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1. Introduction

Prof. Metcalfe, Olivetti and Gabbay conjectured that the Hilbert system HpsUL is the logic of
pseudo-uninorms and their residua in 2009 in [1]. It is not the case, as shown by Prof. Wang and Zhao
in [2], although HpsUL is the logic of bounded representable residuated lattices. We constructed the
system HpsUL∗ by adding the weakly commutativity rule

(WCM) ⊢ (A ↝ t)→ (A → t)

to HpsUL and conjectured that it is the logic of residuated pseudo-uninorms and their residua in 2013
in [3].

In this paper, we prove the conjecture by showing that the density elimination holds for the
hypersequent system GpsUL∗ corresponding to HpsUL∗. Then, the standard completeness of
HpsUL∗ follows as a lemma by virtue of previous work by Metcalfe and Montagna [4]. That is,
HpsUL∗ is complete with respect to algebras whose lattice reduct is the real unit interval [0, 1]. Thus,
HpsUL∗ is a kind of substructural fuzzy logic [4], and potentially has certain applications to fuzzy
inferences and expert Systems [5–8]. Our result also shows that that HpsUL∗ is an axiomatization
for the variety of residuated lattices generated by all dense residuated chains. Thus, we have also
answered the question posed by Prof. Metcalfe and Tsinakis in [9] in 2017.

In proving the density elimination for GpsUL∗, we have to overcome several difficulties as
follows. Firstly, cut-elimination doesn’t holds for GpsUL∗. Note that (WCM) and the density rule
(D) are formulated as

G∣Γ, ∆⇒ t
G∣∆, Γ⇒ t

,
G∣Π⇒ p∣Γ, p, ∆⇒ B

G∣Γ, Π, ∆⇒ B

in GpsUL∗, respectively. Consider the following derivation fragment.

⋱⋮...

G1∣Γ1, t, ∆1 ⇒ A

⋱⋮...

G2∣Γ2, ∆2 ⇒ t
G2∣∆2, Γ2 ⇒ t

(WCM)

G1∣G2∣Γ1, ∆2, Γ2, ∆1 ⇒ A
(CUT) .
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By the induction hypothesis of the proof of cut-elimination, we get that G1∣G2∣Γ1, Γ2, ∆2, ∆1 ⇒ A
from G2∣Γ2, ∆2 ⇒ t and G1∣Γ1, t, ∆1 ⇒ A by (CUT). However, we can’t deduce G1∣G2∣Γ1, ∆2, Γ2, ∆1 ⇒ A
from G1∣G2∣Γ1, Γ2, ∆2, ∆1 ⇒ A by (WCM). We overcome this difficulty by introducing the following
weakly cut rule into GpsUL∗

G1∣Γ, t, ∆⇒ A G2∣Π⇒ t
G1∣G2∣Γ, Π, ∆⇒ A

(WCT).

Secondly, the proof of the density elimination for GpsUL∗ becomes troublesome even for some
simple cases in GUL [4]. Consider the following derivation fragment

⋱⋮...

G1∣Γ1, Π1, Σ1 ⇒ A1

⋱⋮...

G2∣Γ2, Π′
2, p, Π′′

2 , Σ2 ⇒ p
G1∣G2∣Γ1, Π′

2, p, Π′′
2 , Σ1 ⇒ A1∣Γ2, Π1, Σ2 ⇒ p

(COM)

G1∣G2∣Γ1, Π′
2, Γ2, Π1 , Σ2, Π′′

2 , Σ1 ⇒ A1
(D) .

Here, the major problem is how to extend (D) such that it is applicable to G2∣Γ2, Π′
2, p, Π′′

2 , Σ2 ⇒ p.
By replacing p with t, we get G2∣Γ2, Π′

2, t, Π′′
2 , Σ2 ⇒ t. However, there exists no derivation

of G1∣G2∣Γ1, Π′
2, Γ2, Π1 , Σ2, Π′′

2 , Σ1 ⇒ A1 from G2∣Γ2, Π′
2, Π′′

2 , Σ2 ⇒ t and G1∣Γ1, Π1, Σ1 ⇒ A1.
Notice that Γ2, Π′

2 and Π′′
2 , Σ2 in G2∣Γ2, Π′

2, p, Π′′
2 , Σ2 ⇒ p are commutated simultaneously in

G1∣G2∣Γ1, Π′
2, Γ2, Π1, Σ2, Π′′

2 , Σ1 ⇒ A1, which we can’t obtain by (WCM). It seems that (WCM) can’t
be strengthened further in order to solve this difficulty. We overcome this difficulty by introducing
a restricted subsystem GpsULΩ of GpsUL∗. GpsULΩ is a generalization of GIULΩ, which we
introduced in [10] in order to solve a longstanding open problem, i.e., the standard completeness of
IUL. Two new manipulations, which we call the derivation-splitting operation and derivation-splicing
operation, are introduced in GpsULΩ.

The third difficulty we encounter is that the conditions of applying the restricted external
contraction rule (ECΩ) become more complex in GpsULΩ because new derivation-splitting operations
make the conclusion of the generalized density rule to be a set of hypersequents rather than one
hypersequent. We continue to apply derivation-grafting operations in the separation algorithm of
the multiple branches of GIULΩ in [10], but we have to introduce a new construction method for
GpsULΩ by induction on the height of the complete set of maximal (pEC)-nodes rather than on the
number of branches.

The structure of this paper is as follows. In Section 2, we present two hypersequent calculi GpsUL∗

and GpsULΩ, and prove that Cut-elimination does not hold for GpsUL∗. Because of the absence
of the commutativity rule, we have to introduce two novel operations, i.e., the derivation-splitting
operation and derivation-splicing operation, in GpsULΩ in Section 3, and then we present a suitable
definition of the generalized density rule (D) for GpsULΩ. In Section 4, we adapt the old main
algorithm in the system GIULΩ to the new system GpsULΩ. In Section 5, we propose two directions
for future research.

2. GpsUL, GpsUL∗ and GpsULΩ

Definition 1. ([1]) GpsUL consists of the following initial sequents and rules:
Initial sequents

A⇒ A
(ID) ⇒ t

(tr) Γ,�, ∆⇒ A
(�l) Γ⇒ ⊺(⊺r),

Structural Rules
G∣Γ⇒ A∣Γ⇒ A

G∣Γ⇒ A
(EC)

G
G∣Γ⇒ A

(EW),
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G1∣Γ1, Π1, ∆1 ⇒ A1 G2∣Γ2, Π2, ∆2 ⇒ A2

G1∣G2∣Γ1, Π2, ∆1 ⇒ A1∣Γ2, Π1, ∆2 ⇒ A2
(COM),

Logical Rules

G1∣Γ⇒ A G2∣∆⇒ B
G1∣G2∣Γ, ∆⇒ A⊙ B

(⊙r)

G1∣Γ, B, ∆⇒ C G2∣Π⇒ A
G1∣G2∣Γ, Π, A → B, ∆⇒ C

(→l)

G1∣Π⇒ A G2∣Γ, B, ∆⇒ C
G1∣G2∣Γ, A ↝ B, Π, ∆⇒ C

(↝l)

G1∣Γ, A, ∆⇒ C G2∣Γ, B, ∆⇒ C
G1∣G2∣Γ, A ∨ B, ∆⇒ C

(∨l)

G1∣Γ⇒ A G2∣Γ⇒ B
G1∣G2∣Γ⇒ A ∧ B

(∧l)

G∣Γ, A, ∆⇒ C
G∣Γ, A ∧ B, ∆⇒ C

(∧rr)

G∣Γ, ∆⇒ A
G∣Γ, t, ∆⇒ A

(tl)

G∣Γ, A, B, ∆⇒ C
G∣Γ, A⊙ B, ∆⇒ C

(⊙l)

G∣A, Γ⇒ B
G∣Γ⇒ A → B

(→r)

G∣Γ, A⇒ B
G∣Γ⇒ A ↝ B

(↝r)

G∣Γ⇒ A
G∣Γ⇒ A ∨ B

(∨rr)

G∣Γ⇒ B
G∣Γ⇒ A ∨ B

(∨rl)

G∣Γ, B, ∆⇒ C
G∣Γ, A ∧ B, ∆⇒ C

(∧rl).

