r ∈ R, ||lr||2 = 1. (10)

The final loss function is

L = ∑
(h,r,t)∈K

∑
(h′,r,t′)∈K′

[(λ + d(lh + lr, lt)− d(lh′ + r, lt′))]++

c ∑
e∈E
||e||2 + c ∑

r∈R
[(lnr

T∗r)2

||lr ||2
− ε2]

(11)

The second and third terms of the loss function are representations of the constraints. The training
principle is similar to TransE.

Different entities can be distinguished after using the hyperplane model to make the knowledge
representation more accurate. The vector representation of the TransH algorithm is shown in Figure 4.

Symmetry 2019, 11, 392 7 of 16
Symmetry 2019, 11, x FOR PEER REVIEW 7 of 16

Figure 4. Vector representation of the TransH algorithm.

Since TransH calculates the loss function by Euclidean distance, the Euclidean distance is used
to measure the similarity of the entities. The entity similarity is defined as Equation (12):

1||B-A||
1

)B,A(sim
+

=

 (12)

where A and B are two entity vectors in the knowledge graph. It can be seen from Equation (12) that
the closer sim(A, B) is to 1, the higher the correlation between the entity vectors A and B is; that is,
the closer the two entities are in the knowledge graph, the smaller sim(A, B) is and the more alienated
the two entities are in the knowledge graph.

The similarities of users are calculated by using Equation (12) and sorted. The 10 users closest to
um form the neighbor set U of user um.

3.1.3. Obtaining the Initial Recommendation Set

For the triple in the knowledge graph, the head vector plus the relationship vector is
approximately equal to the tail vector. For each um’s neighbor user u(Uu∈), Equations (13) and (14)
are used to find his highly rated services, and the highly rated services of neighbor users of um form
a set denoted as US:

γ||s-ru|| onsatisfacti <+ (13)

γ||s-ru|| onsatisfactivery <+ . (14)

The value of γ represents the maximum distance between a service and the user’s highly rated
service. The smaller γ is, the more the service satisfies the conditions of the user’s highly rated service.
γ is determined by experiment, and s represents u’s vector corresponding to the highly rated service.
rsatisfaction represents the vector corresponding to satisfaction, and rverysatisfaction represents the vector
corresponding to very satisfied.

For the user um, his high evaluation services are revealed by Equations (13) and (14), the
similarities between each highly rated service and other services are calculated, and the top five
services closest to each highly rated service are added to the set RS as initial recommendation services.

US and RS are the initial recommendation service sets.

3.2. User QoS Preference Calculation and User Behavior Classification

3.2.1. QoS Preference Calculation

QoS is an important factor to be considered for recommendations. It includes multidimensional
quality of service factors such as response time, reliability, availability, throughput, and so on.

Figure 4. Vector representation of the TransH algorithm.

Since TransH calculates the loss function by Euclidean distance, the Euclidean distance is used to
measure the similarity of the entities. The entity similarity is defined as Equation (12):

sim(A, B) =
1

||A− B||+1
(12)

where A and B are two entity vectors in the knowledge graph. It can be seen from Equation (12) that
the closer sim(A, B) is to 1, the higher the correlation between the entity vectors A and B is; that is, the
closer the two entities are in the knowledge graph, the smaller sim(A, B) is and the more alienated the
two entities are in the knowledge graph.

The similarities of users are calculated by using Equation (12) and sorted. The 10 users closest to
um form the neighbor set U of user um.

3.1.3. Obtaining the Initial Recommendation Set

For the triple in the knowledge graph, the head vector plus the relationship vector is approximately
equal to the tail vector. For each um’s neighbor user u(u ∈ U), Equations (13) and (14) are used to find
his highly rated services, and the highly rated services of neighbor users of um form a set denoted
as US:

||u + rsatis f action − s
∣∣∣∣∣∣< γ (13)

||u + rverysatis f action − s
∣∣∣∣∣∣< γ. (14)

The value of γ represents the maximum distance between a service and the user’s highly rated
service. The smaller γ is, the more the service satisfies the conditions of the user’s highly rated service.
γ is determined by experiment, and s represents u’s vector corresponding to the highly rated service.
rsatisfaction represents the vector corresponding to satisfaction, and rverysatisfaction represents the vector
corresponding to very satisfied.

