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Abstract: We consider a compact metric graph of size ε and attach to it several edges (leads) of length
of order one (or of infinite length). As ε goes to zero, the graph Gε obtained in this way looks like
the star-graph formed by the leads joined in a central vertex. On Gε we define an Hamiltonian Hε,
properly scaled with the parameter ε. We prove that there exists a scale invariant effective Hamiltonian
on the star-graph that approximates Hε (in a suitable norm resolvent sense) as ε→ 0. The effective
Hamiltonian depends on the spectral properties of an auxiliary ε-independent Hamiltonian defined
on the compact graph obtained by setting ε = 1. If zero is not an eigenvalue of the auxiliary
Hamiltonian, in the limit ε→ 0, the leads are decoupled.
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1. Introduction

One nice feature of quantum graphs (metric graphs equipped with differential operators) is that
they are simple objects. In many cases, for example in the framework of the analysis of self-adjoint
realizations of the Laplacian, it is possible to write down explicit formulae for the relevant quantities,
such as the resolvent or the scattering matrix (see, e.g., [1] and [2]).

If the graph is too intricate though, it can be difficult, if not impossible, to perform exact
computations. In such a situation, one may be interested in a simpler, effective model which captures
only the most essential features of a complex quantum graph.

If several edges of the graph are much shorter then others, an effective model should rely on a
simpler graph obtained by shrinking the short edges into vertices. These new vertices should keep
track of at least some of the spectral or scattering properties of the shrinking edges, and perform as a
black box approximation for a small, possibly intricate, network.

Our goal is to understand under what circumstances this type of effective models can be
implemented. In this report we give some preliminary results showing that under certain assumptions
such approximation is possible.

To fix the ideas, consider a compact metric graph G in,ε of size (total length) ε, and attach to it
several edges of length of order one (or of infinite length), the leads. Clearly, when ε goes to zero,
the graph obtained in this way (let us denote it by Gε) looks like the star-graph formed by the leads
joined in a central vertex. Let us denote by Gout such star-graph and by v0 the central vertex.

Given a certain Hamiltonian (self-adjoint Schrödinger operator) Hε on Gε, we want to show that
there exists an Hamiltonian Hout on Gout such that, for small ε, Hout approximates (in a sense to be
specified) Hε. Of course, one main issue is to understand what boundary conditions in the vertex v0

characterize the domain of Hout.
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It turns out that, under several technical assumptions, the boundary conditions in v0 are fully
determined by the spectral properties of an auxiliary, ε-independent Hamiltonian defined on the graph
G in = G in,ε=1.

Below we briefly discuss these technical assumptions, and refer to Section 2 for the details.

(i) The Hamiltonian Hε on Gε is a self-adjoint realization of the operator −∆ + Bε on Gε, where Bε is
a potential term.

(ii) To set up the graph Gε we select N distinct vertices in G in,ε (we call them connecting vertices) and
attach to each of them one lead, which is either a finite or an infinite length edge. The domain of
Hε is characterized by Kirchhoff (also called standard or free) boundary conditions at the connecting
vertices, i.e., in each connecting vertex functions are continuous and the sum of the outgoing
derivatives equals zero.

(iii) Scale invariance; the small (or inner) part of the graph scales uniformly in ε, i.e., G in,ε = εG in.
The Hamiltonian Hε has a specific scaling property with respect to the parameter ε; loosely
speaking, up to a multiplicative factor, the “restriction” of Hε to G in,ε is unitarily equivalent
to an ε-independent operator on G in. The scale invariance property can be made precise by
reasoning in terms of Hamiltonians on the inner graph G in,ε. This is done in Section 4 below.
Here we just mention that this assumption forces the scaling on the in component of the potential
Bin,ε(x) = ε−2Bin(x/ε), x ∈ G in,ε, and, in the vertices of G in,ε, the Robin-type vertex conditions
(if any) also scale with ε accordingly.

(iv) The “restriction” of Hε to the leads does not depend on ε. In particular, Bout, the out component
of the potential, does not depend on ε.

We prove that it is always possible to identify an Hamiltonian Hout on Gout that approximates the
Hamiltonian Hε. The Hamiltonian Hout is a self-adjoint realization of the operator −∆ + Bout on Gout,
and it is characterized by scale invariant vertex conditions in v0, i.e., vertex conditions with no Robin
part (see [3], Section 1.4.2); in our notation, scale invariant means Θv = 0 in Equation (1). The precise
form of the possible effective Hamiltonians is given in Definitions 6 and 7 below.

The convergence of Hε to Hout is understood in the following sense. We look at the resolvent
operator Rε

z := (Hε − z)−1, z ∈ C\R, as an operator in the Hilbert space L2(Gε) = L2(Gout)⊕ L2(G in,ε).
In the limit ε → 0, the bounded operator Rε

z converges to an operator which is diagonal in the
decomposition L2(Gout)⊕ L2(G in,ε). The out/out component of the limiting operator is the resolvent
of a self-adjoint operator in L2(Gout), which we identify as the effective Hamiltonian on the star-graph.

Additionally, we characterize the limiting boundary conditions in the vertex v0 in terms of the
spectral properties of an auxiliary Hamiltonian on the (compact) graph G in = G in,ε=1. We distinguish
two mutually exclusive cases: in one case (that we call generic) zero is not an eigenvalue of the auxiliary
Hamiltonian; in the other case (we call it non-generic) zero is an eigenvalue of the auxiliary Hamiltonian.