Cut Rule
G1∣Γ, A, ∆⇒ B G2∣Π⇒ A

G1∣G2∣Γ, Π, ∆⇒ B
(CUT).

Definition 2. ([3]) GpsUL∗ is GpsUL plus the weakly commutativity rule

G∣Γ, ∆⇒ t
G∣∆, Γ⇒ t

(WCM).

Definition 3. GpsUL∗D is GpsUL∗ plus the density rule
G∣Π⇒ p∣Γ, p, ∆⇒ B

G∣Γ, Π, ∆⇒ B
(D).

Lemma 1. G ≡ B ∨ ((D → B)⊙C⊙ (C → D)⊙ A → A) is not a theorem in HpsUL.

Proof. Let A = ({0, 1, 2, 3},∧,∨,⊙,→,↝, 2, 0, 3) be an algebra, where x ∧ y = min(x, y), x ∨ y = max(x, y)
for all x, y ∈ {0, 1, 2, 3}, and the binary operations ⊙, → and ↝ are defined by the following tables
(see [2]).

⊙ 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 3
3 0 3 3 3

→ 0 1 2 3
0 3 3 3 3
1 0 3 3 3
2 0 1 2 3
3 0 0 0 3

↝ 0 1 2 3
0 3 3 3 3
1 0 2 2 3
2 0 1 2 3
3 0 1 1 3

By easy calculation, we get that A is a linearly ordered HpsUL-algebra, where 0 and 3 are the
least and the greatest element of A, respectively, and 2 is its unit. Let v(A) = v(B) = v(C) = v(D) = 1.
Then, v(G) = 1∨ (3⊙ 1⊙ 3⊙ 1→ 1) = 1 < 2. Hence, G is not a tautology in HpsUL. Therefore, it is not a
theorem in HpsUL by Theorem 9.27 in [1].

Theorem 1. Cut-elimination doesn’t hold for GpsUL∗.

Proof. G ≡⇒ B ∨ ((D → B)⊙C⊙ (C → D)⊙ A → A) is provable in GpsUL∗, as shown in Figure 1.
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A⇒ A
t, A⇒ A

(tl)

B⇒ B ⇒ t
⇒ B ∣ B⇒ t

(COM) C⇒ C D⇒ D
C, C → D⇒ D

(→l)
⇒ B ∣ C, C → D, D → B⇒ t

(→l)
⇒ B ∣ D → B, C, C → D⇒ t

(WCM)
⇒ B ∣ D → B, C, C → D, A⇒ A

(CUT)
⇒ B ∣ ⇒ (D → B)⊙C⊙ (C → D)⊙ A → A

(⊙∗l ,→r)
⇒ B ∨ ((D → B)⊙C⊙ (C → D)⊙ A → A) (∨rr,∨rl , EC).

Figure 1. A proof τ of G.

Suppose that G has a cut-free proof ρ. Then, there exists no occurrence of t in ρ by its subformula
property. Thus, there exists no application of (WCM) in ρ. Hence, G is a theorem of GpsUL, which
contradicts Lemma 1.

Remark 1. Following the construction given in the proof of Theorem 53 in [4], (CUT) in Figure 1 is eliminated
by the following derivation, as shown in Figure 2. However, the application of (WCM) in ρ is invalid, which
illustrates the reason why the cut-elimination theorem doesn’t hold in GpsUL∗.

B⇒ B A⇒ A
⇒ B ∣ B, A⇒ A

(COM)
C⇒ C D⇒ D
C, C → D⇒ D

(→l)

⇒ B ∣ C, C → D, D → B, A⇒ A
(→l)

⇒ B ∣ D → B, C, C → D, A⇒ A
(WCM)

⇒ B ∣ ⇒ (D → B)⊙C⊙ (C → D)⊙ A → A
(⊙∗l ,→r)

⇒ B ∨ ((D → B)⊙C⊙ (C → D)⊙ A → A) (∨rr,∨rl , EC)

Figure 2. A possible cut-free proof ρ of G.

Definition 4. GpsUL∗∗ is constructed by replacing (CUT) in GpsUL∗ with

G1∣Γ, t, ∆⇒ A G2∣Π⇒ t
G1∣G2∣Γ, Π, ∆⇒ A

(WCT).

We call it the weakly cut rule and denote it by (WCT).

Theorem 2. If ⊢GpsUL∗ G, then ⊢GpsUL∗∗ G.

Proof. It is proved by a procedure similar to that of Theorem 53 in [4] and omitted.

Definition 5. ( [10]) GpsULΩ is a restricted subsystem of GpsUL∗ such that
(i) p is designated as the unique eigenvariable by which we mean that it is not used to build up any formula

containing logical connectives and is only used as a sequent-formula.
(ii) Each occurrence of p in a hypersequent is assigned one unique identification number i in GpsULΩ and

written as pi. Initial sequent p⇒ p of GpsUL∗ has the form pi ⇒ pi in GpsULΩ. p doesn’t occur in A, Γ or
∆ for each initial sequent Γ,�, ∆⇒ A or Γ⇒ ⊺ in GpsULΩ.

(iii) Each sequent S of the form Γ0, p, Γ1,⋯, Γλ−1, p, Γλ ⇒ A in GpsUL∗ has the form
Γ0, pi1 , Γ1,⋯, Γλ−1, piλ , Γλ ⇒ A in GpsULΩ, where p does not occur in Γk for all 0 ⩽ k ⩽ λ and, ik ≠ il
for all 1 ⩽ k < l ⩽ λ. Define vl(S) = {i1,⋯, iλ}, vr(S) = {j1} if A is an eigenvariable with the identification
number j1 and, vr(S) = ∅ if A isn’t an eigenvariable.

Let G be a hypersequent of GpsULΩ in the form S1∣⋯∣Sn then vl(Sk)⋂ vl(Sl) = ∅ and vr(Sk)⋂ vr(Sl) = ∅
for all 1 ⩽ k < l ⩽ n. Define vl(G) = ⋃n

k=1 vl(Sk), vr(G) = ⋃n
k=1 vr(Sk).

(iv) A hypersequent G of GpsULΩ is called closed if vl(G) = vr(G). Two hypersequents G′ and G′′

of GpsULΩ are called disjoint if vl(G′)⋂ vl(G′′) = ∅, vl(G′)⋂ vr(G′′) = ∅, vr(G′)⋂ vl(G′′) = ∅ and
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vr(G′)⋂ vr(G′′) = ∅. G′′ is a copy of G′ if they are disjoint and there exist two bijections σl ∶ vl(G′)→ vl(G′′)
and σr ∶ vr(G′)→ vr(G′′) such that G′′ can be obtained by applying σl to antecedents of sequents in G′ and σr

to succedents of sequents in G′.
(v) A hypersequent G∣G1∣G2 can be contracted as G∣G1 in GpsULΩ under certain conditions given in

Construction 3, which we called the constraint external contraction rule and denote by
G′∣G1∣G2

G′∣G1
(ECΩ).