For the user um, his high evaluation services are revealed by Equations (13) and (14), the
similarities between each highly rated service and other services are calculated, and the top five
services closest to each highly rated service are added to the set RS as initial recommendation services.

US and RS are the initial recommendation service sets.

Symmetry 2019, 11, 392 8 of 16

3.2. User QoS Preference Calculation and User Behavior Classification

3.2.1. QoS Preference Calculation

QoS is an important factor to be considered for recommendations. It includes multidimensional
quality of service factors such as response time, reliability, availability, throughput, and so on. Different
users have different acceptance levels for different QoS attributes. For example, some users are more
concerned with reliability than response time, while others are more concerned with response time
than reliability. Therefore, calculating the user’s preference for different QoS attributes through user
behavior can rank the recommendation services more reasonably.

Suppose that um has awarded ratings to N Web services and there are K QoS properties for each
Web service.

Let Rm = (r1, r2, . . . , rN)
T denote the rating vector of um, where rn denotes the rating awarded by

um for servicen.
Let Qm = (qn,k)N∗K denote the QoS matrix of um, where qn,k denotes the value of the k-th QoS

property of service n which is observed from um.
Let Pm = (p1, p2, . . . , pK)

T denote the preference vector of um, where pk denotes um’s preference
for k-th QoS attributes [21].

The relationship between Rm, Qm, and Pm is expressed in Equation (15):

Rm = Qm•Pm. (15)

The purpose is to calculate Pm. Because the number of QoS attributes is small, the noise in the
QoS and rating data might provide a wrong solution when using linear algebra. So, the loss function is
defined as shown in Equation (16):

F = ||Rm −Qm•Pm||2 + α||Pm||2 (16)

where α||Pm||2 is the regularization term to avoid overfitting. Pm can be solved by a gradient descent
algorithm as follows:

(1) Randomly initialize the values of the parameters in Pm.
(2) Use Equation (17) to compute the partial derivative of F for pk and Equation (18) to update the

parameters:
∂F
∂Pk

=
N

∑
n=1

[2αPk − 2rnqn,k + 2qn,k

K

∑
k=1

qn,k pk] (17)

pk = pk − τ
∂F
∂pk

(18)

where τ is the iteration step size for calculating Pm.
(3) If F > ξ, back to 2; if F ≤ ξ, terminate the computation and Pm is determined.

3.2.2. User Behavior Classification

The usage habits of users are different. Some users like to use services that have been used or
related to them. We define these users as negative users. Some users are open to and willing to try
new services. We define these users as positive users. In the knowledge graph, the distance between
entities represents the semantic similarity of the entities. So, we can judge the degree of association
between the two services by calculating the distance of the Web service entities in the graph. Therefore,
the category of a user can be effectively determined by the average distance between all the services
used by him.

Symmetry 2019, 11, 392 9 of 16

Let Sm = (s1, s2, . . . sn) denote the set of highly rated services that um has used. According to the
above definition and the distance of the entity vector in the knowledge graph, the user behavior is
judged by Equation (19):

d =
1
n

n−1

∑
i=1

n

∑
j=i+1

∣∣∣∣si − sj
∣∣∣∣ (19)

where d represents the average distance of the Web services used by the user in the knowledge graph,
which is used to determine whether it is a positive or negative user. The algorithm sets the ratio of
positive to negative users as 1:1. d for each user is calculated and sorted ascendingly. Users with a d in
the top 50% are negative users, and the others are positive users.