In the generic case the effective Hamiltonian, denoted by H̊out, is characterized by Dirichlet (also
called decoupling) boundary conditions in the vertex v0, i.e., functions in its domain are zero in v0,
see Definition 6. From the point of view of applications this is the less interesting case, since the leads
are decoupled (no transmission through v0 is possible).

In the non-generic case the situation is more involved. If zero is an eigenvalue of the
auxiliary Hamiltonian one can identify a corresponding set of orthonormal eigenfunctions (in general
eigenvalues can have multiplicity larger than one, included the zero eigenvalue). In the domain of
the effective Hamiltonian Ĥout, the boundary conditions in v0 are associated to the values of these
eigenfunctions in the connecting vertices, see Definition 7. In this case, the boundary conditions in the
vertex v0 are scale invariant but, in general, not of decoupling type. For example, if the multiplicity of
the zero eigenvalue is one, and the corresponding eigenfunction assumes the same value in all the
connecting vertices, the boundary conditions are of Kirchhoff type.

The proof of the convergence is based on a Kreı̆n-type formula for the resolvent Rε
z. This formula

allows us to write Rε
z as a block matrix operator in the decomposition L2(Gε) = L2(Gout)⊕ L2(G in,ε)

(see Equation (31)). In the formula, the first term, R̊ε
z, is block diagonal and contains the resolvents
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of H̊out and H̊in,ε (a scaled down version of the auxiliary Hamiltonian, see Section 2.4); the second
term is non-trivial, and couples the out and in components to reconstruct the resolvent of the full
Hamiltonian Hε. As ε goes to zero, the off-diagonal components in Rε

z converge to zero, hence, the out
and in components are always decoupled in the limit. A careful analysis of the non-trivial term in
Formula (31) shows that it converges to zero in the generic case. In the non-generic case, instead,
the out/out component of the non-trivial term converges to a finite operator, and the whole out/out
component of Rε

z reconstructs the resolvent of the effective Hamiltonian Ĥ0.
The limiting behavior of Hε is essentially determined by the small ε asymptotics of the spectrum

of the inner Hamiltonian H̊in,ε. The scale invariance assumption implies that the eigenvalues of H̊in,ε

are given by λε
n = λn/ε2, where λn are the eigenvalues of the (scaled up) auxiliary Hamiltonian H̊in.

Obviously, all the non-zero eigenvalues move to infinity as ε → 0; the zero eigenvalue instead, if it
exists, persists, and for this reason it plays a special role in the analysis.

Closely related to our work is the paper by G. Berkolaiko, Y. Latushkin, and S. Sukhtaiev [4],
to which we refer also for additional references. In [4] the authors analyze the convergence of
Schrödinger operators on metric graphs with shrinking edges. Our setting is similar to the one in [4]
with several differences. In [4] there are no restrictions on the topology of the graph, i.e., Gout is
not necessarily a star-graph; outer edges can form loops, be connected among them or to arbitrarily
intricate finite length graphs. In [4], moreover, the scale invariance assumption is missing. With respect
to our work, however, the potential terms in [4] do not play an essential role in the limiting problem
(because they are uniformly bounded in the scaling parameter).

As it was done in [4], to analyze the convergence of Hε to Hout, since they are operators on different
Hilbert spaces, one could use the notion of δε-quasi unitary equivalence (or generalized norm resolvent
convergence) introduced by P. Exner and O. Post in the series of works [5–9]. In Theorems 1 and 2
we state our main results in terms of the expansion of the resolvent in the decomposition
L2(Gε) = L2(Gout)⊕ L2(G in,ε); and comment on the δε-quasi unitary equivalence of the operators Hε

and H̊out (or Ĥout) in Remark 6.
Our analysis, with the scaling on the potential Bin,ε(x) = ε−2Bin(x/ε), is also related to the

problem of approximating point-interactions on the real line through scaled potentials in the presence
of a zero energy resonance, see, e.g., [10]. The same type of scaling arises naturally also in the study of
the convergence of Schrödinger operators in thin waveguides to operators on graphs, see, e.g., [11–14].

Problems on graphs with a small compact core have been studied in several papers in the case in
which Gε is itself a star-graph, see, e.g., [15–19]. In particular, in the latter series of works, the authors
point out the role of the zero energy eigenvalue.

Also related to our work is the problem of the approximation of vertex conditions through
“physical Hamiltonians”. In [20] (see also references therein), it is shown that all the possible self-adjoint
boundary conditions at the central vertex of a star-graph, can be obtained as the limit of Hamiltonians
with δ-interactions and magnetic field terms on a graph with a shrinking inner part.

Instead of looking at the convergence of the resolvent, a different approach consists in the analysis
of the time dependent problem. This is done, e.g., in [21], for a tadpole-graph as the circle shrinks to
a point.

The paper is structured as follows. In Section 2 we introduce some notation, our assumptions
and present the main results, see Theorems 1 and 2. In Section 3 we discuss the Kreı̆n formulae for
the resolvents of Hε and Ĥout (the limiting Hamiltonian in the non-generic case). These formulae are
the main tools in our analysis. In Section 4 we discuss the scale invariance properties of the auxiliary
Hamiltonian, and other relevant operators. In Section 5 we prove Theorems 1 and 2. In doing so we
present the results with a finer estimate of the remainder, see Theorems 3 and 4. We conclude the paper
with two appendices: in Appendix A we briefly discuss the proofs of the Kreı̆n resolvent formulae
from Section 3; in Appendix B we prove some useful bounds on the eigenvalues and eigenfunctions
of H̊in.
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Index of Notation

For the convenience of the reader we recall here the notation for the Hamiltonians used in our
analysis. For the definitions we refer to Section 2 below.