(vi) (EW) is forbidden in GpsULΩ and (EC) and (CUT) are replaced with (ECΩ) and (WCT),
respectively.

(vii) Two rules (∧r) and (∨l) of GL are replaced with
G1∣Γ1 ⇒ A G2∣Γ2 ⇒ B

G1∣G2∣Γ1 ⇒ A ∧ B∣Γ2 ⇒ A ∧ B
(∧rw) and

G1∣Γ1, A, ∆1 ⇒ C1 G2∣Γ2, B, ∆2 ⇒ C2

G1∣G2∣Γ1, A ∨ B, ∆1 ⇒ C1∣Γ2, A ∨ B, ∆2 ⇒ C2
(∨lw) in GpsULΩ, respectively.

(viii) G1∣S1 and G2∣S2 are closed and disjoint for each two-premise inference rule
G1∣S1 G2∣S2

G1∣G2∣H′ (I I) of

GpsULΩ and, G′∣S′ is closed for each one-premise inference rule
G′∣S′

G′∣S′′(I).

Proposition 1. Let
G′∣S′

G′∣S′′ (I) and
G1∣S1 G2∣S2

G1∣G2∣H′ (I I) be inference rules of GpsULΩ. Then, vl(G′∣S′′) =

vr(G′∣S′′) = vr(G′∣S′) = vl(G′∣S′) and vl(G1∣G2∣H′) = vl(G1∣S1)⋃ vl(G2∣S2) = vr(G1∣G2∣H′) =
vr(G1∣S1)⋃ vr(G2∣S2).

Proof. Although (WCT) makes t’s in its premises disappear in its conclusion; it has no effect on
identification numbers of the eigenvariable p in a hypersequent because t is a constant in GpsULΩ
and is distinguished from propositional variables.

Definition 6. Let G be a closed hypersequent of GpsULΩ and S ∈ G. [S]G ∶= ⋂{H ∶ S ∈ H ⊆ G, vl(H) =
vr(H)} is called a minimal closed unit of G.

3. The Generalized Density Rule (D) for GpsULΩ

In this section, GLcf
Ω is GpsULΩ without (ECΩ). Generally, A, B, C,⋯, denote a formula other

than an eigenvariable pi.

Construction 1. Given a proof τ∗ of H ≡ G∣Γ, pj, ∆ ⇒ pj in GLcf
Ω, let Thτ∗(pj ⇒ pj) = (H0,⋯, Hn), where

H0 ≡ pj ⇒ pj, Hn ≡ H. By Γk, pj, ∆k ⇒ pj, we denote the sequent containing pj in Hk. Then, Γ0 = ∅,

∆0 = ∅, Γn = Γ and ∆n = ∆. Hypersequents ⟨Hk⟩−j , ⟨Hk⟩+j and their proofs ⟨τ∗⟩−j (⟨Hk⟩−j ), ⟨τ∗⟩+j (⟨Hk⟩+j )
are constructed inductively for all 0 ⩽ k ⩽ n in the following such that Γk ⇒ t ∈ ⟨Hk⟩−j , ∆k ⇒ t ∈ ⟨Hk⟩+j , and
⟨Hk⟩+j /{∆k ⇒ t}∣ ⟨Hk⟩−j /{Γk ⇒ t} = Hk/{Γk, pj, ∆k ⇒ pj}.

(i) ⟨H0⟩−j ∶= ⟨H0⟩+j ∶=⇒ t, ⟨τ∗⟩−j (⟨H0⟩−j ) and ⟨τ∗⟩+j (⟨H0⟩+j ) are built up with⇒ t.

(ii) Let
G′∣S′ G′′∣S′′

G′∣G′′∣H′ (I I) (or
G′∣S′

G′∣S′′ (I)) be in τ∗, Hk = G′∣S′ and Hk+1 = G′∣G′′∣H′ (accordingly

Hk+1 = G′∣S′′ for (I)) for some 0 ⩽ k ⩽ n − 1. There are three cases to be considered.
Case 1. S′ = Γk, pj, ∆k ⇒ pj. If all focus formula(s) of S′ is (are) contained in Γk,

⟨Hk+1⟩−j ∶= (⟨Hk⟩−j /{Γk ⇒ t}) ∣G′′∣H′/{Γk+1, pj, ∆k+1 ⇒ pj}∣Γk+1 ⇒ t

⟨Hk+1⟩+j ∶= ⟨Hk⟩+j
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(accordingly ⟨Hk+1⟩−j = ⟨Hk⟩−j /{Γk ⇒ t}∣Γk+1 ⇒ t for (I)) and, ⟨τ∗⟩−j (⟨Hk+1⟩−j ) is constructed by

combining the derivation ⟨τ∗⟩−j (⟨Hk⟩−j ) and
⟨Hk⟩−j G′′∣S′ ′

⟨Hk+1⟩−j
(I I) (accordingly

⟨Hk⟩−j
⟨Hk+1⟩−j

(I) for (I)) and,

⟨τ∗⟩+j (⟨Hk+1⟩+j ) is constructed by combining ⟨τ∗⟩+j (⟨Hk⟩+j ) and
⟨Hk⟩+j
⟨Hk+1⟩+j

(IDΩ) . The case of all focus

formula(s) of S′ contained in ∆k is dealt with by a procedure dual to above and omitted.
Case 2. S′ ∈ ⟨Hk⟩−j . ⟨Hk+1⟩−j ∶= (⟨Hk⟩−j /{S′}) ∣G′′∣H′ (accordingly ⟨Hk+1⟩−j = ⟨Hk⟩−j /{S′}∣S′′ for (I)),

⟨Hk+1⟩+j ∶= ⟨Hk⟩+j and ⟨τ∗⟩−j (⟨Hk+1⟩−j ) is constructed by combining the derivation ⟨τ∗⟩−j (⟨Hk⟩−j ) and

⟨Hk⟩−j G′′∣S′ ′

⟨Hk+1⟩−j
(I I) (accordingly

⟨Hk⟩−j
⟨Hk+1⟩−j

(I) for (I)) and, ⟨τ∗⟩+j (⟨Hk+1⟩+j ) is constructed by combining

⟨τ∗⟩+j (⟨Hk⟩+j ) and
⟨Hk⟩+j
⟨Hk+1⟩+j

(IDΩ) .

Case 3. S′ ∈ ⟨Hk⟩+j . It is dealt with by a procedure dual to Case 2 and omitted.

Definition 7. The manipulation described in Construction 1 is called the derivation-splitting operation when it
is applied to a derivation and the splitting operation when applied to a hypersequent.

Corollary 1. Let ⊢GLcf
Ω

G∣Γ, p1, ∆ ⇒ p1. Then, there exist two hypersequents G1 and G2 such that G =
G1⋃G2, G1⋂G2 = ∅, ⊢GLcf

Ω
G1∣Γ⇒ t and ⊢GLcf

Ω
G2∣∆⇒ t.