3.3. Recommendation Set Fusion

By Equations (12)–(14), um’s neighbor users’ highly rated services set US and the highly rated
services’ association services set RS of um are obtained. For um, his predictive scores of services in
US and RS are obtained by multiplying the calculated user preferences pm with the predicted QoS
attribute values of services. The average value of QoS evaluation of his neighbor users represents the
QoS prediction value of um for services. The product of user preference and predictive QoS is added
to the predictive score of the service. Web services in US and RS are sorted by predictive scores to get L
and K. The services in US are far away from the services used by the user to receive a recommendation,
so the positive user prefers to be recommended more services in US than in RS. The services in RS are
closer to the services used by the user to receive a recommendation, so the negative user prefers to be
recommended more services in RS than in US. The final recommendation set C should integrate L and
K in the proportion p:q, and p and q are determined by experiment. Assuming that the length of L is l
and the length of K is k, the length of C denoted as n can be calculated by Equation (20):

n =

{
[kp

p+q], u is positive user

[lq
p+q], u is negative user

. (20)

The fusion algorithm is shown as follow:

Algorithm 1: Recommendation set fusion algorithm

Input: Neighbor user service ordered set L; associated service for high-scoring services of recommended users
ordered set K; user category NU (negative user), PU (positive user)
Output: Final recommendation set C
1. If(user is PU)
2. For Li ∈ {Ll−n, Ll−n+1, . . . , Ll} do:
3. For Kj ∈ {K1, K2, . . . , Kn} do:
4. Li = Kj
5. End do
6. End do
7. C = L
8. Else
9. For Ki ∈ {Kk−n, Kk−n+1, . . . , Kk} do:
10. For Lj ∈ {L1, L2, . . . , Ln} do:
11. Ki = Lj
12. End do
13. End do
14. C = K

Symmetry 2019, 11, 392 10 of 16

3.4. Pseudocode of kg-WSR

The pseudocode for kg-WSR is shown as follows:

Algorithm 2: kg-WSR

Input: Triples in knowledge map; user um; um’s rating vector; um’s service QoS matrix; user set UF; service
set SF

Output: Service recommendation set C of user um

1. Computing user preference Pm by gradient descent
2. Using TransH to obtain the low-dimensional vector expression of entities and relationships
3. For each user u in UF do:
4. Computing the similarity between u and um

5. Sort similarities
6. End for
7. Ten users with the highest similarity as the neighbor set U of um

8. For each user u in U do:
9. For each service s in SF do:
10. Computing ||u+rsatisfaction-s|| and ||u+rverysatisfaction-s||
11. If ||u+rsatisfaction-s|| < γ or ||u+rverysatisfaction-s|| < γ then:
12. s added to set US
13. End if
14. End for
15. For each service s in SF do:
16. Computing ||um+rsatisfaction-s|| and ||um+rverysatisfaction-s||
17. If ||um+rsatisfaction-s|| < γ or ||um+rverysatisfaction-s|| < γ then:
18. s is highly rated service for user um

19. End if
20. End for
21. For each um’s highly rated service do:
22. For each service s in SF do:
23. Computing service similarity
24. End for
25. Sort similarities
26. The three services with the highest similarity are added to the set RS
27. End for
28. Sorting US and RS into ordered sequences L and K, respectively, using user preference pm

29. Computing the average distance between highly rated services of um and determining user classification
30. Use the fusion algorithm to form the final recommendation set C

4. Experiment and Evaluation

We conducted experiments to test the proposed algorithm and evaluated its recommendation
effect in the environment we provided. The experimental results show that the proposed algorithm
improved the accuracy rate, recall rate, and coverage rate of recommendation results.

4.1. Experimental Data

In order to obtain real Web services, 873 travel-related and map-related Web services were
captured on multiple open platforms through Web crawlers. Travel-related services included hotel
services, ticketing services, attraction services, etc. Relationships between services were determined by
input–output keyword matching and the relationships defined in Table 1. At the same time, the rating
information of 345 users and the evaluation of the two QoS attributes of response time and reliability
were obtained. These data were stored in the Web service knowledge graph.