• Hε is the full Hamiltonian.
• H̊in is the auxiliary Hamiltonian
• H̊in,ε is the scaled down auxiliary Hamiltonian (see Definition 2 and Section 4); H̊in = H̊in,ε=1.
• H̊out is the effective Hamiltonian in the generic case.
• Ĥout is the effective Hamiltonian in the non-generic case.
• H̊ε is the diagonal Hamiltonian H̊ε = diag(H̊out, H̊in,ε) in the decomposition L2(Gε) =

L2(Gout)⊕ L2(G in,ε) (see Section 3).

2. Preliminaries and Main Results

For a general introduction to metric graphs we refer to the monograph [3]. Here, for the
convenience of the reader, we introduce some notation and recall few basic notions that will be
used throughout the paper.

2.1. Basic Notions and Notation

To fix the ideas we start by selecting a collection of points, the vertices of the graph, and a
connection rule among them. The bonds joining the vertices are associated to oriented segments and
are the finite-length edges of the graph. Other edges can be of infinite length, and these edges are
connected only to one vertex and are associated to half-lines. In this way we obtained a metric graph,
see, e.g., Figure 1.

∞ ∞

∞

Figure 1. A metric graph with seven vertices (marked by dots) and 14 edges (three of which are
half-lines).

Given a metric graph G we denote by E the set of its edges and by V the set of its vertices. We shall
also use the notation |E | and |V| to denote the cardinality of E and V respectively. We shall always
assume that both |E | and |V| are finite.

For any e ∈ E , we identify the corresponding edge with the segment [0, `e] if e has finite length
`e > 0, or with [0,+∞) if e has infinite length.

Given a function ψ : G → C, for e ∈ E , ψe denotes its restriction to the edge e. With this notation
in mind one can define the Hilbert space

H :=
⊕
e∈E

L2(e),

with scalar product and norm given by

(φ, ψ)H := ∑
e∈E

(φe, ψe)L2(e) and ‖ψ‖H := (ψ, ψ)1/2
H .
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In a similar way one can define the Sobolev spaceH2 :=
⊕

e∈E H2(e), equipped with the norm

‖ψ‖H2 :=

(
∑
e∈E
‖ψe‖2

H2(e)

)1/2

.

Note that functions inH2 are continuous in the edges of the graph but do not need to be continuous
in the vertices.

For any vertex v ∈ V we denote by d(v) the degree of the vertex, this is the number of edges
having one endpoint identified by v, counting twice the edges that have both endpoints coinciding
with v (loops). Let Ev ⊆ E be the set of edges which are incident to the vertex v. For any vertex v
we order the edges in Ev in an arbitrary way, counting twice the loops. In this way, for an arbitrary
function ψ ∈ H2, one can define the vector Ψ(v) ∈ Cd(v) associated to the evaluation of ψ in v, i.e.,
the components of Ψ(v) are given by ψe(0) or ψe(`e), e ∈ Ev, depending whether v is the initial or
terminal vertex of the edge e, or by both values if e is a loop.

In a similar way one can define the vector Ψ′(v) ∈ Cd(v) with components ψ′e(0) and −ψ′e(`e),
e ∈ Ev. Note that in the definition of Ψ′(v), ψ′e denotes the derivative of ψe(x) with respect to x, and the
derivative in v is always taken in the outgoing direction with respect to the vertex.

We are interested in defining self-adjoint operators in H which coincide with the Laplacian,
possibly plus a potential term.

We denote by B the potential term in the operator, so that B : G → R is a real-valued function on
the graph; and denote by Be its restriction to the edge e. Additionally we assume that B is bounded
and compactly supported on G.

For every vertex v ∈ V we define a projection Pv : Cd(v) → Cd(v) and a self-adjoint operator Θv in
Ran Pv, both Pv and Θv can be identified with Hermitian d(v)× d(v) matrices.

It is well known, see, e.g., [3] and ([22], Example 5.2) that the operator HP,Θ defined by:

D(HP,Θ) :=
{

ψ ∈ H2| P⊥v Ψ(v) = 0 ; PvΨ′(v)−ΘvPvΨ(v) = 0 ∀v ∈ V
}

(1)

(HP,Θψ)e := −ψ′′e + Beψe ∀e ∈ E (2)

is self-adjoint. Instead of Equation (2), we shall write

HP,Θψ := −ψ′′ + Bψ, (3)

to be understood componentwise.
We remark that for every Pv and Θv as above, HP,Θ is a self-adjoint extension of the symmetric

operator Hmin

D(Hmin) :=
{

ψ ∈ H2|Ψ(v) = 0 ; Ψ′(v) = 0 ∀v ∈ V
}

Hminψ := −ψ′′ + Bψ.

2.2. Graphs with a Small Compact Core

We consider a graph Gε obtained by attaching several edges to a small compact core (a compact
metric graph of size ε).

We denote the compact core of the graph by G in,ε. The graph G in,ε is obtained by shrinking a
compact graph G in by means of a parameter 0 < ε < 1, more precisely, we set

G in,ε = εG in. (4)

We denote by E in the set of edges of the graph G in and by E in,ε the set of edges of the graph G in,ε.
In the graph G in (or, equivalently, in G in,ε) we select N distinct vertices that we label with v1, ..., vN ,

and refer to them as connecting vertices. We shall denote by C the set of connecting vertices. We denote



Symmetry 2019, 11, 359 6 of 29

by V in the set of all the remaining vertices, and call the elements of V in inner vertices (note that the set
V in may be empty).