Construction 2. Given a proof τ∗ of H ≡ G∣Π⇒ pj∣Γ, pj, ∆⇒ A in GLcf
Ω, let Thτ∗(pj ⇒ pj) = (H0,⋯, Hn),

where H0 ≡ pj ⇒ pj and Hn ≡ H. Then, there exists 1 ⩽ m ⩽ n such that Hm is in the form G′∣Π′ ⇒
pj∣Γ′, pj, ∆′ ⇒ A′ and Hm−1 is in the form G′′∣Γ′′, pj, ∆′′ ⇒ pj. A proof of G∣Γ, Π, ∆ ⇒ A in GLcf

Ω is
constructed by induction on n −m as follows:

• For the base step, let n−m = 0. Then,
Hn−1 ≡ G′∣Π′, Γ′, pj, ∆′, Π′′′ ⇒ pj G′′∣Γ′′, Π′′, ∆′′ ⇒ A

Hn ≡ G′∣G′′∣Π′, Π′′, Π′′′ ⇒ pj ∣Γ′′, Γ′, pj, ∆′, ∆′′ ⇒ A
(COM) ∈ τ∗,

where G′∣G′′ = G and Π′, Π′′, Π′′′ = Π and Γ′′, Γ′ = Γ and ∆′, ∆′′ = ∆. It follows from Corollary
1 that there exist G′

1 and G′
2 such that G′ = G′

1⋃G′
2, G′

1⋂G′
2 = ∅, ⊢GLcf

Ω
G′

1∣Π′, Γ′ ⇒ t and

⊢GLcf
Ω

G′
2∣∆′, Π′′′ ⇒ t. Then, G∣Γ, Π, ∆⇒ A is proved as follows:

G′′∣Γ′′, Π′′, ∆′′ ⇒ A

G′′∣Γ′′, t, Π′′, ∆′′ ⇒ A
(tl)

G′
1∣Π

′, Γ′ ⇒ t

G′
1∣Γ

′, Π′ ⇒ t
(WCM)

G′′∣G′
1∣Γ

′′, Γ′, Π′, Π′′, ∆′′ ⇒ A
(WCT)

G′′∣G′
1∣Γ

′′, Γ′, Π′, Π′′, t, ∆′′ ⇒ A
(tl)

G′
2∣∆

′, Π′′′ ⇒ t

G′
2∣Π

′′′, ∆′ ⇒ t
(WCM)

G′′∣G′
1∣G

′
2∣Γ

′′, Γ′, Π′, Π′′, Π′′′, ∆′, ∆′′ ⇒ A
(WCT) .

• For the induction step, let n − m > 0. Then, it is treated using applications of the
induction hypothesis to the premise followed by an application of the relevant rule. For

example, let
Hn−1 = G′∣Π⇒ pj∣Σ′, Γ′′, pj, ∆′′, Σ′′′ ⇒ A′ G′′∣Γ′, Σ′′, ∆′ ⇒ A

Hn = G′∣Π⇒ pj∣Σ′, Σ′′, Σ′′′ ⇒ A′ ∣G′′∣Γ′, Γ′′, pj, ∆′′, ∆′ ⇒ A
(COM) ∈ τ∗, where

G′ ∣G′′∣Σ′, Σ′′, Σ′′′ ⇒ A′ = G and Γ′, Γ′′ = Γ and ∆′′, ∆′ = ∆. By the induction hypothesis, we obtain a
derivation of G∣Γ, Π, ∆⇒ A:

G′∣Σ′, Γ′′, Π, ∆′′, Σ′′′ ⇒ A′ G′′∣Γ′, Σ′′, ∆′ ⇒ A
G′∣Σ′, Σ′′, Σ′′′ ⇒ A′ ∣G′′∣Γ′, Γ′′, Π, ∆′′, ∆′ ⇒ A

(COM).



Symmetry 2019, 11, 368 7 of 13

Definition 8. The manipulation described in Construction 2 is called the derivation-splicing operation when it
is applied to a derivation and the splicing operation when applied to a hypersequent.

Corollary 2. If ⊢GLcf
Ω

G∣Π⇒ pj∣Γ, pj, ∆⇒ A, then ⊢GLcf
Ω

G∣Γ, Π, ∆⇒ A.

Definition 9. (i) Let ⊢GLcf
Ω

H ≡ G∣Γ, pj, ∆ ⇒ pj. Define ⟨H⟩−j = G1∣Γ ⇒ t, ⟨H⟩+j = G2∣∆ ⇒ t and
Dj(H) = {G1∣Γ⇒ t, G2∣∆⇒ t}, where G1 and G2 are determined by Corollary 1.

(ii) Let ⊢GLcf
Ω

H ≡ G∣Π⇒ pj∣Γ, pj, ∆⇒ A. DefineDj(H) = {G∣Γ, Π, ∆⇒ A} = ⟨H⟩j.
(iii) Let ⊢GLcf

Ω
G. Dj(G) = {G} if pj does not occur in G.

(iv) Let ⊢GLcf
Ω

Gi for all 1 ⩽ i ⩽ n. Define Dj({G1,⋯, Gn}) = Dj(G1)⋃⋯⋃Dj(Gn).
(v) Let ⊢GLcf

Ω
G and K = {1,⋯, n} ⊆ v(G). Define DK(G) = Dn(⋯D2(D1(G))⋯). Especially, define

D(G) = Dvl(G)(G).

Theorem 3. Let ⊢GLcf
Ω

G. Then, ⊢GLcf
Ω

H for all H ∈ D(G).

Proof. Immediately from Corollaries 1, 2 and Definition 9.

Lemma 2. Let G′ be a minimal closed unit of G∣G′. Then, G′ has the form Γ ⇒ A∣Γi2 ⇒ pi2 ∣⋯∣Γin ⇒ pin
if there exists one sequent Γ ⇒ A ∈ G′ such that A is not an eigenvariable otherwise G′ has the form
Γi1 ⇒ pi1 ∣⋯∣Γin ⇒ pin .

Proof. Define G1 = Γ ⇒ A in Construction 5.2 in [10]. Then, ∅ = vr(G1) ⊆ vl(G1). Suppose that
Gk is constructed such that vr(Gk) ⊆ vl(Gk). If vl(Gk) = vr(Gk), the procedure terminates and
n ∶ = k; otherwise, vl(Gk)/vr(Gk) ≠ ∅ and define ik+1 to be an identification number in vl(Gk)/vr(Gk).
Then, there exists Γik+1

⇒ pik+1
∈ G/Gk by vl(G) = vr(G) and define Gk+1 = Gk∣Γik+1

⇒ pik+1
. Thus,

vr(Gk+1) = vr(Gk)⋃{ik+1} ⊆ vl(Gk) ⊆ vl(Gk+1). Hence, there exists a sequence i2,⋯, in of identification
numberssuch that vr(Gk) ⊆ vl(Gk) for all 1 ⩽ k ⩽ n, where G1 = Γ⇒ A, Gk = Γ⇒ A∣Γi2 ⇒ pi2 ∣⋯∣Γik ⇒ pik
for all 2 ⩽ k ⩽ n. Therefore, G′ has the form Γ⇒ A∣Γi2 ⇒ pi2 ∣⋯∣Γin ⇒ pin .

Definition 10. Let G′ be a minimal closed unit of G∣G′. G′ is a splicing unit if it has the form Γ⇒ A∣Γi2 ⇒
pi2 ∣⋯∣Γin ⇒ pin . G′ is a splitting unit if it has the form Γi1 ⇒ pi1 ∣⋯∣Γin ⇒ pin .

Lemma 3. Let G′ be a splicing unit of G∣G′ in the form Γ ⇒ A∣Γi2 ⇒ pi2 ∣⋯∣Γin ⇒ pin and K = {i2,⋯, in}.
Then, ∣DK(G∣G′)∣ = 1.

