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Abstract: Let c be a proper k-coloring of a graph G. Let π = {R1, R2, ..., Rk} be the partition of V(G)

induced by c, where Ri is the partition class receiving color i. The color code cπ(v) of a vertex v of G
is the ordered k-tuple (d(v, R1), d(v, R2), ..., d(v, Rk)), where d(v, Ri) is the minimum distance from v
to each other vertex u ∈ Ri for 1 ≤ i ≤ k. If all vertices of G have distinct color codes, then c is called
a locating k-coloring of G. The locating-chromatic number of G, denoted by χL(G), is the smallest k
such that G admits a locating coloring with k colors. In this paper, we give a characterization of the
locating chromatic number of powers of paths. In addition, we find sharp upper and lower bounds
for the locating chromatic number of powers of cycles.
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1. Introduction

All graphs considered in this paper are simple connected graphs. The m-th power graph, Gm, of a
graph G is the graph whose vertex set is V(G) and in which two distinct vertices are adjacent if and only
if their distance in G is at most m. Let c be a proper k-coloring of a graph G and π = {R1, R2, ..., Rk} be
an ordered partition of V(G) of the resulting color classes. For any vertex v of G, the color code of v
with respect to π, cπ(v), is defined as the ordered k-tuple (d(v, R1), d(v, R2), ..., d(v, Rk)), where d(v, Ri)

is the minimum distance from v to each other vertex u ∈ Ri for 1 ≤ i ≤ k. If distinct vertices of G have
distinct color codes, then we call c a locating coloring of G. The locating chromatic number of G, χL(G),
is the minimum number of colors needed in a locating coloring of G. The locating-chromatic number
of a graph is a combined concept between the coloring and partition dimension of a graph. There are
many applications of graph coloring and labeling in various fields, for instance, this notion relates to
different applications in computer science and communication network and it plays an important role
in solving scheduling problems, storage problem of chemical substances and placement problem of
particular different objects—see, for example, [1,2]. The concept of locating chromatic number of a
graph was introduced and studied by Chartrand et al. [3] in 2002. They established some bounds for
the locating chromatic number of a connected graph. They also proved that, for a connected graph G
with n ≥ 3 vertices, χL(G) = n if and only if G is a complete multi-partite graph. Hence, the locating
chromatic number of the complete graph Kn is n. In addition, for paths and cycles of order n ≥ 3,
they proved that χL(Pn) = 3, χL(Cn) = 3 when n is odd, and χL(Cn) = 4 when n is even. The locating
chromatic numbers of trees, and the amalgamation of stars, the graphs with dominant vertices are
studied in [4–6], respectively.

The distance graph G(D) with distance set D = {d1, d2, ...} ⊆ N is a graph with vertex set
{xi : i ∈ Z}, and edge set {xixj : |i− j| ∈ D}. The circulant graph can be defined as follows. Let n, r
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be two positive integers and let S = {k1, k2, ..., kr} with {k1 < k2 < · · · < kr ≤ n
2 }. Then, the

vertex set of the circulant graph G(n; S) is {x1, x2, ..., xn} and the set of edges is {xixj : i − j ≡
±kl mod n, for some kl ∈ S}. The problem of coloring of this class of graphs has attracted considerable
attention—see, for example, [7,8]. Circulant graphs have been extensively studied and have an
immense number of applications to multicomputer networks and distributed computation—see, for
example, [9,10]. The distance graph G(D) with finite distance set D = {1, 2, ..., m} is isomorphic to the
m-th power graph of a path and the circulant graph G(n; S) with S = {1, 2, ..., m} is isomorphic to the
m-th power graph of a cycle. In this paper, we investigate the locating chromatic number of powers of
paths and powers of cycles. For further work, one might consider the locating chromatic number of
circulant graphs G(n; S) for any finite set S.

2. Locating Chromatic Number of Powers of Paths

Let Pn denote the path of order n with vertex set V(Pn) = {x1, x2, ..., xn} and edge set E(Pn) =

{xixi+1 : i = 1, 2, ..., n}. Then, the m-th power graph of Pn, Pm
n , is the graph with the the same vertex

set of Pn and the edge set {xixj : 1 ≤ |i− j| ≤ m}.
In this section, we determine the locating chromatic number of the m-th power of the path Pn, Pm

n ,
where m ≤ n− 1.

To clarify the proof of the next theorem, we give the following example.

