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Abstract

:

Our method for density elimination is generalized to the non-commutative substructural logic GpsUL*. Then, the standard completeness of HpsUL* follows as a lemma by virtue of previous work by Metcalfe and Montagna. This result shows that HpsUL* is the logic of pseudo-uninorms and their residua and answered the question posed by Prof. Metcalfe, Olivetti, Gabbay and Tsinakis.
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1. Introduction


Prof. Metcalfe, Olivetti and Gabbay conjectured that the Hilbert system HpsUL is the logic of pseudo-uninorms and their residua in 2009 in [1]. It is not the case, as shown by Prof. Wang and Zhao in [2], although HpsUL is the logic of bounded representable residuated lattices. We constructed the system HpsUL* by adding the weakly commutativity rule


(WCM)⊢(A⇝t)→(A→t)








to HpsUL and conjectured that it is the logic of residuated pseudo-uninorms and their residua in 2013 in [3].



In this paper, we prove the conjecture by showing that the density elimination holds for the hypersequent system GpsUL* corresponding to HpsUL*. Then, the standard completeness of HpsUL* follows as a lemma by virtue of previous work by Metcalfe and Montagna [4]. That is, HpsUL* is complete with respect to algebras whose lattice reduct is the real unit interval [0,1]. Thus, HpsUL* is a kind of substructural fuzzy logic [4], and potentially has certain applications to fuzzy inferences and expert Systems [5,6,7,8]. Our result also shows that that HpsUL* is an axiomatization for the variety of residuated lattices generated by all dense residuated chains. Thus, we have also answered the question posed by Prof. Metcalfe and Tsinakis in [9] in 2017.



In proving the density elimination for GpsUL*, we have to overcome several difficulties as follows. Firstly, cut-elimination doesn’t holds for GpsUL*. Note that (WCM) and the density rule (D) are formulated as


G|Γ,Δ⇒tG|Δ,Γ⇒t,G|Π⇒p|Γ,p,Δ⇒BG|Γ,Π,Δ⇒B








in GpsUL*, respectively. Consider the following derivation fragment.
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By the induction hypothesis of the proof of cut-elimination, we get that G1|G2|Γ1,Γ2,Δ2,Δ1⇒A from G2|Γ2,Δ2⇒t and G1|Γ1,t,Δ1⇒A by (CUT). However, we can’t deduce G1|G2|Γ1,Δ2,Γ2,Δ1⇒A from G1|G2|Γ1,Γ2,Δ2,Δ1⇒A by (WCM). We overcome this difficulty by introducing the following weakly cut rule into GpsUL*


G1|Γ,t,Δ⇒AG2|Π⇒tG1|G2|Γ,Π,Δ⇒A(WCT).











Secondly, the proof of the density elimination for GpsUL* becomes troublesome even for some simple cases in GUL [4]. Consider the following derivation fragment
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Here, the major problem is how to extend (D) such that it is applicable to G2|Γ2,Π2′,p,Π2″,Σ2⇒p. By replacing p with t, we get G2|Γ2,Π2′,t,Π2″,Σ2⇒t. However, there exists no derivation of G1|G2|Γ1,Π2′,Γ2,Π1,Σ2,Π2″,Σ1⇒A1 from G2|Γ2,Π2′,Π2″,Σ2⇒t and G1|Γ1,Π1,Σ1⇒A1. Notice that Γ2,Π2′ and Π2″,Σ2 in G2|Γ2,Π2′,p,Π2″,Σ2⇒p are commutated simultaneously in G1|G2|Γ1,Π2′,Γ2,Π1,Σ2,Π2″,Σ1⇒A1, which we can’t obtain by (WCM). It seems that (WCM) can’t be strengthened further in order to solve this difficulty. We overcome this difficulty by introducing a restricted subsystem GpsULΩ of GpsUL*. GpsULΩ is a generalization of GIULΩ, which we introduced in [10] in order to solve a longstanding open problem, i.e., the standard completeness of IUL. Two new manipulations, which we call the derivation-splitting operation and derivation-splicing operation, are introduced in GpsULΩ.



The third difficulty we encounter is that the conditions of applying the restricted external contraction rule (ECΩ) become more complex in GpsULΩ because new derivation-splitting operations make the conclusion of the generalized density rule to be a set of hypersequents rather than one hypersequent. We continue to apply derivation-grafting operations in the separation algorithm of the multiple branches of GIULΩ in [10], but we have to introduce a new construction method for GpsULΩ by induction on the height of the complete set of maximal (pEC)-nodes rather than on the number of branches.



The structure of this paper is as follows. In Section 2, we present two hypersequent calculi GpsUL* and GpsULΩ, and prove that Cut-elimination does not hold for GpsUL*. Because of the absence of the commutativity rule, we have to introduce two novel operations, i.e., the derivation-splitting operation and derivation-splicing operation, in GpsULΩ in Section 3, and then we present a suitable definition of the generalized density rule (D) for GpsULΩ. In Section 4, we adapt the old main algorithm in the system GIULΩ to the new system GpsULΩ. In Section 5, we propose two directions for future research.




2. GpsUL, GpsUL* and GpsULΩ


Definition 1. 