Proof. By the construction in the proof of Lemma 2, ik ∈ vl(Gk−1) for all 2 ⩽ k ⩽ n. Then, pi2 ∈ Γ and
Di2(G∣G′) = G∣Γ[Γi2]⇒ A∣Γi3 ⇒ pi3 ∣⋯∣Γin ⇒ pin , where Γ[Γi2] is obtained by replacing pi2 in Γ with Γi2 .
Then, pi3 ∈ Γ[Γi2]. Repeatedly, we get Di2⋯in(G∣G′) = DK(G∣G′) = G∣Γ[Γi2]⋯[Γin]⇒ A.

This shows that DK(G∣G′) is constructed by repeatedly applying splicing operations.

Definition 11. Let G′ be a minimal closed unit of G∣G′. Define VG′ = v(G′), EG′ = {(i, j)∣Γ, pi, ∆⇒ pj ∈ G′}
and, j is called the child node of i for all (i, j) ∈ EG′ . We call ΩG′ = (VG′ , EG′) the Ω-graph of G′.

Let G′ be a splitting unit of G∣G′ in the form Γ1 ⇒ p1∣⋯∣Γn ⇒ pn. Then, each node of ΩG′ has one
and only one child node. Thus, there exists one cycle in ΩG′ by ∣VG′ ∣ = n <∞. Assume that, without
loss of generality, (1, 2), (2, 3),⋯, (i, 1) is the cycle of ΩG′ . Then, p1 ∈ Γ2, p2 ∈ Γ3, ⋯, pi−1 ∈ Γi and
pi ∈ Γ1. Thus, Di⋯2(G∣G′) = G∣Γ1[Γi][Γi−1]⋯[Γ2] ⇒ p1 is in the form G∣Γ′, p1, ∆′ ⇒ p1. By a suitable
permutation σ of i + 1,⋯, n, we get Di⋯2σ(i+1⋯n)(G∣G′) = G∣Γ1[Γi][Γi−1]⋯[Γ2][Γσ(i+1)]⋯[Γσ(n)]⇒ p1 =
G∣Γ, p1, ∆⇒ p1. This process also shows that there exists only one cycle in ΩG′ . Then, we introduce
the following definition.
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Definition 12. (i) Γj ⇒ pj is called a splitting sequent of G′ and pj its corresponding splitting variable for all
1 ⩽ j ⩽ i.

(ii) Let K = {1, 2,⋯, n} and D1(G∣Γ, p1, ∆⇒ p1) = {G1∣Γ⇒ t, G2∣∆⇒ t}. Define ⟨G∣G′⟩−K = G1∣Γ⇒ t,
⟨G∣G′⟩+K = G2∣∆⇒ t and DK(G∣G′) = {⟨G∣G′⟩+K , ⟨G∣G′⟩−K}.

Lemma 4. If G′ be a splitting unit of G∣G′, K = v(G′) and k be a splitting variable of G′. Then, DK/{k}(G∣G′)
is constructed by repeatedly applying splicing operations and only the last operation Dk is a splitting operation.

Construction 3 (The constrained external contraction rule). Let H ≡ G′∣ {[S]H}1 ∣ {[S]H}2, {[S]H}1
and {[S]H}2 be two copies of a minimal closed unit [S]H , where we put two copies into {}1 and {}2 in order to
distinguish them. For any splitting unit [S′]H ⊆ G′, {[S]H}1 ∣ {[S]H}2 ⊆ ⟨H⟩−K or {[S]H}1 ∣ {[S]H}2 ⊆ ⟨H⟩+K,
where K = v([S′]H). Then, G′′∣ {[S]H}1 is constructed by cutting off {[S]H}2 and some sequents in G′

as follows.
(i) If {[S]H}1 and {[S]H}2 are two splicing units, then G′′ ∶= G′;
(ii) If {[S]H}1 and {[S]H}2 are two splitting units and, k, k′ their splitting variables, respectively,

K = v({[S]H}1), K′ = v({[S]H}2), DK/{k}({[S]H}1) = Γ, pk, ∆⇒ pk, DK′/{k′}({[S]H}2) = Γ, pk′ , ∆⇒ pk′ ,
DK⋃K′(H) = {G′

1∣Γ⇒ t∣Γ⇒ t, G′
2∣∆⇒ t, G′′

2 ∣∆⇒ t} or DK⋃K′(H) = {G′
1∣∆⇒ t∣∆⇒ t, G′

2∣Γ⇒ t, G′′
2 ∣Γ⇒

t}, where G′
1⋃G′

2⋃G′′
2 = G′ and G′′

2 is a copy of G′
2. Then, G′′ ∶= G′/G′′

2 .
The above operation is called the constrained external contraction rule, denoted by ⟨EC∗

Ω⟩ and written as
G′∣ {[S]H}1 ∣ {[S]H}2

G′′∣ {[S]H}1

⟨EC∗
Ω⟩.

Lemma 5. If ⊢GLcf
Ω

H as above, then ⊢GpsULΩ
H′ for all H′ ∈ D(G′′∣ {[S]H}1).

4. Density Elimination for GpsUL∗

In this section, we adapt the separation algorithm of branches in [10] to GpsUL∗ and prove the
following theorem.

Theorem 4. Density elimination holds for GpsUL∗.

The proof of Theorem 4 runs as follows. It is sufficient to prove that the following strong
density rule

G0 ≡ G′∣ {Γi, p, ∆i ⇒ Ai}i=1⋯n ∣ {Πj ⇒ p}
j=1⋯m

D0 (G0) ≡ G′∣{Γi, Πj, ∆i ⇒ Ai} i=1⋯n;j=1⋯m
(D0)

is admissible in GpsUL∗, where n, m ⩾ 1, p does not occur in G′, Γi, ∆i, Ai, Πj for all 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m.
Let τ be a proof of G0 in GpsUL∗∗ by Theorem 2. Starting with τ, we construct a proof τ∗ of

G∣G∗ in GLcf
Ω by a preprocessing of τ described in Section 4 in [10].

In Step 1 of preprocessing of τ, a proof τ′ is constructed by replacing inductively all applications
of (∧r) and (∨l) in τ with (∧rw) and (∨lw) followed by an application of (EC), respectively. In Step 2,

a proof τ′′ is constructed by converting all
G′′′

i ∣{Sc
i }

m′
i

G′′′
i ∣Sc

i
(EC∗) ∈ τ′ into

G′′
i ∣{Sc

i }
m′

i

G′′
i ∣{Sc

i }
m′

i
(IDΩ), where G′′′

i ⊆ G′′
i .

In Step 3, a proof τ′′′ is constructed by converting
G′

G′∣S′(EW) ∈ τ′′ into
G′′

G′′(IDΩ), where G′′ ⊆ G′.

In Step 4, a proof τ′′′′ is constructed by replacing some G′∣Γ′, p, ∆′ ⇒ A′ ∈ τ′′′ (or G′∣Γ′ ⇒ p ∈ τ′′′)
with G′∣Γ′,⊺, ∆′ ⇒ A′ (or G′∣Γ′ ⇒ �). In Step 5, a proof τ∗ is constructed by assigning the unique
identification number to each occurrence of p in τ′′′′. Let Hc

i = G′
i ∣{Sc

i }
mi denote the unique node of τ∗

such that Hc
i ⩽ G′′

i ∣{Sc
i }

mi and Sc
i is the focus sequent of Hc

i in τ∗. We call Hc
i , Sc

i the i-th (pEC)-node of
τ∗ and (pEC)-sequent, respectively. If we ignore the replacements from Step 4, each sequent of G is a
copy of some sequent of G0 and each sequent of G∗ is a copy of some contraction sequent in τ′.
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Now, starting with G∣G∗ and its proof τ∗, we construct a proof τ☆ of G☆ in GpsULΩ such that
each sequent of G☆ is a copy of some sequent of G. Then, ⊢GpsULΩ

D(G☆) by Theorem 3 and Lemma 5.
Then, ⊢GpsUL∗ D0(G0) by Lemma 9.1 in [10].