Example 1. Let P9 be the path of length 9 with vertex set V(P9) = {x1, x2, ..., x9} and edge set E(P9) =

{xixi+1 : i = 1, 2, ..., 8}. Then, the induced subgraph of P3
9 by the vertices x1, x2, x3 and x4 form a clique. Thus,

χ(P3
9 ) ≥ 4. Now, define the function k : V(P3

9 ) −→ {1, 2, 3, 4} as follows:

k(xi) =


1, if i = 1, 5, 9;
2, if i = 2, 6;
3, if i = 3, 7;
4, if i = 4, 8.

Clearly, k is a coloring of P3
9 , and hence χ(P3

9 ) = 4. Since χ(P3
9 ) ≤ χL(P3

9 ), we have χL(P3
9 ) ≥ 4. If χL(P3

9 ) =

4, then x1 and x5 share the same color in P3
9 since they are both adjacent to the vertices x2, x3, and x4 that have

different colors. Therefore, x1 and x5 have the same coding color, a contradiction. Thus, χL(P3
9 ) ≥ 5. Now,

define the coloring function c : V(P3
9 ) −→ {1, 2, 3, 4, 5} by

c(xi) =



1, if i = 1;
2, if i = 2, 6;
3, if i = 3, 7;
4, if i = 4, 8;
5, if i = 5, 9.

Then, π = {R1 = {x1}, R2 = {x2, x6}, R3 = {x3, x7}, R4 = {x4, x8}, R5 = {x5, x9}} is the
partition of V(P3

9 ) with respect to c. Since the color code of any vertex xi with respect to the partition π

is cπ(xi) = (d(xi, R1), d(xi, R2), ..., d(xi, R5)), we get, cπ(x1) = (0, 1, 1, 1, 2), cπ(x2) = (1, 0, 1, 1, 1),
cπ(x3) = (1, 1, 0, 1, 1), cπ(x4) = (1, 1, 1, 0, 1), cπ(x5) = (2, 1, 1, 1, 0), cπ(x6) = (2, 0, 1, 1, 1), cπ(x7) =

(2, 1, 0, 1, 1), cπ(x8) = (3, 1, 1, 0, 1), and cπ(x9) = (3, 1, 1, 1, 0). Thus, χL(P3
9 ) = 5.

Theorem 1. Let Pn be the path of order n and Pm
n be the m-th power of Pn. Then,

χL(Pm
n ) =

{
n, if m = n− 1;
m + 2, if m < n− 1.
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Proof. Clearly, when n = m + 1, then Pm
n is a complete graph of order n, and thus χ(Pm

n ) = n.
But χ(Pm

n ) ≤ χL(Pm
n ) ≤ n, so χL(Pm

n ) = n. Now, let n ≥ m + 2 and x1, x2, ..., xn be the vertices of Pn

such that xixi+1 ∈ E(Pn) for all i = 1, 2, ..., n− 1. Then, the vertices x1, x2, ..., xm+1 induce a clique in
the graph Pm

n and thus each of these vertices should have a different color. Now, if χL(Pm
n ) = m + 1,

then there exists a coloring function c : V(Pm
n ) −→ {1, 2, ..., m + 1} such that cπ(xi) 6= cπ(xj) when

i 6= j. Since x1 and xm+2 are both adjacent to the vertices x2, ..., xm, xm+1, they must have the same
color and hence they share the same color code, a contradiction. Thus, χL(Pm

n ) ≥ m + 2, whenever
n ≥ m + 2. Now, define the coloring function c : V(Pm

n ) −→ {1, 2, ..., m + 2} such that

c(xi) =

{
1, if i = 1;
j, if i ≡ j mod (m + 1); where j ∈ {2, 3, ..., m + 1, m + 2} and i 6= 1.

Then, π = {R1, R2, · · · , Rm+2} is a partition of V(Pm
n ), where Ri is the set of vertices receiving

color i. Note that, for k 6= 1, the induced subgraph with vertex set {xk+1, xk+2, ..., xk+m+1} is a clique
colored by the m + 1 distinct colors 2, 3, ..., m + 2. Henceforth,

d(xi, Rj) =

{
0, if c(xi) = c(xj);
1, if c(xi) 6= c(xj) and i, j 6= 1 or i = 1 and 2 ≤ j ≤ m + 1.