Symmetry 2019, 11, 392 11 of 16

4.2. Evaluation Standard

For the recommendation results, the precision rate (P), recall rate (R), and coverage rate (C)
indicators were used to evaluate this algorithm. The precision rate represents the recommended
accuracy; that is, how many recommended services are correct. The recall rate reflects the proportion
of items recommended by the recommended system occupying items that users really like [1]. Services
used by fewer than 10 users were defined as new services. Coverage rate refers to the rate of new
services in recommendation results. This was used to judge the degree of solving the cold start problem.
The indicators were defined as:

P =
|Lt ∩ Lr|

Lr
(21)

R =
|L t ∩ Lr|

Lt
(22)

C =
|Cn|
|Sn|

(23)

where Lt represents the list of services actually used by the user, Lr is the recommended list of
services, Cn represents new services in the recommendation list, and Sn represents new services in the
knowledge graph.

4.3. Experimental Comparison and Verification

The low-dimensional vector representation of services and users in the knowledge graph were
obtained by the TransH algorithm. Assuming the user had five highly rated services, through many
experiments, we obtained γ = 0.15. After calculating the average distance of services used by each
user, we found that when the parameter in Equation (19) d ≤ 0.25, the user was a negative user; when
d > 0.25, the user was a positive user.

4.3.1. Embedded Dimension Determination

Knowledge graph representation learning is to embed entities into low-dimensional vector space,
so it will have different effects for different embedding dimensions. The experimental results of
100–500 dimensions are shown in Table 2.

Table 2. P, R values corresponding to different embedding dimensions.

Dimension P R

100 0.580 0.435
200 0.587 0.441
300 0.582 0.437
400 0.578 0.434
500 0.576 0.432

It can be seen from Table 2 that the recommended effect was best with 200 dimensions.

4.3.2. Fusion Ratio Determination

The proportional fusion experiment was performed with the learning embedding dimension of
200 and the number of recommended set C was 30. Table 3 shows the P and R for each ratio when
the user classification was not performed. Table 4 shows the P and R for each ratio when the user
classification was performed.

From Tables 3 and 4, it can be seen that the performance of P and R values after user classification
was better than that before classification. The optimal fusion ratio was 6:4 for positive users and 4:6 for
negative users.

Symmetry 2019, 11, 392 12 of 16

Table 3. P, R values for each proportion when there was no user classification.

Fusion Ratio (p:q) P R

0:10 0.465 0.347
1:9 0.497 0.376
2:8 0.520 0.388
3:7 0.544 0.410
4:6 0.567 0.420
5:5 0.542 0.409
6:4 0.527 0.396
7:3 0.487 0.368
8:2 0.461 0.349
9:1 0.430 0.316

10:0 0.415 0.310

Table 4. P, R values for each proportion when there was user classification.

NU Fusion Ratio PU Fusion Ratio P R

0:10 10:0 0.482 0.360
1:9 9:1 0.508 0.383
2:8 8:2 0.530 0.395
3:7 7:3 0.570 0.429
4:6 6:4 0.587 0.441
5:5 5:5 0.546 0.406

4.3.3. Performance Comparison

Experiments were performed with an optimal dimension of 200 and an optimal ratio of 6:4, 4:6.
The following algorithms were selected to be compared with the kg-WSR:

SCoR: This algorithm puts the entity into the coordinate system to calculate the Euclidean distance
for recommendation. This algorithm has a good effect on the cold start problem.

UPCC: Research on the neighbor model, KNN model.
IPCC: Research on product-based KNN model.
WSRec: Improved collaborative filtering prediction algorithm and integrated information on

similar users and services.
Pearson-CF: Collaborative filtering service recommendation algorithm based on Pearson

coefficient.
Bi-WSR: Integrated recommendation model with integrated QoS and QoE.
The recommended results for the comparison algorithms were mainly affected by the QoS matrix

data density (D). Therefore, the experiment set three different densities of 10%, 20%, and 30%. Figure 5
shows the accuracy rate comparison with kg-WSR.

Figure 6 shows the comparison of recall rates.
In order to evaluate the cold start problem, different numbers of new services were injected

into the experimental data and the algorithm coverage rates were compared. Figure 7 shows the
comparison of algorithm new service coverage rates.

It can be seen from Figures 5–7 that the kg-WSR algorithm improved the accuracy, recall, and
coverage rates of recommendation results by using the service association information and user
information in the knowledge graph. Also, the influence of data density on the algorithm was small.
The coverage rate of the new services was obviously higher than that of the other algorithms. Thus,
this algorithm better solves the cold start problem.