In [10], G☆ is constructed by eliminating (pEC)-sequents in G∣G∗ one by one. In order to control
the process, we introduce the set I = {Hc

i1
,⋯, Hc

im} of maximal (pEC)-nodes of τ∗ (see Definition 13)

and the set I of the branches relative to I and construct G☆
I such that G☆

I doesn’t contain the contraction
sequents lower than any node in I, i.e., Sc

j ∈ G☆
I implies Hc

j ∣∣H
c
i for all Hc

i ∈ I. The procedure is called
the separation algorithm of branches in [10].

The problem we encounter in GpsULΩ is that Lemma 7.11 of [10] doesn’t hold because new
derivation-splitting operations make the conclusion of (D)-rule to be a set of hypersequents rather
than one hypersequent. Then, G

mq′
‡ generally can’t be contracted to G‡ in Step 2 of Stage 1 in the

main algorithm in [10] and {G☆
Il/r

}mq′ can’t be contracted to G☆
Il/r

in Step 2 of Stage 2. Furthermore, we

sometimes can’t construct some branches to I in GpsULΩ before we construct τ☆I . Therefore, we have
to introduce a new induction strategy for GpsULΩ and don’t perform the induction on the number of
branches. First, we give some primary definitions and lemmas.

Definition 13. A (pEC)-node Hc
i is maximal if no other (pEC)-node is higher than Hc

i . Define I0 to be the set
of maximal (pEC)-nodes in τ∗. A nonempty subset I of I0 is complete if I contains all maximal (pEC)-nodes
higher than or equal to the intersection node HV

I of I. Define HV
I = Hc

i if I = {Hc
i }, i.e., the intersection node of

a single node is itself.

Proposition 2. (i) Hc
i ∥ Hc

j for all i ≠ j, Hc
i , Hc

j ∈ I0.

(ii) Let I be complete and Hc
j ⩾ HV

I . Then, Hc
j ⩽ Hc

i for some Hc
i ∈ I.

(iii) I0 is complete and {Hc
i } is complete for all Hc

i ∈ I0.
(iv) If I ⊆ I0 is complete and ∣I∣ > 1, then Il and Ir are complete, where Il and Ir denote the sets of all

maximal (pEC)-nodes in the left subtree and right subtree of τ∗(HV
I ), respectively.

(v) If I1, I2 ⊆ I0 are complete, then I1 ⊆ I2, I2 ⊆ I1 or I1⋂ I2 = ∅.

Proof. Only (v) is proved as follows. I1 ⊆ I2, I2 ⊆ I1 or I1⋂ I2 = ∅ holds by HV
I2
⩽ HV

I1
, HV

I1
⩽ HV

I2
or

HV
I2
∥ HV

I1
, respectively.

Definition 14. A labeled binary tree ρ is constructed inductively by the following operations:
(i) The root of ρ is labeled by I0 and leaves labeled {Hc

i } ⊆ I0.
(ii) If an inner node is labeled by I, then its parent nodes are labeled by Il and Ir, where Il and Ir are defined

in Proposition 2(iv).

Definition 15. We define the height o(I) of I ∈ ρ by letting o(I) = 1 for each leave I ∈ ρ and, o(I) =
max{o(Il), o(Ir)}+ 1 for any non-leaf node.

Note that in Lemma 7.11 in [10] only uniqueness of G☆(J)
H1∶G2

∣Ŝ2 in G☆
Hc

ik

doesn’t hold in GpsULΩ

and the following lemma holds in GpsULΩ.

Lemma 6. Let
G1∣S1 G2∣S2

H1 ≡ G1∣G2∣H′′(I I) ∈ τ∗, τ∗Gb ∣Sc
j
∈ τ☆Hc

i
,

Gb∣ ⟨G1∣S1⟩Sc
j

G2∣S2

H2 ≡ Gb∣ ⟨G1⟩Sc
j
∣G2∣H′′(I I) ∈ τ∗Gb ∣Sc

j
. Then, H′′ is

separable in τ
☆(J)
Hc

i
and there are some copies of G☆(J)

H1∶G2
∣Ŝ2 in G☆

Hc
i
.

Lemma 7. (New main algorithm for GpsULΩ) Let I be a complete subset of I0 and I = {Hc
i ∶ Hc

i ⩽
Hc

j f or some Hc
j ∈ I}. Then, there exists one close hypersequent G☆

I ⊆c G∣G∗ and its derivation τ☆I in
GpsULΩ such that
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(i) τ☆I is constructed by initial hypersequent
G∣G∗ ⟨τ∗⟩, the fully constraint contraction rules of the form

G2

G1
⟨EC∗

Ω⟩ and elimination rule of the form

Gb1
∣Sc

j1
Gb2 ∣S

c
j2
⋯ Gbw ∣Sc

jw

G∗
Ij
= {Gbk

}w
k=1 ∣G

∗
Ij

⟨τ∗Ij
⟩ ,

where 1 ⩽ w ⩽ ∣I∣, Hc
jk
↭ Hc

jl
for all 1 ⩽ k < l ⩽ w, Ij = {Hc

j1
,⋯, Hc

jw } ⊆ I, Ij = {Sc
j1

, Sc
j2

,⋯, Sc
jw},

Ij = {Gb1
∣Sc

j1
, Gb2 ∣S

c
j2

,⋯, Gbw ∣Sc
jw}, Gbk

∣Sc
jk

is closed for all 1 ⩽ k ⩽ w. Then, Hc
i /⩽ Hc

j for each Sc
j ∈ G∗

Ij

and Hc
i ∈ I.

(ii) For all H ∈ τ☆I , let

∂
τ☆I

(H) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G∣G∗ H is the root of τ☆I or G2 in
G2

G1
⟨EC∗

Ω or IDΩ⟩ ∈ τ☆I ,

Hc
jk

Gbk
∣Sc

jk
in τ∗Ij

∈ τ☆I f or some 1 ⩽ k ⩽ w,

where τ☆I is the skeleton of τ☆I , which is defined by Definition 7.13 [10]. Then, ∂
τ☆I

(G∗
Ij
) ⩽ ∂

τ☆I
(Gbk

∣Sc
jk
) for

some 1 ⩽ k ⩽ w in τ∗Ij
;

(iii) Letting H ∈ τ☆I and G∣G∗ < ∂
τ☆I

(H) ⩽ HV
I , then G☆(J)

HV
I ∶H

∈ τ☆I and it is built up by applying the

separation algorithm along HV
I to H, and is an upper hypersequent of either ⟨EC∗

Ω ⟩ if it is applicable, or ⟨IDΩ⟩,
otherwise.

(iv) Sc
j ∈ G☆

I implies Hc
j ∥Hc

i for all Hc
i ∈ I and, Sc

j ∈ G∗
Ij

for some τ∗Ij
∈ τ☆I .