Moreover,

d(xi, R1) = d(xi, x1) =

{
0, if i = 1;
k + 1, if 2 + km ≤ i ≤ 1 + (k + 1)m.

Since the induced subgraph with vertex set {xi : 2 + km ≤ i ≤ 1 + (k + 1)m} form a clique,
we have d(xi, R1) 6= d(xj, R1) when c(xi) = c(xj). Therefore, cπ(xi) 6= cπ(xj) when i 6= j. Thus,
χL(Pm

n ) = m + 2 whenever n ≥ m + 2.

3. Locating Chromatic Number of Powers of Cycles

Let Cn be the cycle of order n with the vertex set {x1, x2, ..., xn} and edge set {xixi+1 : 1 ≤ i ≤
n− 1} ∪ {xnx1}. For positive integers n and m, we denote by Cm

n the graph with the same vertex set
of Cn and edge set {xixj : i− j ≡ ±k( mod n), 1 ≤ k ≤ m}. The graph Cm

n is the m-th power of the
n-cycle Cn. Let G be a graph with vertex set V(G) and edge set E(G). For any vertex v ∈ V(G), the
open neighborhood of v, denoted by N(v), is defined by N(v) = {u ∈ V(G) | uv ∈ E(G)}.

In this section, we give an upper and a lower bound for the locating chromatic number of the
m-th power of the cycle Cn, and we prove that these bounds are sharp. It should be mentioned that
the power of cycle graph is highly symmetric and so we can start coloring from any vertex and this is
simplify the coloring process through our work.

We start with the following lemma that helps us in our study.

Lemma 1 ([3]). Let c be a locating-coloring in a connected graph G. If u and v are distinct vertices of G such
that d(u, w) = d(v, w) for all w ∈ v(G) \ {u, v}, then c(u) 6= c(v). In particular, if u and v are non-adjacent
vertices of G such that N(u) = N(v), then c(u) 6= c(v).

Theorem 2. Let Cn be a cycle of order n. Then, χL(Cm
n ) = n for all n ≤ 2m + 2.

Proof. Since Cm
n is a complete graph for any n ≤ 2m + 1, we have χL(Cm

n ) = n. If n = 2m + 2,
then V(Cm

n ) = {x1, x2, ..., xn} and E(Cm
n ) = {xixj : i − j ≡ ±k( mod n), 1 ≤ k ≤ m}. Clearly,

x1xi ∈ E(Cm
n ), i 6= m + 2 and d(xi, x1) = d(xi, xm+2) for all i 6= 1, m + 2. Using Lemma 1, we get

c(x1) 6= c(xi) for all i ≥ 2. Similarly, x2, x3, ..., x2m+2 have different colors, so χL(Cm
n ) = n.

Now, we give an upper bound for χL(Cm
n ).
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Theorem 3. Let Cn be a cycle of order n ≥ 2m + 3. Then, χL(Cm
n ) ≥ m + 3.

Proof. Clearly, χL(Cm
n ) > m + 1. Now, assume that χL(Cm

n ) = m + 2. Then, there exists c : V(Cn) −→
{1, 2, ..., m + 2} such that cπ(xi) = cπ(xj) if and only if xi = xj. Let π = {R1, R2, · · · , Rm+2} be
the partition of V(Cn), where c(xi) = j for all xi ∈ Rj and let |R1| ≤ |R2| ≤ ... ≤ |Rm+2|. Let
V(Cm

n ) = {x1, x2, ..., xn} and E(Cm
n ) = {xixj : i − j ≡ ±k( mod n), 1 ≤ k ≤ m}. Then, |R1| 6= 1,

otherwise R1 = {xa} and hence there exist u ∈ {xa−m, xa−m+1, ..., xa−2, xa−1} and v ∈ {xa+1, xa+2}
that have the same color. Since {xa−m−1, xa−m, ..., xa−2, xa−1} and {xa+1, xa+2, ..., xa+m} are subsets
of NCm

n (xa) and each one of them induce a complete subgraph of Cm
n , we have cπ(u) = cπ(v), a

contradiction. Thus, we have two cases:
Case 1: 2 ≤ |R1| < |Rm+2|.
Then, there exist xs, xt ∈ R1 where s < t such that xi /∈ R1, for all s < i < t and the number of

vertices between xs and xt is greater than m + 1. Thus, there exists u ∈ {xs+1, xs+2, ..., xs+m+2} such
that c(u) = c(xt−1). Thus, cπ(u) = cπ(xt−1), a contradiction.