To construct the graph Gε, we attach to each connecting vertex one additional edge which can be
an half-line or an edge of finite length (not dependent on ε). We shall call these additional edges outer
edges and denote by E out the corresponding set of edges; obviously |E out| = N. When needed, we shall
denote these edges by e1, ..., eN , so that the edge ej is connected to the vertex vj, j = 1, ..., N. Moreover
we shall use the notation

ψej ≡ ψj ej ∈ E out, j = 1, ..., N.

Note that if e ∈ E out is of finite length the endpoint which does not coincide with the connecting
vertex is of degree one (all the finite length outer edges are pendants).

We shall always assume, without loss of generality, that for each edge in E out the connecting
vertex is identified by x = 0.

We denote by E ε and V the sets of edges and vertices of the graph Gε. We note that E ε = E out ∪E in,ε

and V = V out ∪ C ∪ V in, where V out is the set of vertices in Gε which are neither connecting nor inner
vertices.

Remark 1. For any v ∈ C we denote by din(v) its degree as a vertex of the graph G in,ε, so that its degree as a
vertex of the graph Gε is d(v) = din(v) + 1.

As ε→ 0, the inner graph shrinks to one point, in the limit all the connecting vertices merge in
one vertex which we identify with the point xj = 0, xj being the coordinate along the edge ej ∈ E out,
j = 1, . . . , N. In the limit the graph Gε looks like a star-graph with N edges connected in the origin,
see Figure 2; we denote the star-graph by Gout.

∞ ∞

∞

Figure 2. The dashed lines represent the edges of G in,ε, the large dots the connecting vertices. The graph
Gout is obtained by merging the connecting vertices. In the example in the picture, Gout has three
infinite edges and one edge of finite length.

We define the Hilbert spaces:

Hε :=
⊕
e∈E ε

L2(e), Hout :=
⊕

e∈E out

L2(e), Hin,ε :=
⊕

e∈E in,ε

L2(e).

We remark that one can always think ofHε as the direct sum

Hε = Hout ⊕Hin,ε, (5)

and decompose each function ψ ∈ Hε as ψ = (ψout, ψin) with ψout ∈ Hout and ψin ∈ Hin,ε. When no
misunderstanding is possible, we omit the dependence on ε, moreover we simply write ψ, instead of
ψout or ψin.

In a similar way we introduce the Sobolev spaces

Hε
2 :=

⊕
e∈E ε

H2(e), Hout
2 :=

⊕
e∈E out

H2(e), Hin,ε
2 :=

⊕
e∈E in,ε

H2(e).
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2.3. Full Hamiltonian

Next we define an Hamiltonian Hε inHε (of the form given in Equations (1)–(3)); this is the object
of our investigation.

• Recall that if v ∈ V out, then d(v) = 1. For any v ∈ V out we fix an orthogonal projection
Pout

v : C→ C, and a self-adjoint operator Θout
v in Ran(Pout

v ). Since vertices in V out have degree
one, Pout

v is either 1 or 0; whenever Pout
v = 1 it makes sense to define Θout

v which turns out to
be the operator acting as the multiplication by a real constant. In other words, the boundary
conditions in v ∈ V out (of the form given in the definition of D(HP,Θ)) can be of Dirichlet type,
ψe(v) = 0; of Neumann type ψ′e(v) = 0; or of Robin type ψ′e(v) = αψe(v) with α ∈ R.
It would be possible to consider a more general setting in which the outer graph has a non trivial
topology, in same spirit of the work [4], but we will not pursue this goal.

• For any v ∈ C we define the orthogonal projection (see Remark 1 for the definition of d(v)):

Kv : Cd(v) → Cd(v), Kv := 1d(v)

(
1d(v), ·

)
Cd(v)

∀v ∈ C,

where 1d(v) denotes the vector (of unit norm) in Cd(v) defined by 1d(v) = (d(v))−1/2(1, ..., 1). In a
similar way, we define the orthogonal projection

Kin
v : Cdin(v) → Cdin(v), Kin

v := 1din(v)

(
1din(v), ·

)
Cdin(v)

∀v ∈ C,

where 1din(v) ∈ Cdin(v) is defined by 1din(v) = (din(v))−1/2(1, ..., 1). Both Kv and Kin
v have

one-dimensional range given by the span of the vectors 1d(v) and 1din(v) respectively.
A function ψ satisfies Kirchhoff conditions in the vertex v (it is continuous in v and the sum of
the outgoing derivatives in v equals zero) if and only if K⊥v Ψ(v) = 0 and KvΨ′(v) = 0.

• For any v ∈ V in we fix an orthogonal projection Pin
v : Cd(v) → Cd(v), and a self-adjoint operator

Θin,ε
v in Ran(Pin

v ).
• We fix an ε-dependent real-valued function Bε : Gε → R, such that in the out/in decomposition (5)

one has Bε = (Bout, Bin,ε). With Bout : Gout → R bounded and compactly supported.
• Scale invariance; recall that G in,ε = εG in, see Equation (4). We assume additionally: that Bin,ε(x) =

ε−2Bin(x/ε), where Bin : G in → R is bounded; and that Θin,ε
v = ε−1Θin

v , for all v ∈ V in. For a
discussion on the meaning and the main consequences of these assumptions we refer to Section 4.