([1]) GpsUL consists of the following initial sequents and rules:



Initial sequents


A⇒A(ID)⇒t(tr)Γ,⊥,Δ⇒A(⊥l)Γ⇒⊤(⊤r),











Structural Rules


G|Γ⇒A|Γ⇒AG|Γ⇒A(EC)GG|Γ⇒A(EW),










G1|Γ1,Π1,Δ1⇒A1G2|Γ2,Π2,Δ2⇒A2G1|G2|Γ1,Π2,Δ1⇒A1|Γ2,Π1,Δ2⇒A2(COM),











Logical Rules


G1|Γ⇒AG2|Δ⇒BG1|G2|Γ,Δ⇒A⊙B(⊙r)G1|Γ,B,Δ⇒CG2|Π⇒AG1|G2|Γ,Π,A→B,Δ⇒C(→l)G1|Π⇒AG2|Γ,B,Δ⇒CG1|G2|Γ,A⇝B,Π,Δ⇒C(⇝l)G1|Γ,A,Δ⇒CG2|Γ,B,Δ⇒CG1|G2|Γ,A∨B,Δ⇒C(∨l)G1|Γ⇒AG2|Γ⇒BG1|G2|Γ⇒A∧B(∧l)G|Γ,A,Δ⇒CG|Γ,A∧B,Δ⇒C(∧rr)G|Γ,Δ⇒AG|Γ,t,Δ⇒A(tl)G|Γ,A,B,Δ⇒CG|Γ,A⊙B,Δ⇒C(⊙l)G|A,Γ⇒BG|Γ⇒A→B(→r)G|Γ,A⇒BG|Γ⇒A⇝B(⇝r)G|Γ⇒AG|Γ⇒A∨B(∨rr)G|Γ⇒BG|Γ⇒A∨B(∨rl)G|Γ,B,Δ⇒CG|Γ,A∧B,Δ⇒C(∧rl).











Cut Rule


G1|Γ,A,Δ⇒BG2|Π⇒AG1|G2|Γ,Π,Δ⇒B(CUT).













Definition 2. 

([3]) GpsUL* is GpsUL plus the weakly commutativity rule


G|Γ,Δ⇒tG|Δ,Γ⇒t(WCM).













Definition 3.

GpsUL*D is GpsUL* plus the density rule G|Π⇒p|Γ,p,Δ⇒BG|Γ,Π,Δ⇒B(D).





Lemma 1.

G≡B∨((D→B)⊙C⊙(C→D)⊙A→A) is not a theorem in HpsUL.





Proof. 

Let A=({0,1,2,3},∧,∨,⊙,→,⇝,2,0,3) be an algebra, where x∧y=min(x,y), x∨y=max(x,y) for all x,y∈{0,1,2,3}, and the binary operations ⊙, → and ⇝ are defined by the following tables (see [2]).
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By easy calculation, we get that A is a linearly ordered HpsUL-algebra, where 0 and 3 are the least and the greatest element of A, respectively, and 2 is its unit. Let v(A)=v(B)=v(C)=v(D)=1. Then, v(G)=1∨(3⊙1⊙3⊙1→1)=1<2. Hence, G is not a tautology in HpsUL. Therefore, it is not a theorem in HpsUL by Theorem 9.27 in [1]. □





Theorem 1.

Cut-elimination doesn’t hold for GpsUL*.





Proof. 

G≡⇒B∨((D→B)⊙C⊙(C→D)⊙A→A) is provable in GpsUL*, as shown in Figure 1.



Suppose that G has a cut-free proof ρ. Then, there exists no occurrence of t in ρ by its subformula property. Thus, there exists no application of (WCM) in ρ. Hence, G is a theorem of GpsUL, which contradicts Lemma 1. □





Remark 1.

Following the construction given in the proof of Theorem 53 in [4], (CUT) in Figure 1 is eliminated by the following derivation, as shown in Figure 2. However, the application of (WCM) in ρ is invalid, which illustrates the reason why the cut-elimination theorem doesn’t hold in GpsUL*.





Definition 4.

GpsUL** is constructed by replacing (CUT) in GpsUL* with


G1|Γ,t,Δ⇒AG2|Π⇒tG1|G2|Γ,Π,Δ⇒A(WCT).











We call it the weakly cut rule and denote it by (WCT).





Theorem 2.

If ⊢GpsUL*G, then ⊢GpsUL**G.





Proof. 

It is proved by a procedure similar to that of Theorem 53 in [4] and omitted. □





Definition 5. 

( [10]) GpsULΩ is a restricted subsystem of GpsUL* such that



(i) p is designated as the unique eigenvariable by which we mean that it is not used to build up any formula containing logical connectives and is only used as a sequent-formula.



(ii) Each occurrence of p in a hypersequent is assigned one unique identification number i in GpsULΩ and written as pi. Initial sequent p⇒p of GpsUL* has the form pi⇒pi in GpsULΩ. p doesn’t occur in A,Γ or Δ for each initial sequent Γ,⊥,Δ⇒A or Γ⇒⊤ in GpsULΩ.



(iii) Each sequent S of the form Γ0,p,Γ1,⋯,Γλ−1,p,Γλ⇒A in GpsUL* has the form Γ0,pi1,Γ1,⋯,Γλ−1,piλ,Γλ⇒A in GpsULΩ, where p does not occur in Γk for all 0⩽k⩽λ and, ik≠il for all 1⩽k<l⩽λ. Define vl(S)={i1,⋯,iλ}, vr(S)={j1} if A is an eigenvariable with the identification number j1 and, vr(S)=∅ if A isn’t an eigenvariable.



Let G be a hypersequent of GpsULΩ in the form S1|⋯|Sn then vl(Sk)⋂vl(Sl)=∅ and vr(Sk)⋂vr(Sl)=∅ for all 1⩽k<l⩽n. Define vl(G)=⋃k=1nvl(Sk), vr(G)=⋃k=1nvr(Sk).



(iv) A hypersequent G of GpsULΩ is called closed if vl(G)=vr(G). Two hypersequents G′ and G″ of GpsULΩ are called disjoint if vl(G′)⋂vl(G″)=∅, vl(G′)⋂vr(G″)=∅, vr(G′)⋂vl(G″)=∅ and vr(G′)⋂vr(G″)=∅. G″ is a copy of G′ if they are disjoint and there exist two bijections σl:vl(G′)→vl(G″) and σr:vr(G′)→vr(G″) such that G″ can be obtained by applying σl to antecedents of sequents in G′ and σr to succedents of sequents in G′.