Symmetry 2019, 11, 392 13 of 16

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 16

From Tables 3 and 4, it can be seen that the performance of P and R values after user classification
was better than that before classification. The optimal fusion ratio was 6:4 for positive users and 4:6
for negative users.

4.3.3. Performance Comparison

Experiments were performed with an optimal dimension of 200 and an optimal ratio of 6:4, 4:6.
The following algorithms were selected to be compared with the kg-WSR:

SCoR: This algorithm puts the entity into the coordinate system to calculate the Euclidean
distance for recommendation. This algorithm has a good effect on the cold start problem.

UPCC: Research on the neighbor model, KNN model.
IPCC: Research on product-based KNN model.
WSRec: Improved collaborative filtering prediction algorithm and integrated information on

similar users and services.
Pearson-CF: Collaborative filtering service recommendation algorithm based on Pearson

coefficient.
Bi-WSR: Integrated recommendation model with integrated QoS and QoE.
The recommended results for the comparison algorithms were mainly affected by the QoS

matrix data density (D). Therefore, the experiment set three different densities of 10%, 20%, and 30%.
Figure 5 shows the accuracy rate comparison with kg-WSR.

Figure 6 shows the comparison of recall rates.
In order to evaluate the cold start problem, different numbers of new services were injected into

the experimental data and the algorithm coverage rates were compared. Figure 7 shows the
comparison of algorithm new service coverage rates.

Figure 5. Comparison of algorithm accuracy rates. Figure 5. Comparison of algorithm accuracy rates.Symmetry 2019, 11, x FOR PEER REVIEW 14 of 16

Figure 6. Comparison of algorithm recall rates.

Figure 7. Comparison of algorithm new service coverage rates.

It can be seen from Figures 5–7 that the kg-WSR algorithm improved the accuracy, recall, and
coverage rates of recommendation results by using the service association information and user
information in the knowledge graph. Also, the influence of data density on the algorithm was small.
The coverage rate of the new services was obviously higher than that of the other algorithms. Thus,
this algorithm better solves the cold start problem.

4.3.4. Algorithm Efficiency

Figure 8 shows the running time of each algorithm, which was the average of that of 10 repeated
experiments.

Figure 8. Algorithm running time comparison.

Figure 6. Comparison of algorithm recall rates.

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 16

Figure 6. Comparison of algorithm recall rates.

Figure 7. Comparison of algorithm new service coverage rates.

It can be seen from Figures 5–7 that the kg-WSR algorithm improved the accuracy, recall, and
coverage rates of recommendation results by using the service association information and user
information in the knowledge graph. Also, the influence of data density on the algorithm was small.
The coverage rate of the new services was obviously higher than that of the other algorithms. Thus,
this algorithm better solves the cold start problem.

4.3.4. Algorithm Efficiency

Figure 8 shows the running time of each algorithm, which was the average of that of 10 repeated
experiments.

Figure 8. Algorithm running time comparison.

Figure 7. Comparison of algorithm new service coverage rates.

4.3.4. Algorithm Efficiency

Figure 8 shows the running time of each algorithm, which was the average of that of 10
repeated experiments.

It can be seen from Figure 8 that the kg-WSR algorithm proposed in this paper was more
computationally intensive because factors such as user preference and user classification were involved.
The running time was slightly higher than that of WSRec and SCoR while lower than that of bi-WSR.

Symmetry 2019, 11, 392 14 of 16

The running time was higher than UPCC, IPCC, and Pearson-CF because they only use similarity
for recommendations.

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 16

Figure 6. Comparison of algorithm recall rates.

Figure 7. Comparison of algorithm new service coverage rates.

It can be seen from Figures 5–7 that the kg-WSR algorithm improved the accuracy, recall, and
coverage rates of recommendation results by using the service association information and user
information in the knowledge graph. Also, the influence of data density on the algorithm was small.
The coverage rate of the new services was obviously higher than that of the other algorithms. Thus,
this algorithm better solves the cold start problem.