Definition 1 (Hamiltonian Hε). We denote by Hε the self-adjoint operator inHε defined by

D(Hε) :=
{

ψ ∈ Hε
2| Pin

v
⊥

Ψ(v) = 0 , Pin
v Ψ′(v)−Θin,ε

v Pin
v Ψ(v) = 0 ∀v ∈ V in;

Pout
v
⊥Ψ(v) = 0 , Pout

v Ψ′(v)−Θout
v Pout

v Ψ(v) = 0 ∀v ∈ V out;

K⊥v Ψ(v) = 0 , KvΨ′(v) = 0 ∀v ∈ C
}

Hεψ := −ψ′′ + Bεψ ∀ψ ∈ D(Hε).

Remark 2. In the out/in decomposition one has

(Hεψ)out = −ψout ′′ + Boutψout

(Hεψ)in = −ψin ′′ + Bin,εψin.

Note that the action of the outer component of Hε does not depend on ε.
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Remark 3. By the definition of Kv, in each connecting vertex boundary conditions in D(Hε) are of
Kirchhoff-type: the function ψ is continuous in v ∈ C and

∑
e∼v

ψ′e(v) = 0 v ∈ C,

where the sum is taken on all the edges incident on v (counting loops twice) and the derivative is understood in
the outgoing direction from the vertex.

2.4. Auxiliary Hamiltonian

We are interested in the limit of the operator Hε as ε→ 0. We shall see that the limiting properties
of Hε are strongly related to spectral properties of the Hamiltonian H̊in,ε:

Definition 2 (Auxiliary Hamiltonian, scaled down version).

D(H̊in,ε) :=
{

ψ ∈ Hin,ε
2 | P

in
v
⊥

Ψ(v) = 0 , Pin
v Ψ′(v)−Θin,ε

v Pin
v Ψ(v) = 0 ∀v ∈ V in;

Kin
v
⊥

Ψ(v) = 0 , Kin
v Ψ′(v) = 0 ∀v ∈ C

} (6)

H̊in,εψ := −ψ′′ + Bin,εψ ∀ψ ∈ D(H̊in,ε).

LetHin = Hin,ε=1, and define the unitary scaling group

Uin,ε : Hin → Hin,ε , (Uin,εψin)(x) := ε−1/2ψin(x/ε);

its inverse is
Uin,ε−1

: Hin,ε → Hin , (Uin,ε−1
ψin)(x) = ε1/2ψin(εx).

By the scaling properties Θin,ε
v = ε−1Θin

v and Bin,ε(x/ε) = ε−2Bin(x), one infers the unitary relation

H̊in,ε = ε−2Uin,ε H̊inUin,ε−1
(7)

with H̊in defined on Hε and given by H̊in = H̊in,ε=1. One consequence of Equation (7) is that the
spectrum of H̊in,ε is related to the spectrum of H̊in by the relation σ(H̊in,ε) = ε−2σ(H̊in) (see Section 4
for more comments on the implications of the scale invariance assumption). For this reason, we prefer
to formulate the results in terms of the spectral properties of the ε-independent Hamiltonian H̊in

instead of the spectral properties of H̊in,ε.

Definition 3 (Auxiliary Hamiltonian H̊in). We call Auxiliary Hamiltonian the Hamiltonian H̊in = H̊in,ε=1

defined onHin.
LettingHin

2 = Hin,ε=1
2 , the domain and action of H̊in are given by

D(H̊in) =
{

ψ ∈ Hin
2 | Pin

v
⊥

Ψ(v) = 0 , Pin
v Ψ′(v)−Θin

v Pin
v Ψ(v) = 0 ∀v ∈ V in;

Kin
v
⊥

Ψ(v) = 0 , Kin
v Ψ′(v) = 0 ∀v ∈ C

} (8)

H̊inψ = −ψ′′ + Binψ ∀ψ ∈ D(H̊in).

The spectrum of H̊in consists of isolated eigenvalues of finite multiplicity, see, e.g., ([3],
Theorem 3.1.1). For n ∈ N, we denote by λn the eigenvalues of H̊in (counting multiplicity) and
by {ϕn}n∈N a corresponding set of orthonormal eigenfunctions.

Definition 4 (Generic/non-generic case). In the analysis of the limit of Hε we distinguish two cases:
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(1) Generic (or non-resonant, or decoupling) case. λ = 0 is not an eigenvalue of the operator H̊in.
(2) Non-generic (or resonant) case. λ = 0 is an eigenvalue of the operator H̊in.

In the non-generic case we denote by {ϕ̂k}k=1,...,m a set of (orthonormal) eigenfunctions corresponding to
the zero eigenvalue. By Equation (8), functions in D(H̊in) are continuous in the connecting vertices (see
also Remark 3). We denote by ϕ̂k(v), v ∈ C, the value of ϕ̂k in v, and define the vectors

ĉk := (ϕ̂k(v1), . . . , ϕ̂k(vN)) ∈ CN , k = 1, . . . , m, vj ∈ C, j = 1, . . . , N. (9)

Definition 5 (Ĉ – P̂). In the non-generic case, let Ĉ be the operator

Ĉ :=
m

∑
k=1

ĉk(ĉk, ·)CN : CN → CN .