(v) A hypersequent G|G1|G2 can be contracted as G|G1 in GpsULΩ under certain conditions given in Construction 3, which we called the constraint external contraction rule and denote by G′|G1|G2G′|G1(ECΩ).



(vi) (EW) is forbidden in GpsULΩ and (EC) and (CUT) are replaced with (ECΩ) and (WCT), respectively.



(vii) Two rules (∧r) and (∨l) of GL are replaced with G1|Γ1⇒AG2|Γ2⇒BG1|G2|Γ1⇒A∧B|Γ2⇒A∧B(∧rw) and G1|Γ1,A,Δ1⇒C1G2|Γ2,B,Δ2⇒C2G1|G2|Γ1,A∨B,Δ1⇒C1|Γ2,A∨B,Δ2⇒C2(∨lw) in GpsULΩ, respectively.



(viii) G1|S1 and G2|S2 are closed and disjoint for each two-premise inference rule G1|S1G2|S2G1|G2|H′(II) of GpsULΩ and, G′|S′ is closed for each one-premise inference rule G′|S′G′|S″(I).





Proposition 1.

Let G′|S′G′|S″(I) and G1|S1G2|S2G1|G2|H′(II) be inference rules of GpsULΩ. Then, vl(G′|S″)=vr(G′|S″)=vr(G′|S′)=vl(G′|S′) and vl(G1|G2|H′)=vl(G1|S1)⋃vl(G2|S2)=vr(G1|G2|H′)=vr(G1|S1)⋃vr(G2|S2).





Proof. 

Although (WCT) makes t’s in its premises disappear in its conclusion; it has no effect on identification numbers of the eigenvariable p in a hypersequent because t is a constant in GpsULΩ and is distinguished from propositional variables. □





Definition 6.

Let G be a closed hypersequent of GpsULΩ and S∈G. [S]G:=⋂{H:S∈H⊆G,vl(H)=vr(H)} is called a minimal closed unit of G.






3. The Generalized Density Rule (D) for GpsULΩ


In this section, GLΩcf is GpsULΩ without (ECΩ). Generally, A,B,C,⋯, denote a formula other than an eigenvariable pi.



Construction 1.Given a proof τ* of H≡G|Γ,pj,Δ⇒pj in GLΩcf, let Thτ*(pj⇒pj)=H0,⋯,Hn, where H0≡pj⇒pj, Hn≡H. By Γk,pj,Δk⇒pj, we denote the sequent containing pj in Hk. Then, Γ0=∅, Δ0=∅, Γn=Γ and Δn=Δ. Hypersequents Hkj−, Hkj+ and their proofs ⟨τ*⟩j−Hkj−, ⟨τ*⟩j+Hkj+ are constructed inductively for all 0⩽k⩽n in the following such that Γk⇒t∈Hkj−, Δk⇒t∈Hkj+, and Hkj+∖{Δk⇒t}|Hkj−∖{Γk⇒t}=Hk∖{Γk,pj,Δk⇒pj}.



(i) H0j−:=H0j+:=⇒t, ⟨τ*⟩j−H0j− and ⟨τ*⟩j+H0j+ are built up with ⇒t.



(ii) Let G′|S′G″|S″G′|G″|H′(II) (or G′|S′G′|S″(I)) be in τ*, Hk=G′|S′ and Hk+1=G′|G″|H′ (accordingly Hk+1=G′|S″ for (I)) for some 0⩽k⩽n−1. There are three cases to be considered.



Case 1. 

S′=Γk,pj,Δk⇒pj. If all focus formula(s) of S′ is (are) contained in Γk,


Hk+1j−:=Hkj−∖{Γk⇒t}|G″|H′∖{Γk+1,pj,Δk+1⇒pj}|Γk+1⇒t










Hk+1j+:=Hkj+








(accordingly Hk+1j−=Hkj−∖{Γk⇒t}|Γk+1⇒t for (I)) and, ⟨τ*⟩j−Hk+1j− is constructed by combining the derivation ⟨τ*⟩j−Hkj− and Hkj−G″|S″Hk+1j−(II) (accordingly Hkj−Hk+1j−(I) for (I)) and, ⟨τ*⟩j+Hk+1j+ is constructed by combining ⟨τ*⟩j+Hkj+ and Hkj+Hk+1j+(IDΩ). The case of all focus formula(s) of S′ contained in Δk is dealt with by a procedure dual to above and omitted.





Case 2. 

S′∈Hkj−. Hk+1j−:=Hkj−∖{S′}|G″|H′ (accordingly Hk+1j−=Hkj−∖{S′}|S″ for (I)), Hk+1j+:=Hkj+ and ⟨τ*⟩j−Hk+1j− is constructed by combining the derivation ⟨τ*⟩j−Hkj− and Hkj−G″|S″Hk+1j−(II) (accordingly Hkj−Hk+1j−(I) for (I)) and, ⟨τ*⟩j+Hk+1j+ is constructed by combining ⟨τ*⟩j+Hkj+ and Hkj+Hk+1j+(IDΩ).





Case 3. 

S′∈Hkj+. It is dealt with by a procedure dual to Case 2 and omitted.





Definition 7.

The manipulation described in Construction 1 is called the derivation-splitting operation when it is applied to a derivation and the splitting operation when applied to a hypersequent.





Corollary 1.

Let ⊢GLΩcfG|Γ,p1,Δ⇒p1. Then, there exist two hypersequents G1 and G2 such that G=G1⋃G2, G1⋂G2=∅, ⊢GLΩcfG1|Γ⇒t and ⊢GLΩcfG2|Δ⇒t.





Construction 2. 