Case 2: 2 ≤ |R1| = |R2| = ... = |Rm+2|.
Assume that xs, xt ∈ Ri such that s < t, xj /∈ Ri for all s < j < t and the number of vertices

between xs and xt greater than m + 1, then as in Case 1 we have a contradiction. Now, let the number
of vertices between xs and xt in Ri is m + 1 for all i. Then, c is not a locating coloring.

In the following lemma, we will show that m + 3 is a sharp upper bound for χL(Cm
n ).

Lemma 2. Suppose that Cn is a cycle of order n ≥ 2m + 3 and n = q(m + 1) or q(m + 1) + 1 where q is a
positive integer. Then, χL(Cm

n ) = m + 3.

Proof. Let V(Cm
n ) = {x1, x2, ..., xn} and E(Cm

n ) = {xixj : i− j ≡ ±k( mod n), 1 ≤ k ≤ m}. Define

R1 = {x1}, R2 = {x2, x2+(m+1), x2+2(m+1), ..., xq(m+1)−(m−1)},

R3 = {x3, x3+(m+1), x3+2(m+1), ..., xq(m+1)−(m−2)}, ...,

Rm = {xm, xm+(m+1), xm+2(m+1), ..., xq(m+1)−1}, Rm+1 = {xm+1},

Rm+2 = {x1+(m+1), x1+2(m+1), ..., xq(m+1)−m} when n = q(m + 1),

Rm+2 = {x1+(m+1), x1+2(m+1), ..., xq(m+1)+1} when n = q(m + 1) + 1,

Rm+3 = {x2(m+1), x3(m+1), ..., xq(m+1)}.

Then, d(u, x1) 6= d(v, x1) whenever {u, v} ⊆ Ri ∩ {x2, x3, ..., xb n
2 c}, or {u, v} ⊆ Ri ∩

{xd n
2 e, xd n

2 e+1, ..., xn}. In addition, d(u, x1) 6= d(v, x1) or d(u, xm+1) 6= d(v, xm+1) for any u ∈
Ri ∩ {x2, x3, ..., xb n

2 c}, v ∈ Ri ∩ {xd n
2 e, xd n

2 e+1, xd n
2 e+2, ..., xn}. Now, set π = {Ri : i = 1, ..., m + 3}

and define c : V(Cm
n ) −→ {1, 2, ..., m + 3} by c(xi) = j for any xi ∈ Rj. Then, for any u, v ∈ V(Cm

n ),
cπ(u) 6= cπ(v).

Now, we give exact values of the locating chromatic number of certain powers of cycles (for m = 2
and m = 3, when n ≡ 0, 1 or 2 mod 4).

Lemma 3.

(i) If n ≥ 7, then χL(C2
n) = 5.

(ii) If n ≥ 9, then χL(C3
n) = 6 when n ∈ {4q, 4q + 1, 4q + 2}, and 6 ≤ χL(C3

n) ≤ 7 when n = 4q.

Proof.

(i) In view of Theorem 3 and Lemma 2, it is enough to show that χL(C2
3q+2) ≤ 5. Assume that

n = 3q + 2, then π = {R1 = {x1}, R2 = {x5, x8, ..., x3q+2}, R3 = {x3}, R4 = {x4, x7, ..., x3q+1},
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R5 = {x2, x6, x9, ..., x3q}} is a partition of V(C2
n). Now, define c : V(C2

n) −→ {1, 2, 3, 4, 5} by
c(xi) = j for any xi ∈ Rj. Then, it is easy to show that cπ(u) 6= cπ(v) for any u, v ∈ V(C2

n).
(ii) Let π1 = {R1 = {x1}, R2 = {x6, x10, ..., x4q+2}, R3 = {x3, x7, ..., x4q−1}, R4 = {x4}, R5 =

{x5, x9, ..., x4q+1}, R6 = {x2, x8, x12..., x4q}}, and π2 = π1 ∪ R7, R7 = {x4q+3}. Then, πk is a
partition of V(C3

4q+1+k) for k = 1, 2. Now, let c : V(C3
4q+1+k) −→ {1, 2, ..., 5 + k} defined by

c(xi) = j for any xi ∈ Rj. Clearly, for any u, v ∈ V(C3
4q+1+k), cπk (u) 6= cπk (v) for k = 1, 2.