Ĉ is a bounded self-adjoint operator (it is an N × N Hermitian matrix). Denote by Ran Ĉ ⊆ CN and
Ker Ĉ ⊆ CN , the range and the kernel of Ĉ respectively. One has that the subspaces Ran Ĉ and Ker Ĉ are
Ĉ-invariant. Moreover, CN = Ran Ĉ⊕Ker Ĉ. In what follows we denote by P̂ the orthogonal projection (Riesz
projection, see, e.g., ([23], Section I.2)) on Ran(Ĉ), and by P̂⊥ = IN − P̂ the orthogonal projection on Ker(Ĉ).

Remark 4. We note that q ∈ Ker Ĉ if and only if (ĉk, q)CN = 0 for all k = 1, . . . , m. To see that this indeed
the case, observe that if q ∈ Ker Ĉ then it must be (q, Ĉq)CN = 0, hence, ∑m

k=1 |(ĉk, q)CN |2 = 0, which in turn
implies (ĉk, q)CN = 0 for all k = 1, . . . , m. The other implication is trivial.

Since P̂⊥ ĉk ∈ Ker Ĉ, we infer 0 = (ĉk, P̂⊥ ĉk)CN = (P̂⊥ ĉk, P̂⊥ ĉk)CN = ‖P̂⊥ ĉk‖2
CN for all k = 1, . . . , m;

hence, P̂⊥ ĉk = 0, or, equivalently, ĉk ∈ Ran(Ĉ).

2.5. Effective Hamiltonians

We shall see that the definition of the limiting operator (effective Hamiltonian inHout) depends
on presence of a zero eigenvalue for H̊in (the occurrence of the generic case vs. the non-generic case).

Recall that for ψ ∈ Hout, we used ψj to denote the component of ψ on the edge ej attached to the
connecting vertex vj. Moreover, we assumed that the vertex vj is identified by x = 0. With this remark
in mind, given a function ψ ∈ Hout

2 we define the vectors

Ψ(0) := (ψ1(0), . . . , ψN(0))T ∈ CN , Ψ′(0) := (ψ′1(0), . . . , ψ′N(0))
T ∈ CN .

These correspond to Ψ(v0) and Ψ′(v0), as defined in Section 2.1, where v0 is the central vertex of
the star-graph Gout.

In the limit ε→ 0, the connecting vertices in G in,ε coincide, and can be identified with the vertex
v0 ≡ 0.

We distinguish two possible effective Hamiltonians inHout.

Definition 6 (Effective Hamiltonian, generic case). We denote by H̊out the self-adjoint operator in Hout

defined by

D(H̊out) :=
{

ψ ∈ Hout
2 | Pout

v
⊥Ψ(v) = 0 , Pout

v Ψ′(v)−Θout
v Pout

v Ψ(v) = 0 ∀v ∈ V out;

Ψ(0) = 0
} (10)

Houtψ := −ψ′′ + Boutψ ∀ψ ∈ D(H̊out).
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Definition 7 (Effective Hamiltonian, non-generic case). Let P̂ be the orthogonal projection given in
Definition 5. We denote by Ĥout the self-adjoint operator inHout defined by

D(Ĥout) :=
{

ψ ∈ Hout
2 | Pout

v
⊥Ψ(v) = 0 , Pout

v Ψ′(v)−Θout
v Pout

v Ψ(v) = 0 ∀v ∈ V out;

P̂⊥Ψ(0) = 0 , P̂Ψ′(0) = 0
}

Ĥoutψ := −ψ′′ + Boutψ ∀ψ ∈ D(Ĥout).

The boundary conditions in 0 in the definitions of D(H̊out) and D(Ĥout) are scale invariant
(see ([3], Section 1.4.2)).

2.6. Main Results

In what follows C denotes a generic positive constant independent on ε. Given two Hilbert spaces
X and Y, we denote by B(X, Y) (or simply by B(X) if X = Y) the space of bounded linear operators
from X to Y, and by ‖ · ‖B(X,Y) the corresponding norm. For any a ∈ R, we use the notationOB(X,Y)(ε

a)

to denote a generic operator from X to Y whose norm is bounded by Cεa for ε small enough.
Given a bounded operator A inHε we use the notation

A =

(
Aout,out Aout,in

Ain,out Ain,in

)
(11)

to describe its action in the out/in decomposition (5): here Au,v : Hv → Hu, u, v = out, in, are operators
defined according to

(Aψ)out =Aout,outψout + Aout,inψin

(Aψ)in =Ain,outψout + Ain,inψin.
(12)

Theorem 1. Let z ∈ C\R. In the generic case (see Definition 4)

(Hε − z)−1 =

(
(H̊out − z)−1 O

O O

)
+OB(Hε)(ε), (13)

where the expansion has to be understood in the out/in decomposition (11).

Theorem 2. Let z ∈ C\R. In the non-generic case (see Definition 4), let Ĉ0 be the restriction of Ĉ to Ran P̂.

(i) If Ker Ĉ ⊂ CN , Ĉ0 is invertible as an operator in P̂CN , and

(Hε− z)−1 =

(
(Ĥout − z)−1 O

O −z−1 ∑m
k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε

)
+OB(Hε)(ε

1/2),

(14)
where the expansion has to be understood in the out/in decomposition (11).

(ii) If Ker Ĉ = CN , then P̂ = 0, and expansion (14) holds true with Ĥout = H̊out, (ĉk, Ĉ−1
0 ĉk′)CN = 0 for

all k, k′ = 1, . . . , m, and the error term changed in OB(Hε)(ε).