Given a proof τ* of H≡G|Π⇒pj|Γ,pj,Δ⇒A in GLΩcf, let Thτ*(pj⇒pj)=(H0,⋯,Hn), where H0≡pj⇒pj and Hn≡H. Then, there exists 1⩽m⩽n such that Hm is in the form G′|Π′⇒pj|Γ′,pj,Δ′⇒A′ and Hm−1 is in the form G″|Γ″,pj,Δ″⇒pj. A proof of G|Γ,Π,Δ⇒A in GLΩcf is constructed by induction on n−m as follows:

	
For the base step, let n−m=0. Then, Hn−1≡G′|Π′,Γ′,pj,Δ′,Π‴⇒pjG″|Γ″,Π″,Δ″⇒AHn≡G′|G″|Π′,Π″,Π‴⇒pj|Γ″,Γ′,pj,Δ′,Δ″⇒A(COM)∈τ*, where G′|G″=G and Π′,Π″,Π‴=Π and Γ″,Γ′=Γ and Δ′,Δ″=Δ. It follows from Corollary 1 that there exist G1′ and G2′ such that G′=G1′⋃G2′, G1′⋂G2′=∅, ⊢GLΩcfG1′|Π′,Γ′⇒t and ⊢GLΩcfG2′|Δ′,Π‴⇒t. Then, G|Γ,Π,Δ⇒A is proved as follows:


G″|Γ″,Π″,Δ″⇒AG″|Γ″,t,Π″,Δ″⇒A(tl)G1′|Π′,Γ′⇒tG1′|Γ′,Π′⇒t(WCM)G″|G1′|Γ″,Γ′,Π′,Π″,Δ″⇒A(WCT)G″|G1′|Γ″,Γ′,Π′,Π″,t,Δ″⇒A(tl)G2′|Δ′,Π‴⇒tG2′|Π‴,Δ′⇒t(WCM)G″|G1′|G2′|Γ″,Γ′,Π′,Π″,Π‴,Δ′,Δ″⇒A(WCT).











	
For the induction step, let n−m>0. Then, it is treated using applications of the induction hypothesis to the premise followed by an application of the relevant rule. For example, let Hn−1=G′|Π⇒pj|Σ′,Γ″,pj,Δ″,Σ‴⇒A′G″|Γ′,Σ″,Δ′⇒AHn=G′|Π⇒pj|Σ′,Σ″,Σ‴⇒A′|G″|Γ′,Γ″,pj,Δ″,Δ′⇒A(COM)∈τ*, where G′|G″|Σ′,Σ″,Σ‴⇒A′=G and Γ′,Γ″=Γ and Δ″,Δ′=Δ. By the induction hypothesis, we obtain a derivation of G|Γ,Π,Δ⇒A:


G′|Σ′,Γ″,Π,Δ″,Σ‴⇒A′G″|Γ′,Σ″,Δ′⇒AG′|Σ′,Σ″,Σ‴⇒A′|G″|Γ′,Γ″,Π,Δ″,Δ′⇒A(COM).


















Definition 8.

The manipulation described in Construction 2 is called the derivation-splicing operation when it is applied to a derivation and the splicing operation when applied to a hypersequent.





Corollary 2.

If ⊢GLΩcfG|Π⇒pj|Γ,pj,Δ⇒A, then ⊢GLΩcfG|Γ,Π,Δ⇒A.





Definition 9. 

(i) Let ⊢GLΩcfH≡G|Γ,pj,Δ⇒pj. Define Hj−=G1|Γ⇒t, Hj+=G2|Δ⇒t and Dj(H)={G1|Γ⇒t,G2|Δ⇒t}, where G1 and G2 are determined by Corollary 1.



(ii) Let ⊢GLΩcfH≡G|Π⇒pj|Γ,pj,Δ⇒A. Define Dj(H)={G|Γ,Π,Δ⇒A}=Hj.



(iii) Let ⊢GLΩcfG. Dj(G)={G} if pj does not occur in G.



(iv) Let ⊢GLΩcfGi for all 1⩽i⩽n. Define Dj({G1,⋯,Gn})=Dj(G1)⋃⋯⋃Dj(Gn).



(v) Let ⊢GLΩcfG and K={1,⋯,n}⊆v(G). Define DK(G)=Dn(⋯D2(D1(G))⋯). Especially, define D(G)=Dvl(G)(G).





Theorem 3.

Let ⊢GLΩcfG. Then, ⊢GLΩcfH for all H∈D(G).





Proof. 

Immediately from Corollaries 1, 2 and Definition 9. □





Lemma 2.

Let G′ be a minimal closed unit of G|G′. Then, G′ has the form Γ⇒A|Γi2⇒pi2|⋯|Γin⇒pin if there exists one sequent Γ⇒A∈G′ such that A is not an eigenvariable otherwise G′ has the form Γi1⇒pi1|⋯|Γin⇒pin.





Proof. 

Define G1=Γ⇒A in Construction 5.2 in [10]. Then, ∅=vr(G1)⊆vl(G1). Suppose that Gk is constructed such that vr(Gk)⊆vl(Gk). If vl(Gk)=vr(Gk), the procedure terminates and n:=k; otherwise, vl(Gk)∖vr(Gk)≠∅ and define ik+1 to be an identification number in vl(Gk)∖vr(Gk). Then, there exists Γik+1⇒pik+1∈G∖Gk by vl(G)=vr(G) and define Gk+1=Gk|Γik+1⇒pik+1. Thus, vr(Gk+1)=vr(Gk)⋃{ik+1}⊆vl(Gk)⊆vl(Gk+1). Hence, there exists a sequence i2,⋯,in of identification numberssuch that vr(Gk)⊆vl(Gk) for all 1⩽k⩽n, where G1=Γ⇒A, Gk=Γ⇒A|Γi2⇒pi2|⋯|Γik⇒pik for all 2⩽k⩽n. Therefore, G′ has the form Γ⇒A|Γi2⇒pi2|⋯|Γin⇒pin. □





Definition 10.

Let G′ be a minimal closed unit of G|G′. G′ is a splicing unit if it has the form Γ⇒A|Γi2⇒pi2|⋯|Γin⇒pin. G′ is a splitting unit if it has the form Γi1⇒pi1|⋯|Γin⇒pin.