Proof. τ☆I is constructed by induction on o(I). For the base case, let o(I) = 1; then, τ☆I is built up
by Construction 7.3 and 7.7 in [10]. For the induction case, suppose that o(I) ⩾ 2, τ☆Il

and τ☆Ir
are

constructed such that Claims from (i) to (iv) hold.

Let
G′∣S′ G′′∣S′′

G′∣G′′∣H′ (I I) ∈ τ∗, where G′∣G′′∣H′=HV
I . Then, Il and Ir occur in the left subtree τ∗(G′∣S′)

and right subtree τ∗(G′′∣S′′) of τ∗(HV
I ), respectively. Here, almost all manipulations of the new main

algorithm are the same as those of the old main algorithm. There are some caveats that need to be
considered.

Firstly, all leaves
G∣G∗ ⟨τ∗⟩ ∈ τ☆Il

are replaced with τ☆Ir
in Step 3 at Stage 1 in the old main

algorithm and
G∣G∗ ⟨τ∗⟩ ∈ τ☆Ir

are replaced with τ☆Il
in Step 3 at Stage 2. Secondly, we abandon the

definitions of branch to I and Notation 8.1 in [10] and then the symbol I of the set of branches, which
occur in τ☆I in [10], is replaced with I in the new algorithm. We call the new algorithm the separation
algorithm along I. We also replace Ω in τΩ

I with ☆. Thirdly, under the new requirement that I is
complete, we prove the following property.

Property (A) G☆
Il

contains at most one copy of G☆(J)
HV

I ∶G
′′ ∣Ŝ′′.

Proof. Suppose that there exist two copies {G☆(J)
HV

I ∶G
′′ ∣Ŝ′′}

1
and {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
2

of G☆(J)
HV

I ∶G
′′ ∣Ŝ′′ in G☆

Il
, and

we put them into {}1 and {}2 in order to distinguish them. Let [S]G☆Il
be a splitting unit of G☆

Il
and

S its splitting sequent. Then, ∣vl(S)∣ + ∣vr(S)∣ ⩾ 2. Thus, S is a (pEC)-sequent and has the form Sc
i

by [S]G☆Il
⊆c G∣G∗. Then, [S]G☆Il

= [Sc
i ]G☆Il

, Hc
i ∥ Hc

j for all Hc
j ∈ Il and Sc

i ∈ G∗
Ijl

for some τ∗Ijl
∈ τ☆Il

by

Claim (iv). Since Il is complete and G′∣S′ ⩽ HV
Il

, then Hc
i ∥ G′∣S′.
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Let τ∗Ijl
be in the form

Gbl1
∣Sc

jl1
Gbl2

∣Sc
jl2

⋯ Gblu
∣Sc

jlu

G∗
Ijl

= {Gblk
}u

k=1 ∣G
∗
Ijl

⟨τ∗Ijl
⟩ ,

G1∣S1 G2∣S2

H1 ≡ G1∣G2∣H′′(I I) ∈ τ∗, where G1∣S1 ⩽

G′∣S′, G2∣S2 ⩽ Hc
i , G1∣G2∣H′′ is the intersection node of Hc

i and G′∣S′, as shown in Figure 3.

Then,
{Gblk

}u
k=1 ∣ ⟨G1∣S1 ⟩Ijl

G2∣S2

H2 ≡ {Gblk
}u

k=1 ∣ ⟨G1 ⟩Ijl
∣G2∣H′′(I I) ∈ τ∗Ijl

by G1∣S1 ⩽ G′∣S′ ⩽ HV
Il

and Sc
i ∈ G∗

Ijl
. Since S2 is separable

in G☆
Il

by G′∣S′ ⩽ HV
Il

, then Sc
i ∈ G2∣S2 and Sc

i is not S2.

⋱⋮... ⋱⋮... ⋯ ⋱⋮...

τ∗Ijl

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gbl1
∣Sc

jl1
Gbl2

∣Sc
jl2

⋯ Gblu
∣Sc

jlu
⋱⋮... ⋱⋮...

{Gblk
}u

k=1 ∣ ⟨G1∣S1 ⟩Ijl
G2∣S2

H2 ≡ {Gblk
}u

k=1 ∣ ⟨G1 ⟩Ijl
∣G2∣H′′ (I I)

⋱⋮...
G∗

Ijl
= {Gblk

}u
k=1 ∣G

∗
Ijl

⋱⋮...
G☆

Il

Figure 3. A fragment of τ☆Il
.

Before proceeding to prove Property (A), we present the following property of [Sc
i ]G☆Il

.

Property (B) The set of splitting sequents of [Sc
i ]G☆Il

is equal to that of [Sc
i ]G2∣S2

.

Proof. Let
G′

1∣S′1 G′
2∣S′2

H′
1 ≡ G′

1∣G′
2∣H′′′(I I) ∈ τ∗, G′

1∣S′1 ⩽ H1 and S′1 ∈ ⟨G′
1∣S′1⟩Ijl

. Then, S′1 and S′2 are separable

in G☆
Il

. Thus, G☆(J)
H′

1∶G
′
2
∣Ŝ′2 ⊆ G☆

Il
is closed. Hence, G☆(J)

H1∶G2
∣Ŝ2 −⋃G′2∣S

′
2

G☆(J)
H′

1∶G
′
2
∣Ŝ′2 is closed, where G′

2∣S′2
in ⋃G′2∣S

′
2

runs over all I I ∈ τ∗ above such that G☆(J)
H′

1∶G
′
2
∣Ŝ′2 ⊆ G☆(J)

H1∶G2
∣Ŝ2. Therefore, v(G☆(J)

H1∶G2
∣Ŝ2 −

⋃G′2∣S
′
2

G☆(J)
H′

1∶G
′
2
∣Ŝ′2) = v(G2∣S2), {Sc

j ∶ Sc
j ∈ G2∣S2, Hc

j ⩾ G2∣S2} = {Sc
j ∶ Sc

j ∈ G☆(J)
H1∶G2

∣Ŝ2 −⋃G′2∣S
′
2

G☆(J)
H′

1∶G
′
2
∣Ŝ′2}

and [Sc
i ]G☆Il

⊆ G☆(J)
H1∶G2

∣Ŝ2 −⋃G′2∣S
′
2

G☆(J)
H′

1∶G
′
2
∣Ŝ′2. Then, the set of splitting sequents of [Sc

i ]G☆Il
is equal to that

of [Sc
i ]G2∣S2

since each splitting sequent S′′′ ∈ [Sc
i ]G☆Il

is a (pEC)-sequent by ∣vl(S′′′)∣+ ∣vr(S′′′)∣ ⩾ 2 and

S′′′ ∈c G∣G∗. This completes the proof of Property (B).

We therefore assume that, without loss of generality, Sc
i is in the form Γ, pk, ∆⇒ pk by Property (B),

Lemma 5 and the observation that each derivation-splicing operation is local. There are two cases to
be considered in the following.

Case 1. S1 ∉ ⟨G1∣S1⟩Gb ∣Sc
j

for all τ∗Gb ∣Sc
j
∈ τ

☆(J)
HV

I ∶G
′′ , G1∣S1 ⩽ Hc

j ⩽ HV
I . Then, G☆(J)

H1∶G2
⋂G☆(J)

HV
I ∶G

′′ = ∅.

We assume that, without loss of generality, ⟨G2∣S2⟩−k = G′
2∣Γ ⇒ t, ⟨G2∣S2⟩+k = G′′

2 ∣S2∣∆ ⇒ t.