(iii) If the vectors ĉk, k = 1, . . . , m, are linearly independent, then
(

δk,k′ − (ĉk, Ĉ−1
0 ĉk′)CN

)
= 0 for all

k, k′ = 1, . . . , m, and

(Hε − z)−1 =

(
(Ĥout − z)−1 O

O O

)
+OB(Hε)(ε

1/2). (15)

Remark 5. Finer estimates on the remainders in Equations (13) and (14) are given in Theorems 3 and 4 below.



Symmetry 2019, 11, 359 11 of 29

Remark 6. We recall and adapt to our setting the notion of δε-quasi unitary equivalence of operators acting
on different Hilbert spaces introduced by P. Exner and O. Post, see in particular ([7], Section 3.2) and ([9],
Chapter 4). See also ([4], Section 5) for a discussion on the application of this approach to the analysis of operators
on graphs with shrinking edges.

Let J be the operator

J : Hout → Hε, Jψout = (ψout, 0) for all ψout ∈ Hout,

where (ψout, 0) is understood in the decomposition (5). Its adjoint J∗ mapsHε inHout, and is given by:

J∗ : Hε → Hout, J∗ψ = ψout for all ψ = (ψout, ψin) ∈ Hε.

Note that J∗ J = Iout, where Iout is the identity inHout.
The operator Hε is δε-quasi unitarily equivalent to a self-adjoint operator Hout inHout if∥∥(I− J J∗)(Hε − z)−1∥∥

B(Hε)
≤ Cδε and

∥∥J(Hout − z)−1 − (Hε − z)−1 J
∥∥
B(Hout ,Hε)

≤ Cδε, (16)

for some z ∈ C\R.
Note that in the decomposition (12), one has

(I− J J∗)(Hε − z)−1ψ =
(
(Hε − z)−1)in,out

ψout +
(
(Hε − z)−1)in,in

ψin

and

(J(Hout − z)−1 − (Hε − z)−1 J)ψout =
((

(Hout − z)−1 −
(
(Hε − z)−1)out,out)

ψout,−
(
(Hε − z)−1)in,out

ψout
)

,

hence:
By Theorem 1, in the generic case the operator Hε is ε-quasi unitarily equivalent to the operator H̊out.
By Theorem 2–(iii), in the non-generic case, if the vectors ĉk, k = 1, . . . , m, are linearly independent,

the operator Hε is ε1/2-quasi unitarily equivalent to the operator Ĥout. More precisely, the second condition in
Equation (16) always holds true, while the first one holds true only under the additional assumption that the
vectors ĉk are linearly independent.

We refer to [9] for a comprehensive discussion on the comparison between operators acting on
different spaces.

3. Kreı̆n Resolvent Formulae

In this section we introduce the main tools in our analysis: the Kreı̆n-type resolvent formulae for
the resolvents of Hε and Ĥout. The proofs are postponed to Appendix A.

Given the Hilbert spaces Xout, Yout, Xin, and Yin, and a couple of operators Aout : Xout → Yout and
Ain : Xin → Yin, we denote by A := diag(Aout, Ain), the operator A : X → Y, with X := Xout ⊕ Xin

and Y := Yout ⊕ Yin, acting as A f := (Aout f out, Ain f in), for all f = ( f out, f in) ∈ X, f out ∈ Xout and
f in ∈ Xin.

We set
D(H̊ε) := D(H̊out)⊕ D(H̊in,ε) and H̊ε := diag(H̊out, H̊in,ε), (17)

with H̊out and H̊in,ε given as in Definitions 6 and 2
Given an operator A, we denote by ρ(A) its resolvent set; the resolvent of A is defined as (A− z)−1

for all z ∈ ρ(A).
For the resolvents of the relevant operators we introduce the shorthand notation

Rε
z := (Hε − z)−1 z ∈ ρ(Hε); (18)

R̊ε
z := (H̊ε − z)−1 z ∈ ρ(H̊ε) = ρ(H̊out) ∩ ρ(H̊in,ε); (19)
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R̊out
z := (H̊out − z)−1 z ∈ ρ(H̊out); R̂out

z := (Ĥout − z)−1 z ∈ ρ(Ĥout); (20)

R̊in,ε
z := (H̊in,ε − z)−1 z ∈ ρ(H̊in,ε). (21)

Obviously, all the operators in Equations (18)–(21) are well-defined and bounded for z ∈ C\R,
moreover R̊ε

z = diag(R̊out
z , R̊in,ε

z ).
Our aim is to write the resolvent difference Rε

z − R̊ε
z in a suitable block matrix form, associated

to the off-diagonal matrix Θ in Equation (29). To do so we follow the approach of Posilicano [22,24].
All the self-adjoint extensions of the symmetric operator obtained by restricting a given self-adjoint
operator to the kernel of a given map τ are parametrized by a projection P and a self-adjoint operator
Θ in Ran P. We choose the reference operator H̊ε and the map τ so that the Hamiltonian of interest
Hε is the self-adjoint extension parametrized by the identity and the self-adjoint operator given by
the off-diagonal matrix Θ. The Kreı̆n formula for the resolvent difference Rε

z − R̊ε
z, see Lemma 2,

is obtained within the approach from [22,24].
We define the maps:

τout : Hout
2 → CN τoutψ := Ψ′(0); (22)

τin : Hin,ε
2 → CN

τinψ :=

(
1√

din(v1)
(1din(v1)

, Ψ(v1))Cdin(v1)
, ...,

1√
din(vN)

(1din(vN), Ψ(vN))Cdin(vN )

)T

.
(23)

Moreover we set,

τ : Hε
2 = Hout

2 ⊕H
in,ε
2 → C2N τ := diag(τout, τin).