Lemma 3.

Let G′ be a splicing unit of G|G′ in the form Γ⇒A|Γi2⇒pi2|⋯|Γin⇒pin and K={i2,⋯,in}. Then, DK(G|G′)=1.





Proof. 

By the construction in the proof of Lemma 2, ik∈vl(Gk−1) for all 2⩽k⩽n. Then, pi2∈Γ and Di2(G|G′)=G|Γ[Γi2]⇒A|Γi3⇒pi3|⋯|Γin⇒pin, where Γ[Γi2] is obtained by replacing pi2 in Γ with Γi2. Then, pi3∈Γ[Γi2]. Repeatedly, we get Di2⋯in(G|G′)=DK(G|G′)=G|Γ[Γi2]⋯[Γin]⇒A. □





This shows that DK(G|G′) is constructed by repeatedly applying splicing operations.



Definition 11.

Let G′ be a minimal closed unit of G|G′. Define VG′=v(G′), EG′={(i,j)|Γ,pi,Δ⇒pj∈G′} and, j is called the child node of i for all (i,j)∈EG′. We call ΩG′=(VG′,EG′) the Ω-graph of G′.





Let G′ be a splitting unit of G|G′ in the form Γ1⇒p1|⋯|Γn⇒pn. Then, each node of ΩG′ has one and only one child node. Thus, there exists one cycle in ΩG′ by VG′=n<∞. Assume that, without loss of generality, (1,2),(2,3),⋯,(i,1) is the cycle of ΩG′. Then, p1∈Γ2, p2∈Γ3, ⋯,pi−1∈Γi and pi∈Γ1. Thus, Di⋯2(G|G′)=G|Γ1[Γi][Γi−1]⋯[Γ2]⇒p1 is in the form G|Γ′,p1,Δ′⇒p1. By a suitable permutation σ of i+1,⋯,n, we get Di⋯2σ(i+1⋯n)(G|G′)=G|Γ1[Γi][Γi−1]⋯[Γ2][Γσ(i+1)]⋯[Γσ(n)]⇒p1=G|Γ,p1,Δ⇒p1. This process also shows that there exists only one cycle in ΩG′. Then, we introduce the following definition.



Definition 12. 

(i) Γj⇒pj is called a splitting sequent of G′ and pj its corresponding splitting variable for all 1⩽j⩽i.



(ii) Let K={1,2,⋯,n} and D1(G|Γ,p1,Δ⇒p1)={G1|Γ⇒t,G2|Δ⇒t}. Define G|G′K−=G1|Γ⇒t, G|G′K+=G2|Δ⇒t and DK(G|G′)={G|G′K+,G|G′K−}.





Lemma 4.

If G′ be a splitting unit of G|G′, K=v(G′) and k be a splitting variable of G′. Then, DK∖{k}(G|G′) is constructed by repeatedly applying splicing operations and only the last operation Dk is a splitting operation.





Construction 3 

(The constrained external contraction rule).Let H≡G′|SH1|SH2, SH1 and SH2 be two copies of a minimal closed unit SH, where we put two copies into {}1 and {}2 in order to distinguish them. For any splitting unit S′H⊆G′, SH1|SH2⊆HK− or SH1|SH2⊆HK+, where K=v(S′H). Then, G″|SH1 is constructed by cutting off SH2 and some sequents in G′ as follows.



(i) If SH1 and SH2 are two splicing units, then G″:=G′;



(ii) If SH1 and SH2 are two splitting units and, k, k′ their splitting variables, respectively, K=v(SH1), K′=v(SH2), DK∖{k}(SH1)=Γ,pk,Δ⇒pk, DK′∖{k′}(SH2)=Γ,pk′,Δ⇒pk′, DK⋃K′(H)={G1′|Γ⇒t|Γ⇒t,G2′|Δ⇒t,G2″|Δ⇒t} or DK⋃K′(H)={G1′|Δ⇒t|Δ⇒t,G2′|Γ⇒t,G2″|Γ⇒t}, where G1′⋃G2′⋃G2″=G′ and G2″ is a copy of G2′. Then, G″:=G′∖G2″.



The above operation is called the constrained external contraction rule, denoted by ⟨ECΩ*⟩ and written as G′|SH1|SH2G″|SH1⟨ECΩ*⟩.





Lemma 5.

If ⊢GLΩcfH as above, then ⊢GpsULΩH′ for all H′∈D(G″|SH1).






4. Density Elimination for GpsUL*


In this section, we adapt the separation algorithm of branches in [10] to GpsUL* and prove the following theorem.



Theorem 4.

Density elimination holds for GpsUL*.





The proof of Theorem 4 runs as follows. It is sufficient to prove that the following strong density rule


G0≡G′|Γi,p,Δi⇒Aii=1⋯n|Πj⇒pj=1⋯mD0G0≡G′|{Γi,Πj,Δi⇒Ai}i=1⋯n;j=1⋯mD0








is admissible in GpsUL*, where n,m⩾1, p does not occur in G′,Γi,Δi,Ai,Πj for all 1⩽i⩽n, 1⩽j⩽m.



Let τ be a proof of G0 in GpsUL** by Theorem 2. Starting with τ, we construct a proof τ* of G|G* in GLΩcf by a preprocessing of τ described in Section 4 in [10].