In the following lemma, upper and lower bounds for some, χL(Cm
n ), of a certain n are given.

Lemma 4.

(i) Let m = 2t ≥ 4 and n = q(m + 1̄) + t, q ≥ 2. Then, m + 3 ≤ χL(Cm
n ) ≤ m + t + 1.

(ii) Let m = 2t− 1 ≥ 5 and n = q(m + 1) + (t− 1), q ≥ 2. Then, m + 3 ≤ χL(Cm
n ) ≤ m + t.

Proof.

(i) Assume that m = 2t and n = q(m + 1) + t, q ≥ 2. Notice that the length of the path
xq(m+1)−t − xq(m+1)−(t−1) − · · · − xq(m+1)+t − x1 − ... − xt is m + t and the length of the path
xq(m+1) − xq(m+1)+1 − ... − xq(m+1)+t − x1 − ... − xt+1 is m + 1, while the length of the path
xq(m+1)−(t−i+1) − xq(m+1)−(t−i) − ... − xq(m+1)+t − x1 − ... − xt+i is m + t + 1 for 2 ≤ i ≤ t
Thus, d(xt, xq(m+1)−t) = d(xt+1, xq(m+1)) = d(xt+i, xq(m+1)−(t−i+1)) = 2. Now, let R1 =

{x1}, R2 = {x2}, ..., Rt−1 = {xt−1}, Rt = {xt, x(t+1)+(m+1), x(t+1)+2(m+1), ..., xq(m+1)−t}, Rt+1 =

{xt+1, x2(m+1), x3(m+1), ..., xq(m+1)}, Rt+i = {xt+i, x(t+i)+(m+1) , x(t+i)+2(m+1), ..., xq(m+1)−(t−i+1)},
2 ≤ i ≤ t, Rm+1 = {xm+1}, Rm+i = {xm+i, x(m+i)+(m+1) , x(m+i)+2(m+1), ..., xq(m+1)+(i−1)},
2 ≤ i ≤ t + 1. Then, π = {Ri : i = 1, 2, ..., m + t + 1} is a partition of V(Cm

n ) and
c : V(Cm

n ) −→ {1, 2, ..., m + t + 1} defined by c(xi) = j for any xi ∈ Rj is a locating coloring of Cm
n .

By using Theorem 3, we obtain m + 3 ≤ χL(Cm
n ) ≤ m + t + 1.

(ii) Assume that m = 2t − 1 and n = q(m + 1) + (t − 1), q ≥ 2. Then, d(xt−1, xq(m+1)−t) =

d(xt, xq(m+1)−(t−1)) = d(xt+1, xq(m+1)) = d(xt+i, xq(m+1)−(t−i)) = 2 for all 2 ≤ i ≤ t − 1. Set
R1 = {x1}, R2 = {x2}, ..., Rt−2 = {xt−2}, Rt−1 = {xt−1, xt+(m+1), xt+2(m+1) , ..., xq(m+1)−t}, Rt =

{xt, x(t+1)+(m+1), x(t+1)+2(m+1), ..., xq(m+1)−(t−1)}, Rt+1 = {xt+1, x2(m+1), x3(m+1), ..., xq(m+1)},
Rt+i = {xt+i, x(t+i)+(m+1), x(t+i)+2(m+1), ..., xq(m+1)−(t−i)}, 2 ≤ i ≤ t − 1, Rm+1 = {xm+1},
Rm+i = {xm+i, x(m+i)+(m+1), x(m+i)+2(m+1), ..., xq(m+1)+(i−1)}, 2 ≤ i ≤ t. Then, π = {Ri : i =
1, ..., m + t} is a partition of V(Cm

n ) and c : V(Cm
n ) −→ {1, 2, ..., m + t} defined by c(xi) = j for any

xi ∈ Rj is a locating coloring of Cm
n .

In the following two lemmas, we give an upper bound for χL(Cm
n ) whenever m ≥ 4.

Lemma 5. Let m = 2t ≥ 4 and n ≥ 2m + 3. Then,

χL(Cm
n ) ≤



m + 4, if n ≡ 2 mod (m + 1);
m + 5, if n ≡ 3 mod (m + 1);
:
m + t + 1, if n ≡ t− 1, t mod (m + 1)
m + t + 2, if n ≡ t + i mod (m + 1) for 1 ≤ i ≤ t.