4.3.4. Algorithm Efficiency

Figure 8 shows the running time of each algorithm, which was the average of that of 10 repeated
experiments.

Figure 8. Algorithm running time comparison. Figure 8. Algorithm running time comparison.

5. Conclusions

This paper proposed an efficient Web service recommendation algorithm based on knowledge
graph representation learning. This algorithm not only takes into account the semantic information
between services but also calculates users’ QoS preferences and user classification. Therefore,
the algorithm has a comprehensive recommendation effect. The algorithm embeds the entity into
the low-dimensional space through knowledge graph representation learning (TransH), calculates
similarities between entities to find neighbor users and associated services, and classifies users by the
distance between services used.

Experiments conducted show that the kg-WSR improved the accuracy of the recommendation
result and had a certain effect on solving the cold start problem. Although the time cost of the algorithm
was higher than that of the other algorithms to which it was compared, it greatly improved the accuracy
and recall rates and achieved a better recommendation effect.

Author Contributions: Author Contributions Writing—original draft, Z.C., X.Q., S.J., and X.Z.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 51679025,
51479021), the Fundamental Liaoning Provincial Natural Science Foundation of China (Grant No. 20170520196)
and the Fundamental Research Funds for the Central Universities (Grant No.3132016308).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, X.; He, K.; Wang, J.; Liu, J. A Survey of Web Services Personalized Recommendations. Comput.
Eng. Sci. 2013, 35, 132–140.

2. Yue, K.; Wang, X.; Zhou, A. Web Services Core Support Technology: A Review of Research. J. Softw. 2004, 15,
428–442.

3. Sreenath, R.M.; Singh, M.P. Agent-based service selection. Web Semant. Sci. Serv. Agents World Wide Web
2004, 1, 261–279. [CrossRef]

4. Karta, K. An Investigation on Personalized Collaborative Filtering for Web Service Selection. Honours
Programme Thesis, University of Western Australia, Brisbane, Australia, 2005.

5. Herlocker, J.L.; Konstan, J.A.; Borchers, A.; Riedl, J. An algorithmic framework for performing collaborative
filtering. In Proceedings of the International ACM Sigir Conference on Research & Development in
Information Retrieval, Berkeley, CA, USA, 15–19 August 1999.

http://dx.doi.org/10.1016/j.websem.2003.11.006

Symmetry 2019, 11, 392 15 of 16

6. Shao, L.; Zhang, J.; Wei, Y.; Zhao, J.; Xie, B.; Mei, H. Personalized QoS Prediction for Web Services via
Collaborative Filtering. In Proceedings of the IEEE International Conference on Web Services, Salt Lake City,
UT, USA, 9–13 July 2007.

7. Zheng, Z.; Ma, H.; Lyu, M.R.; King, I. Wsrec: A collaborative filtering based web service recommender
system. In Proceedings of the 7th IEEE International Conference on Web Services, Los Angeles, CA, USA,
6–10 July 2009; pp. 437–444.

8. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases
and their Compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.

9. Bordes, A.; Weston, J.; Collobert, R.; Bengio, Y. Learning Structured Embedding of Knowledge Bases.
In Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
7–11 August 2011.

10. Socher, R.; Chen, D.; Manning, C.D.; Ng, A. Reasoning with Neural Tensor Networks for Knowledge Base
Completion. In Proceedings of the International Conference on Neural Information Processing Systems,
Lake Tahoe, NV, USA, 8–13 December 2013; Curran Associates Inc.: Red Hook, NY, USA, 2013.

11. Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding entities and relations for learning and inference in
knowledge bases. arXiv, 2014; arXiv:1412.6575.

12. Nickel, M.; Tresp, V.; Kriegel, H.P. A three-way model for collective learning on multi-relational data.
In Proceedings of the International Conference on International Conference on Machine Learning, Bellevue,
WA, USA, 2–28 June 2011.

13. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
arXiv, 2013; arXiv:1301.3781.

14. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Proceedings of the NIPS, Cambridge, UK, 4–10 December 2013.

15. Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge Graph Embedding via Dynamic Mapping Matrix.
In Proceedings of the Meeting of the Association for Computational Linguistics & the International Joint
Conference on Natural Language Processing, Beijing, China, 27–31 July 2015.

16. Xiao, H.; Huang, M.; Hao, Y.; Zhu, X. TransG: A Generative Mixture Model for Knowledge Graph Embedding.
arXiv, 2016; arXiv:1509.05488.

17. He, S.; Liu, K.; Ji, G.; Zhao, J. Learning to represent knowledge graphs with gaussian embedding. In
Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,
Melbourne, Australia, 18–23 October 2015; pp. 623–632.

18. Fang, Y.; Zhao, X.; Tan, Z.; Yang, S.; Xiao, W. An Improved Translation-Based Knowledge Mapping
Representation Method. J. Comput. Res. Dev. 2018, 55, 139–150.

19. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes.
In Proceedings of the Twenty-Eighth Aaai Conference on Artificial Intelligence, Québec City, QC, Canada,
27–31 July 2014.

20. You, M.A.; Xin, X.; Wang, S.; Li, J.; Sun, Q.; Yang, F. QoS Evaluation for Web Service Recommendation.
China Commun. 2015, 12, 151–160. [CrossRef]

21. Salakhutdinov, R.; Mnih, A. Probabilistic Matrix Factorization. In Proceedings of the International Conference
on Neural Information Processing Systems, Kitakyushu, Japan, 13–16 November 2007.

22. Jhaveri, S.; Soundalgekar, P.M.; George, K.; Kamath, S.S. A QoS and QoE based Integrated Model for
Bidirectional Web Service Recommendation. In Proceedings of the Pacific Neighborhood Consortium
Annual Conference and Joint Meetings, Tainan, Taiwan, 7–9 November 2018.

23. Papadakis, H.; Panagiotakis, C.; Fragopoulou, P. SCoR: A Synthetic Coordinate based Recommender system.
Expert Syst. Appl. 2017, 79, 8–19. [CrossRef]

24. Liu, J.; Tang, M.; Zheng, Z.; Liu, X.F.; Lyu, S. Location-aware and personalized collaborative filtering for web
service recommendation. IEEE Trans. Serv. Comput. 2016, 9, 686–699. [CrossRef]

25. Nilashi, M.; Ibrahim, O.; Bagherifard, K. A recommender system based on collaborative filtering using
ontology and dimensionality reduction techniques. Expert Syst. Appl. 2018, 92, 507–520. [CrossRef]

http://dx.doi.org/10.1109/CC.2015.7114061
http://dx.doi.org/10.1016/j.eswa.2017.02.025
http://dx.doi.org/10.1109/TSC.2015.2433251
http://dx.doi.org/10.1016/j.eswa.2017.09.058

Symmetry 2019, 11, 392 16 of 16

26. Chen, S.; Feng, Z.; Wang, H. Service Relationship and Its Application in Service-Oriented Computing.
Chin. J. Comput. 2010, 33, 2068–2083. [CrossRef]

27. Liu, Z.; Sun, M.; Lin, Y.; Xie, R. Progress in Knowledge Representation Learning. J. Comput. Res. Dev. 2016,
53, 247–261.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3724/SP.J.1016.2010.02068
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Research on Knowledge Representation Learning
	Research on Web Service Recommendation

	Knowledge-Graph-Based Web Service Recommendation Algorithm
	Web Service Knowledge Graph Representation Learning
	Analyzing Service Relations
	Embedding Entities in Low-Dimensional Space
	Obtaining the Initial Recommendation Set

	User QoS Preference Calculation and User Behavior Classification
	QoS Preference Calculation
	User Behavior Classification

	Recommendation Set Fusion
	Pseudocode of kg-WSR

	Experiment and Evaluation
	Experimental Data
	Evaluation Standard
	Experimental Comparison and Verification
	Embedded Dimension Determination
	Fusion Ratio Determination
	Performance Comparison
	Algorithm Efficiency

	Conclusions
	References