In Step 1 of preprocessing of τ, a proof τ′ is constructed by replacing inductively all applications of (∧r) and (∨l) in τ with (∧rw) and (∨lw) followed by an application of (EC), respectively. In Step 2, a proof τ″ is constructed by converting all Gi‴|{Sic}mi′Gi‴|Sic(EC*)∈τ′ into Gi″|{Sic}mi′Gi″|{Sic}mi′(IDΩ), where Gi‴⊆Gi″. In Step 3, a proof τ‴ is constructed by converting G′G′|S′(EW)∈τ″ into G″G″(IDΩ), where G″⊆G′. In Step 4, a proof τ″″ is constructed by replacing some G′|Γ′,p,Δ′⇒A′∈τ‴ (or G′|Γ′⇒p∈τ‴) with G′|Γ′,⊤,Δ′⇒A′ (or G′|Γ′⇒⊥). In Step 5, a proof τ* is constructed by assigning the unique identification number to each occurrence of p in τ″″. Let Hic=Gi′|{Sic}mi denote the unique node of τ* such that Hic⩽Gi″|{Sic}mi and Sic is the focus sequent of Hic in τ*. We call Hic, Sic the i-th (pEC)-node of τ* and (pEC)-sequent, respectively. If we ignore the replacements from Step 4, each sequent of G is a copy of some sequent of G0 and each sequent of G* is a copy of some contraction sequent in τ′.



Now, starting with G|G* and its proof τ*, we construct a proof τ☆ of G☆ in GpsULΩ such that each sequent of G☆ is a copy of some sequent of G. Then, ⊢GpsULΩD(G☆) by Theorem 3 and Lemma 5. Then, ⊢GpsUL*D0(G0) by Lemma 9.1 in [10].



In [10], G☆ is constructed by eliminating (pEC)-sequents in G|G* one by one. In order to control the process, we introduce the set I={Hi1c,⋯,Himc} of maximal (pEC)-nodes of τ* (see Definition 13) and the set I of the branches relative to I and construct GI☆ such that GI☆ doesn’t contain the contraction sequents lower than any node in I, i.e., Sjc∈GI☆ implies Hjc||Hic for all Hic∈I. The procedure is called the separation algorithm of branches in [10].



The problem we encounter in GpsULΩ is that Lemma 7.11 of [10] doesn’t hold because new derivation-splitting operations make the conclusion of (D)-rule to be a set of hypersequents rather than one hypersequent. Then, G‡mq′ generally can’t be contracted to G‡ in Step 2 of Stage 1 in the main algorithm in [10] and {GIl∖r☆}mq′ can’t be contracted to GIl∖r☆ in Step 2 of Stage 2. Furthermore, we sometimes can’t construct some branches to I in GpsULΩ before we construct τI☆. Therefore, we have to introduce a new induction strategy for GpsULΩ and don’t perform the induction on the number of branches. First, we give some primary definitions and lemmas.



Definition 13.

A (pEC)-node Hic is maximal if no other (pEC)-node is higher than Hic. Define I0 to be the set of maximal (pEC)-nodes in τ*. A nonempty subset I of I0 is complete if I contains all maximal (pEC)-nodes higher than or equal to the intersection node HIV of I. Define HIV=Hic if I={Hic}, i.e., the intersection node of a single node is itself.





Proposition 2. 

(i) Hic∥Hjc for all i≠j, Hic,Hjc∈I0.



(ii) Let I be complete and Hjc⩾HIV. Then, Hjc⩽Hic for some Hic∈I.



(iii) I0 is complete and {Hic} is complete for all Hic∈I0.



(iv) If I⊆I0 is complete and I>1, then Il and Ir are complete, where Il and Ir denote the sets of all maximal (pEC)-nodes in the left subtree and right subtree of τ*(HIV), respectively.



(v) If I1,I2⊆I0 are complete, then I1⊆I2, I2⊆I1 or I1⋂I2=∅.





Proof. 

Only (v) is proved as follows. I1⊆I2, I2⊆I1 or I1⋂I2=∅ holds by HI2V⩽HI1V, HI1V⩽HI2V or HI2V∥HI1V, respectively. □





Definition 14.

A labeled binary tree ρ is constructed inductively by the following operations:



(i) The root of ρ is labeled by I0 and leaves labeled {Hic}⊆I0.



(ii) If an inner node is labeled by I, then its parent nodes are labeled by Il and Ir, where Il and Ir are defined in Proposition 2(iv).





Definition 15.

We define the height o(I) of I∈ρ by letting o(I)=1 for each leave I∈ρ and, o(I)=max{o(Il),o(Ir)}+1 for any non-leaf node.





Note that in Lemma 7.11 in [10] only uniqueness of GH1:G2☆(J)|S2^ in GHikc☆ doesn’t hold in GpsULΩ and the following lemma holds in GpsULΩ.



Lemma 6.

Let G1|S1G2|S2H1≡G1|G2|H″(II)∈τ*, τGb|Sjc*∈τHic☆, Gb|G1|S1SjcG2|S2H2≡Gb|G1Sjc|G2|H″(II)∈τGb|Sjc*. Then, H″ is separable in τHic☆(J) and there are some copies of GH1:G2☆(J)|S2^ in GHic☆.





Lemma 7. 

(New main algorithm for GpsULΩ)Let I be a complete subset of I0 and I¯={Hic:Hic⩽HjcforsomeHjc∈I}. Then, there exists one close hypersequent GI☆⊆cG|G* and its derivation τI☆ in GpsULΩ such that



(i) τI☆ is constructed by initial hypersequent ̲G|G*τ*, the fully constraint contraction rules of the form G2̲G1ECΩ* and elimination rule of the form


Gb1|Sj1cGb2|Sj2c⋯Gbw|Sjwc̲GIj*=Gbkk=1w|GIj*τIj*,








where 1⩽w⩽|I|,Hjkc↭Hjlc for all 1⩽k<l⩽w, Ij=Hj1c,⋯,Hjwc⊆I¯, Ij={Sj1c,Sj2c,⋯,Sjwc}, Ij={Gb1|Sj1c,Gb2|Sj2c,⋯,Gbw|Sjwc}, Gbk|Sjkc is closed for all 1⩽k⩽w. Then, Hic¬⩽Hjc for each Sjc∈GIj* and Hic∈I.