Proof.

(1) For n = q(m + 1) + 2, let R1 = {x1}, R2 = {x2, x2+(m+1), ..., xq(m+1)−(m−1)}, R3 =

{x3, x3+(m+1), ..., xq(m+1)−(m−2)}, ..., Rm = {xm, xm+(m+1), ..., xq(m+1)−1}, Rm+1 = {xm+1},
Rm+2 = {x1+(m+1), x1+2(m+1), ..., xq(m+1)+1}, Rm+3 = {x2(m+1), x3(m+1), ..., xq(m+1)}, Rm+4 =
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{xq(m+1)+2}. Then, π = {Ri : i = 1, 2..., m + 4} is a partition of V(Cm
n ) and c : V(Cm

n ) −→
{1, 2, ..., m + t} defined by c(xi) = j for any xi ∈ Rj is a locating coloring of Cm

n .
(2) For n = q(m + 1) + i, where 3 ≤ i < t let R1, R2, ..., Rm+4 similar to the case n = q(m + 1) + 2.

Set Rm+j = {x(m+1)q+(j−2)}, 5 ≤ j ≤ i + 2. Then, π = {Ri : i = 1, 2..., m + i + 2} is a partition
of V(Cm

n ) and c : V(Cm
n ) −→ {1, 2, ..., m + i + 2} given by c(xi) = j for any xi ∈ Rj is a locating

coloring of Cm
n .

(3) By part (i) of Lemma 4, χL(Cm
n ) ≤ m + t + 1 when n = q(m + 1) + t, q ≥ 2.

(4) For n = q(m + 1) + (t + 1), take R1, R2, ..., Rm+t+1 similar to the case n = q(m + 1) + (t −
1) except Rt+1 and Rm+3. Let Rt+1 = {xt+1+(m+1), xt+1+2(m+1), ..., xt+1+q(m+1)}, Rm+3 =

{xt+1, x2(m+1), x3(m+1), ..., xq(m+1)}, and Rm+t+2 = {xt+q(m+1)}. This implies that π = {Ri : i =
1, 2..., m + i + 2} is a partition of V(Cm

n ) and c : V(Cm
n ) −→ {1, 2, ..., m + t} defined by c(xi) = j

for any xi ∈ Rj is a locating coloring of Cm
n .

(5) For n = q(m + 1) + (t + i) where 2 ≤ i ≤ t, take R1, R2, ..., Rm+t+2 similar to the
case n = q(m + 1) + (t + 1) except Rt+j and Rm+j+2, where 2 ≤ j ≤ i. Set Rt+j =

{x(t+j)+(m+1), x(t+j)+2(m+1), ..., x(t+j)+q(m+1)}, and Rm+j+2 = {xq(m+1)+j, xt+j}. Note that
d(xq(m+1)+j, xt+j) = 2, d(xt+j, xm+1) = 1 and d(xq(m+1)+j, xm+1) = 2. Then, it is easy to show that
the function c : V(Cm

n ) −→ {1, 2, ..., m + t + 2} defined by c(xi) = j for any xi ∈ Rj is a locating
coloring of Cm

n .

Lemma 6. Let m = 2t− 1 ≥ 5 and n ≥ 2m + 3. Then,

χL(Cm
n ) ≤



m + 4, if n ≡ 2 mod (m + 1);
m + 5, if n ≡ 3 mod (m + 1);
:
m + t, if n ≡ (t− 2) or (t− 1) mod (m + 1);
m + t + 1, if n ≡ (t + i) mod (m + 1) for 0 ≤ i ≤ m− 1;
m + t + 2, if n ≡ m mod (m + 1).

Proof.

(1) If n = q(m + 1) + 2, define R1 = {x1}, R2 = {x2, x2+(m+1), x2+2(m+1), ..., xq(m+1)−(m−1)},
R3 = {x3, x3+(m+1), ..., xq(m+1)−(m−2)}, ..., Rm = {xm, xm+(m+1), ..., xq(m+1)−1}, Rm+1 = {xm+1},
Rm+2 = {x1+(m+1), x1+2(m+1), ..., x1+q((m+1)}, Rm+3 = {x2(m+1), x3(m+1), ..., xq(m+1)}, Rm+4 =

{xq(m+1)+2}. Clearly, π = {Ri : i = 1, 2, ..., m + 4} is a partition of V(Cm+1
n ) and the function

c : V(Cm
n ) −→ {1, 2, ..., m + 4} given by c(xi) = j for any xi ∈ Rj is a locating coloring of Cm

n .
(2) If n = q(m + 1) + i, where 3 ≤ i ≤ t− 2, take R1, R2, ..., Rm+4 similar to the case n = q(m + 1) + 2.