Then, ⟨G☆
Il
⟩
−

k
= G☆(J)

H2∶G′2
∣Γ ⇒ t since S = Γ, pk, ∆ ⇒ pk isn’t a focus sequent at all nodes from

G2∣S2 to G☆
Il

in τ☆Il
and, Hc

j ⩽ H1 or Hc
j ∣∣G1∣S1 for all Sc

j ∈ G′
2 by Lemma 6.7 in [10]. Thus,

⟨G☆
Il
⟩
−

k
/Γ ⇒ t ⊆ G☆(J)

H2∶G2
. Therefore, {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
1
∣ {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
2
⊆ ⟨G☆

Il
⟩
+

k
because [S]G☆Il

⊆ G☆(J)
H2∶G2

∣Ŝ2,

G☆(J)
H2∶G2

∣Ŝ2⋂({G☆(J)
HV

I ∶G
′′ ∣Ŝ′′}

1
∣ {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
2
) = ∅ and ⟨G☆

Il
⟩
−

k
/{Γ ⇒ t}∣ ⟨G☆

Il
⟩
+

k
/{∆ ⇒ t}∣Γ, pk, ∆ ⇒ pk =

G☆
Il

. This shows that any splitting unit [S]G☆Il
outside G☆(J)

HV
I ∶G

′′ ∣Ŝ′′ in G☆
Il

doesn’t take two copies of

G☆(J)
HV

I ∶G
′′ ∣Ŝ′′ apart, i.e., the case of {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
1
⊆ ⟨G☆

Il
⟩
−

k
and {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
2
⊆ ⟨G☆

Il
⟩
+

k
doesn’t happen.
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Case 2. S1 ∈ ⟨G1∣S1⟩Gb ∣Sc
j

for some τ∗Gb ∣Sc
j
∈ τ

☆(J)
HV

I ∶G
′′ , G1∣S1 ⩽ Hc

j ⩽ HV
I . Then, Gb∣ ⟨G1⟩Sc

j
∣G2∣H′′ ∈

τ∗Gb ∣Sc
j
. Thus, G☆(J)

H1∶G2
∣Ŝ2 ⊆ G☆(J)

HV
I ∶G

′′ ∣Ŝ′′. Hence, [Sc
i ]G☆Il

⊆ G☆(J)
HV

I ∶G
′′ ∣Ŝ′′. The case of Sc

i ∈ G′′ is tackled

with the same procedure as the following. Let [Sc
i ]G☆Il

⊆ {G☆(J)
HV

I ∶G
′′ ∣Ŝ′′}

1
. Then, there exists a copy

of [S]G☆Il
in {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
2

and let Γ, pk′ , ∆ ⇒ pk′ be its splitting sequent. We put two splitting units

into {}k and {}k′ in order to distinguish them. Then, {[S]G☆Il
}k ⊆ {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
1

and {[S]G☆Il
}k′ ⊆

{G☆(J)
HV

I ∶G
′′ ∣Ŝ′′}

2
. We assume that, without loss of generality, ⟨G2∣S2⟩−k = G′

2∣Γ⇒ t, ⟨G2∣S2⟩+k = G′′
2 ∣S2∣∆⇒ t.

Then, ⟨G☆
Il
⟩
−

k
/{Γ ⇒ t} ⊆ {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
1
. Thus, {[S]G☆Il

}k′ ⊆ {G☆(J)
HV

I ∶G
′′ ∣Ŝ′′}

2
⊆ ⟨G☆

Il
⟩
+

k
by ⟨G☆

Il
⟩
−

k
/{Γ ⇒

t}⋃ ⟨G☆
Il
⟩
+

k
/{∆ ⇒ t} = G☆

Il
/Γ, pk, ∆ ⇒ pk. Then, ⟨⟨G☆

Il
⟩
+

k
⟩
−

k′
= ⟨G☆

Il
⟩
−

k′
, {∆ ⇒ t}k∣{∆ ⇒ t}k′ ⊆ ⟨⟨G☆

Il
⟩
+

k
⟩
+

k′
,

where we put two copies of ∆⇒ t into {}k and {}k′ in order to distinguish them. Then, Γ⇒ t ∈ ⟨G☆
Il
⟩
−

k′
,

⊢GL ⟨G☆
Il
⟩
−

k
, ⊢GL ⟨G☆

Il
⟩
−

k′
and ⟨G☆

Il
⟩
−

k′
is a copy of ⟨G☆

Il
⟩
−

k
. Then,D(⟨G☆

Il
⟩
−

k
) = D(⟨G☆

Il
⟩
−

k′
) ⊆ D(G☆

Il
) could

be cut off of one of them because they are the two same sets of hypersequents in D(G☆
Il
). Meanwhile,

two copies of ∆⇒ t in ⟨⟨G☆
Il
⟩
+

k
⟩
+

k′
can’t be taken apart by any splitting unit outside G☆(J)

HV
I ∶G

′′ ∣Ŝ′′ in G☆
Il

for the reason as shown in Case 1 and thus could be contracted into one by (EC) in D(G☆
Il
). Therefore,

two copies {G☆(J)
HV

I ∶G
′′ ∣Ŝ′′}

1
and {G☆(J)

HV
I ∶G

′′ ∣Ŝ′′}
2

of G☆(J)
HV

I ∶G
′′ ∣Ŝ′′ can be contracted into one in G☆

Il
by ⟨EC∗

Ω⟩.
This completes the proof of Property (A).

With Property (A), all manipulations in the old main algorithm in [10] work well. This completes
the construction of τ☆I and the proof of Theorem 4.

Theorem 5. The standard completeness holds for HpsUL∗.

Proof. Let
i←→ denote the i-th logical link of iff in the following. ⊧K A means that v(A) ⩾ t for every

algebra A in K and valuation v on A. Let psUL∗, LIN(psUL∗), psUL∗D and [0, 1]psUL∗ denote the
classes of all psUL∗-algebras, psUL∗-chain, dense psUL∗-chain and standard psUL∗-algebras (i.e.,
their lattice reducts are [0, 1]), respectively. We have an inference sequence, as shown in Figure 4.

⊢HpsUL∗ A
1○←→⊢GpsUL∗⇒ A

2○←→⊢GpsUL∗D⇒ A
3○←→⊧psUL∗D A

↕ 1 ↕ 4○

⊧psUL∗ A
2←→⊧LIN(psUL∗) A

3←→⊧psUL∗D A
4←→⊧[0,1]psUL∗ A

Figure 4. Two ways to prove standard completeness.

Links from 1 to 4 show Jenei and Montagna’s algebraic method to prove standard completeness
and, currently, it seems hopeless to build up link 3 (see [11–14]). Links from 1○ to 4○ show Metcalfe
and Montagna’s proof-theoretical method. Density elimination is at Link 2○ in Figure 4 and other links
are proved by standard procedures with minor revisions and omitted (see [1,4,15–17]).

5. Future Works

Generally, for any existing fuzzy logic system, we can consider its corresponding
non-commutative system, just as HpsUL is obtained by removing the commutativity of the strong
conjunctive connective ⊙ in UL. Therefore, we can consider the corresponding non-commutative
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systems of many systems. A natural question is whether the method of the density elimination
proposed in this paper can be generalized to these systems. It has often been the case in the past
that metamathematical methods have corresponding algebraic analogues. The method proposed in
this paper is essentially proof-theoretic. A natural problem is whether there is an algebraic proof
corresponding to our proof-theoretic one.

Funding: This research was funded by the National Foundation of Natural Sciences of China (Grant No: 61379018,
61662044, 11571013, and 11671358).
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