(ii) For all H∈τ¯I☆, let


∂τI☆(H):=G|G*HistherootofτI☆orG2inG2̲G1ECΩ*orIDΩ∈τ¯I☆,HjkcGbk|SjkcinτIj*∈τ¯I☆forsome1⩽k⩽w,








where τ¯I☆ is the skeleton of τI☆, which is defined by Definition 7.13 [10]. Then, ∂τI☆GIj*⩽∂τI☆Gbk|Sjkc for some 1⩽k⩽w in τIj*;



(iii) Letting H∈τ¯I☆ and G|G*<∂τI☆H⩽HIV, then GHIV:H☆(J)∈τI☆ and it is built up by applying the separation algorithm along HIV to H, and is an upper hypersequent of either ECΩ* if it is applicable, or IDΩ, otherwise.



(iv) Sjc∈GI☆ implies Hjc∥Hic for all Hic∈I and, Sjc∈GIj* for some τIj*∈τI☆.





Proof. 

τI☆ is constructed by induction on o(I). For the base case, let o(I)=1; then, τI☆ is built up by Construction 7.3 and 7.7 in [10]. For the induction case, suppose that o(I)⩾2, τIl☆ and τIr☆ are constructed such that Claims from (i) to (iv) hold.



Let G′|S′G″|S″G′|G″|H′(II)∈τ*, where G′|G″|H′=HIV. Then, Il and Ir occur in the left subtree τ*(G′|S′) and right subtree τ*(G″|S″) of τ*(HIV), respectively. Here, almost all manipulations of the new main algorithm are the same as those of the old main algorithm. There are some caveats that need to be considered.



Firstly, all leaves ̲G|G*τ*∈τ¯Il☆ are replaced with τIr☆ in Step 3 at Stage 1 in the old main algorithm and ̲G|G*τ*∈τ¯Ir☆ are replaced with τIl☆ in Step 3 at Stage 2. Secondly, we abandon the definitions of branch to I and Notation 8.1 in [10] and then the symbol I of the set of branches, which occur in τI☆ in [10], is replaced with I in the new algorithm. We call the new algorithm the separation algorithm along I. We also replace Ω in τIΩ with ☆. Thirdly, under the new requirement that I is complete, we prove the following property.



Property (A)GIl☆ contains at most one copy of GHIV:G″☆(J)|S″^.






Proof. Suppose that there exist two copies GHIV:G″☆(J)|S″^1 and GHIV:G″☆(J)|S″^2 of GHIV:G″☆(J)|S″^ in GIl☆, and we put them into {}1 and {}2 in order to distinguish them. Let SGIl☆ be a splitting unit of GIl☆ and S its splitting sequent. Then, vl(S)+vr(S)⩾2. Thus, S is a (pEC)-sequent and has the form Sic by SGIl☆⊆cG|G*. Then, [S]GIl☆=[Sic]GIl☆, Hic∥Hjc for all Hjc∈Il and Sic∈GIjl* for some τIjl*∈τIl☆ by Claim (iv). Since Il is complete and G′|S′⩽HIlV, then Hic∥G′|S′.



Let τIjl* be in the form Gbl1|Sjl1cGbl2|Sjl2c⋯Gblu|Sjluc̲GIjl*={Gblk}k=1u|GIjl*τIjl*,G1|S1G2|S2H1≡G1|G2|H″(II)∈τ*, where G1|S1⩽G′|S′, G2|S2⩽Hic, G1|G2|H″ is the intersection node of Hic and G′|S′, as shown in Figure 3. Then, {Gblk}k=1u|G1|S1IjlG2|S2H2≡{Gblk}k=1u|G1Ijl|G2|H″(II)∈τIjl* by G1|S1⩽G′|S′⩽HIlV and Sic∈GIjl*. Since S2 is separable in GIl☆ by G′|S′⩽HIlV, then Sic∈G2|S2 and Sic is not S2.





Before proceeding to prove Property (A), we present the following property of SicGIl☆.



Property (B) The set of splitting sequents of SicGIl☆ is equal to that of SicG2|S2.



Proof. 

Let G1′|S1′G2′|S2′H1′≡G1′|G2′|H‴(II)∈τ*, G1′|S1′⩽H1 and S1′∈G1′|S1′Ijl. Then, S1′ and S2′ are separable in GIl☆. Thus, GH1′:G2′☆(J)|S2′^⊆GIl☆ is closed. Hence, GH1:G2☆(J)|S2^−⋃G2′|S2′GH1′:G2′☆(J)|S2′^ is closed, where G2′|S2′ in ⋃G2′|S2′ runs over all II∈τ* above such that GH1′:G2′☆(J)|S2′^⊆GH1:G2☆(J)|S2^. Therefore, v(GH1:G2☆(J)|S2^−⋃G2′|S2′GH1′:G2′☆(J)|S2′^)=v(G2|S2), {Sjc:Sjc∈G2|S2,Hjc⩾G2|S2}={Sjc:Sjc∈GH1:G2☆(J)|S2^−⋃G2′|S2′GH1′:G2′(J)|S2′^} and SicGIl☆⊆GH1:G2☆(J)|S2^−⋃G2′|S2′GH1′:G2′☆(J)|S2′^. Then, the set of splitting sequents of SicGIl☆ is equal to that of SicG2|S2 since each splitting sequent S‴∈SicGIl☆ is a (pEC)-sequent by vl(S‴)+vr(S‴)⩾2 and S‴∈cG|G*. This completes the proof of Property (B). □





We therefore assume that, without loss of generality, Sic is in the form Γ,pk,Δ⇒pk by Property (B), Lemma 5 and the observation that each derivation-splicing operation is local. There are two cases to be considered in the following.



Case 1. 