Set Rm+j = {x(j−2)+q(m+1)}, 5 ≤ j ≤ i + 2. Then, c : V(Cm
n ) −→ {1, 2, ..., m + i + 2} defined by

c(xi) = j for any xi ∈ Rj is a locating coloring of Cm
n .

(3) From part (ii) of Lemma 4, we conclude that χL(Cm
n ) ≤ m + t when n = q(m + 1) + (t− 1), q ≥ 2.

(4) If n = q(m + 1) + t, take R1, R2, ..., Rm+t similar to the case n = q(m + 1) + (t− 2) except Rt and
Rm+3. Set Rt = {xt+(m+1), xt+2(m+1), ..., xt+q(m+1)} and Rm+3 = {xt, x2(m+1), ..., xq(m+1)}. Then,
π = {Ri : i = 1, 2, ..., m + t} ∪ Rm+t+1, where Rm+t+1 = {x(t−1)+q(m+1)} is a partition of V(Cm

n ).
Notice that d(t, q(m + 1)) = 2, d(t, m + 1) = 1 and d(q(m + 1), m + 1) = 2. Thus, the function
c : V(Cm

n ) −→ {1, 2, ..., m + t + 1} given by c(xi) = j for any xi ∈ Rj is a locating coloring of Cm
n .

(5) If n = q(m + 1) + (t + i), where 1 ≤ i ≤ t − 2, define R1, R2, ..., Rm+t+1 similar to
the case n = q(m + 1) + t except Rt+j and Rm+3+j, where 1 ≤ j ≤ i. Set Rt+j =

{x(t+j)+(m+1), x(t+j)+2(m+1), ..., xq(m+1)+(t+j)} and Rm+j+3 = {xt+j, x(t+j)+q(m+1)}. Then, it is easy
to show that c : V(Cm

n ) −→ {1, 2, ..., m + t + 1} given by c(xi) = j for any xi ∈ Rj is a locating
coloring of Cm

n .
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(6) If n = q(m + 1) + m, take R1, R2, ..., Rm+t+1 similar to the case n = q(m + 1) + (m− 1). Then,
π = {Ri : i = 1, 2, ..., m+ t+ 1}∪Rm+t+2, where Rm+t+2 = {xq(m+1)+m} is a partition of V(Cm+1

n )

and the function c : V(Cm
n ) −→ {1, 2, ..., m + t + 2} given by c(xi) = j for any xi ∈ Rj is a locating

coloring of Cm
n .

As a consequence of Lemmas 3, 4, 5 and 6, we have the following.

Theorem 4. If m = 2t ≥ 4 or m = 2t− 1 ≥ 5, then m + 3 ≤ χL(Cm
n ) ≤ m + t + 2.

In view of Lemma 2, the lower bound of the above inequality is sharp. Next, we will show that
the upper bound is also sharp.

Theorem 5. [11] Let n and m be positive integers such that n ≥ 2m. If n = q(m + 1) + r, q > 0 and
0 ≤ r ≤ m, then χ(Cm

n ) = m + 1 + d r
q e.

The following two theorems give the exact values of χL(Cm
n ), which illustrate the sharpness of the

upper bounds in Theorem 4.

Theorem 6. If m = 2t ≥ 4, and n = 2(m + 1) + m, then χL(Cm
n ) = m + t + 2.

Proof. By Theorem 5, χ(Cm
n ) = m + t + 1. Hence χL(Cm

n ) ≥ m + t + 1. Suppose that χL(Cm
n ) =

m + t + 1 and c is a locating coloring of Cm
n and π = {Ri : i = 1, ..., m + t + 1} is the partition of V(Cm

n )

into color classes resulting from c. Then, |Ri| ≤ 2 for all i, otherwise there exists j such that |Rj| ≥ 3
and hence Rj has two adjacent vertices. Thus, |Ri| = 2 for all i. Now, let V(Cm