S1∉G1|S1Gb|Sjc for all τGb|Sjc*∈τHIV:G″☆(J), G1|S1⩽Hjc⩽HIV. Then, GH1:G2☆(J)⋂GHIV:G″☆(J)=∅. We assume that, without loss of generality, G2|S2k−=G2′|Γ⇒t, G2|S2k+=G2″|S2|Δ⇒t. Then, GIl☆k−=GH2:G2′☆(J)|Γ⇒t since S=Γ,pk,Δ⇒pk isn’t a focus sequent at all nodes from G2|S2 to GIl☆ in τIl☆ and, Hjc⩽H1 or Hjc||G1|S1 for all Sjc∈G2′ by Lemma 6.7 in [10]. Thus, GIl☆k−∖Γ⇒t⊆GH2:G2☆(J). Therefore, GHIV:G″☆(J)|S″^1|GHIV:G″☆(J)|S″^2⊆GIl☆k+ because SGIl☆⊆GH2:G2☆(J)|S2^, GH2:G2☆(J)|S2^⋂(GHIV:G″☆(J)|S″^1|GHIV:G″☆(J)|S″^2)=∅ and GIl☆k−∖{Γ⇒t}|GIl☆k+∖{Δ⇒t}|Γ,pk,Δ⇒pk=GIl☆. This shows that any splitting unit SGIl☆ outside GHIV:G″☆(J)|S″^ in GIl☆ doesn’t take two copies of GHIV:G″☆(J)|S″^ apart, i.e., the case of GHIV:G″☆(J)|S″^1⊆GIl☆k− and GHIV:G″☆(J)|S″^2⊆GIl☆k+ doesn’t happen.





Case 2. 

S1∈G1|S1Gb|Sjc for some τGb|Sjc*∈τHIV:G″☆(J), G1|S1⩽Hjc⩽HIV. Then, Gb|G1Sjc|G2|H″∈τGb|Sjc*. Thus, GH1:G2☆(J)|S2^⊆GHIV:G″☆(J)|S″^. Hence, SicGIl☆⊆GHIV:G″☆(J)|S″^. The case of Sic∈G″ is tackled with the same procedure as the following. Let SicGIl☆⊆GHIV:G″☆(J)|S″^1. Then, there exists a copy of SGIl☆ in GHIV:G″☆(J)|S″^2 and let Γ,pk′,Δ⇒pk′ be its splitting sequent. We put two splitting units into {}k and {}k′ in order to distinguish them. Then, {SGIl☆}k⊆GHIV:G″☆(J)|S″^1 and {SGIl☆}k′⊆GHIV:G″☆(J)|S″^2. We assume that, without loss of generality, G2|S2k−=G2′|Γ⇒t, G2|S2k+=G2″|S2|Δ⇒t. Then, GIl☆k−∖{Γ⇒t}⊆GHIV:G″☆(J)|S″^1. Thus, {SGIl☆}k′⊆GHIV:G″☆(J)|S″^2⊆GIl☆k+ by GIl☆k−∖{Γ⇒t}⋃GIl☆k+∖{Δ⇒t}=GIl☆∖Γ,pk,Δ⇒pk. Then, GIl☆k+k′−=GIl☆k′−, {Δ⇒t}k|{Δ⇒t}k′⊆GIl☆k+k′+, where we put two copies of Δ⇒t into {}k and {}k′ in order to distinguish them. Then, Γ⇒t∈GIl☆k′−, ⊢GLGIl☆k−, ⊢GLGIl☆k′− and GIl☆k′− is a copy of GIl☆k−. Then, D(GIl☆k−)=D(GIl☆k′−)⊆D(GIl☆) could be cut off of one of them because they are the two same sets of hypersequents in D(GIl☆). Meanwhile, two copies of Δ⇒t in GIl☆k+k′+ can’t be taken apart by any splitting unit outside GHIV:G″☆(J)|S″^ in GIl☆ for the reason as shown in Case 1 and thus could be contracted into one by (EC) in D(GIl☆). Therefore, two copies GHIV:G″☆(J)|S″^1 and GHIV:G″☆(J)|S″^2 of GHIV:G″☆(J)|S″^ can be contracted into one in GIl☆ by ECΩ*. This completes the proof of Property (A). □



With Property (A), all manipulations in the old main algorithm in [10] work well. This completes the construction of τI☆ and the proof of Theorem 4. □





Theorem 5.

The standard completeness holds for HpsUL*.





Proof. 

Let ⟷i denote the i-th logical link of iff in the following. ⊧KA means that v(A)⩾t for every algebra A in K and valuation v on A. Let psUL*, LIN(psUL*), psUL*D and [0,1]psUL* denote the classes of all psUL*-algebras, psUL*-chain, dense psUL*-chain and standard psUL*-algebras (i.e., their lattice reducts are [0,1]), respectively. We have an inference sequence, as shown in Figure 4.



Links from 1 to 4 show Jenei and Montagna’s algebraic method to prove standard completeness and, currently, it seems hopeless to build up link 3 (see [11,12,13,14]). Links from 1∘ to 4∘ show Metcalfe and Montagna’s proof-theoretical method. Density elimination is at Link 2∘ in Figure 4 and other links are proved by standard procedures with minor revisions and omitted (see [1,4,15,16,17]). □






5. Future Works


Generally, for any existing fuzzy logic system, we can consider its corresponding non-commutative system, just as HpsUL is obtained by removing the commutativity of the strong conjunctive connective ⊙ in UL. Therefore, we can consider the corresponding non-commutative systems of many systems. A natural question is whether the method of the density elimination proposed in this paper can be generalized to these systems. It has often been the case in the past that metamathematical methods have corresponding algebraic analogues. The method proposed in this paper is essentially proof-theoretic. A natural problem is whether there is an algebraic proof corresponding to our proof-theoretic one.
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Figure 1. A proof τ of G. 
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Figure 2. A possible cut-free proof ρ of G. 
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Figure 3. A fragment of τIl☆. 
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Figure 4. Two ways to prove standard completeness. 
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