n ) = {x1, x2, ..., xn} and
xi ∈ Ri for i = 1, 2, ..., m + 1. Set T = {xm+2, xm+3, ..., x2m+1} and S = {x2m+3, x2m+4, ..., xn}. Clearly,
T ∩ Ri 6= φ and S ∩ Ri 6= φ for m + 2 ≤ i ≤ m + t + 1. Since |Rm+1| = 2 and T ⊆ ∪i 6=m+1Ri, there
exists xj ∈ Rm+1 for some j ∈ {2m + 2} ∪ S. However, N(xj) ∩ Ri 6= φ for any i 6= m + 1. Thus,
d(xj, xi) = 1 for all i 6= m + 1 and hence cπ(xj) = cπ(xm+1), a contradiction. By using Theorem 6, we
have χL(Cm

n ) = m + t + 2.

Theorem 7. If m = 2t− 1 ≥ 3, and n = 2(m + 1) + m, then χL(Cm
n ) = m + t + 2.

Proof. From Theorem 5, χ(Cm
n ) = m + t + 1. Hence, χL(Cm

n ) ≥ m + t + 1. Assume that χL(Cm
n ) =

m + t + 1. Let c be a locating coloring of Cm
n and π = {Ri : i = 1, ..., m + t + 1} be the partition of

V(Cm
n ) into color classes resulting from c such that |R1| ≤ |R2| ≤ ... ≤ |Rm+t+1|. Since |Ri| ≤ 2 for all

i, we have |R1| = 1 and |Ri| = 2, i ≥ 2. Let V(Cm
n ) = {x1, x2, ..., xn} and xi ∈ Ri for i = 1, 2, ..., m + 2.

Set T = {xm+3, xm+4, ..., x2m+1}, S = {x2m+3, x2m+4, ..., xn} and Sk = S ∪ {x2m+2, x2m+1, ..., x2m−k+3},
where 1 ≤ k ≤ t. Then, T ∩ Ri 6= φ for all i ≥ m + 3 and S ∩ Ri 6= φ for all i ≥ m + 2, while
Sk ∩ Ri 6= φ for all i ≥ m − k + 2. Now, note that N(xm+1) = T ∪ ({x1, x2, ..., xm+2}\{xm+1}),
N(xm−k) = (T\{x2m+1, x2m, ..., x(2m+1)−k}) ∪ ({xn−k, xn−k+1, ..., xn, x1, x2, ..., xm+2}\{xm−k}) for all
0 ≤ k ≤ m− 2, N(xn−k) = (Sk+1\{xn−k}) ∪ {x1, x2, ..., xm−k} for all 0 ≤ k ≤ t.

Since S ∩ Ri 6= φ, i ≥ m + 2, there exist t vertices of S belong to ∪m+t+1
i=m+2 Ri and all other vertices of

S belong to ∪m+1
i=2 Ri. Thus, we have the following cases:

(1) If xn ∈ Rm+1, then cπ(xn) = cπ(xm+1).
(2) If xn ∈ Rl , l ≥ m + 2 and xn−1 ∈ Rk, where k = m or m + 1. Then, (T\{x2m+1}) ∩ Ri 6= φ for all

i ≥ m + 3 and i 6= l. However, k = m, which gives N(xk) = ({xn, x1, x2, ..., xm+2}\{xm}) ∪
(T\{x2m+1}) and k = m + 1, which gives N(xk) = ({x1, x2, ..., xm+2}\{xm+1}) ∪ T, while
N(xn−1) = {x1, x2, ..., xm−1} ∪ (S2\{xn−1}). Thus, N(xj) ∩ Ri 6= φ whenever j = k, or n − 1
and i 6= k. Thus, cπ(xn−1) = cπ(xk).
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(3) If xn, xn−1, ..., xn−r+1 ∈ ∪r
j=1Rlj

, where 2 ≤ r ≤ t− 1, lj ≥ m+ 2 and xn−r ∈ Rk, where m− r+ 1 ≤
k ≤ m + 1. Then, (T\{x2m+1, x2m, ..., x2m−r+2}) ∩ Ri 6= φ for all i ≥ m + 3 and i /∈ ∪r

j=1lj. Thus,
N(xj) ∩ Ri 6= φ whenever j = k, or n− r and i 6= k Then, cπ(xn−r) = cπ(xk).

Therefore, χL(Cm
n ) ≥ m + t + 2. By Theorem 6, we get χL(Cm

n ) = m + t + 2.
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