Note that we are using the identification C2N = CN ⊕CN .
The following maps are well-defined and bounded

Ğout
z : Hout → CN Ğout

z := τoutR̊out
z z ∈ ρ(H̊out)

and
Ğin,ε

z : Hin,ε → CN Ğin,ε
z := τinR̊in,ε

z z ∈ ρ(H̊in,ε). (24)

Moreover we set

Ğε
z : Hε = Hout ⊕Hin,ε → C2N Ğε

z := diag(Ğout
z , Ğin,ε

z ),

for z ∈ ρ(H̊out) ∩ ρ(H̊in,ε). Note that Ğε
z = τR̊ε

z and that all the maps above are well-defined bounded
operators for z ∈ C\R.

The adjoint maps (in z̄) are denoted by

Gout
z : CN → Hout Gout

z := Ğout∗
z̄ ,

Gin,ε
z : CN → Hin,ε Gin,ε

z := Ğin,ε∗
z̄ , (25)

(∗ denoting the adjoint) and
Gε

z : C2N → Hε Gε
z := Ğε∗

z̄ .

Obviously Gε
z = diag(Gout

z , Gin,ε
z ) to be understood as an operator from C2N = CN ⊕ CN to

Hε = Hout ⊕Hin,ε.
We note that, see Remark A2, Gout

z : CN → Hout
2 and Gin,ε

z : CN → Hin,ε
2 , for all z ∈ ρ(H̊out) and

z ∈ ρ(H̊in,ε) respectively, so that the maps (N × N, z-dependent matrices)

Mout
z : CN → CN , Mout

z := τoutGout
z z ∈ ρ(H̊out) (26)
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Min,ε
z : CN → CN , Min,ε

z := τinGin,ε
z z ∈ ρ(H̊in,ε), (27)

are well defined. Moreover, we set

Mε
z : C2N → C2N , Mε

z := diag(Mout
z , Min,ε

z ) z ∈ ρ(H̊out) ∩ ρ(H̊in,ε) = ρ(H̊ε); (28)

obviously Mε
z = τGε(z).

In the following Lemmata we give two Kreı̆n-type resolvent formulae: one allows to express the
resolvent of Ĥout in terms of the resolvent of H̊out; the other gives the resolvent of Hε in terms of the
resolvent of H̊ε. For the proofs we refer to Appendix A, Appendix A.1.

Lemma 1. Let P̂ be an orthogonal projection in CN , and Ĥout and H̊out be the Hamiltonians defined according
to Definitions 7 and 6. Then, for any z ∈ ρ(Ĥout)∩ ρ(H̊out), the map P̂Mout

z P̂ : P̂CN → P̂CN is invertible and

R̂out
z = R̊out

z − Gout
z P̂

(
P̂Mout

z P̂
)−1P̂Ğout

z .

Lemma 2. Let Θ be the 2N × 2N block matrix

Θ =

(
ON IN
IN ON

)
. (29)

Then, for any z ∈ ρ(Hε) ∩ ρ(H̊ε), the map (Mε
z −Θ) : C2N → C2N is invertible and

Rε
z = R̊ε

z − Gε
z
(

Mε
z −Θ

)−1Ğε
z.

We conclude this section with an alternative formula for the resolvent Rε
z. We refer to Appendix A,

Appendix A.2, for the proof.

Lemma 3. Let z ∈ C\R, then the maps (N × N, z-dependent matrices)

Min,ε
z Mout

z − IN : CN → CN and Mout
z Min,ε

z − IN : CN → CN (30)

are invertible. Moreover,

Rε
z = R̊ε

z − Gε
z


(

Min,ε
z Mout

z − IN
)−1Min,ε

z
(

Min,ε
z Mout

z − IN
)−1

(
Mout

z Min,ε
z − IN

)−1 Mout
z
(

Min,ε
z Mout

z − IN
)−1

 Ğε
z. (31)

4. Scale Invariance

In this section we discuss the scale invariance properties of H̊in,ε and collect several formulae
concerning the operators R̊in,ε

z , Ğin,ε
z , Gin,ε

z , and Min,ε
z .

Recall that we have denoted by λn and {ϕn}n∈N the eigenvalues and a corresponding set of
orthonormal eigenfunctions of H̊in.

The eigenvalues of H̊in,ε (counting multiplicity) and a corresponding set of orthonormal
eigenfunctions are given by

λε
n = ε−2λn ; ϕε

n(x) = ε−1/2 ϕn(x/ε), (32)

where λn are the eigenvalues of H̊in, and ϕn the corresponding (orthonormal) eigenfunctions.
By the spectral theorem and by the scaling properties (32), R̊in,ε

z is given by

R̊in,ε
z = ∑

n∈N

ϕε
n(ϕε

n, ·)Hin,ε

λε
n − z

= ε2 ∑
n∈N

ϕε
n(ϕε

n, ·)Hin,ε

λn − ε2z
. (33)
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Hence, its integral kernel can be written as

R̊in,ε
z (x, y) = ε ∑

n∈N

ϕn(x/ε)ϕn(y/ε)

λn − ε2z
x, y ∈ G in,ε. (34)

Since there exists a positive constant C such that supx∈G in |ϕn(x)| ≤ C and λn ≥ Cn2 for
n large enough (see Appendix B), the series in Equation (34) is uniformly convergent for x, y ∈
G in,ε. Hence, we can write the operators Ğin,ε

z and Gin,ε
z , and the matrix Min,ε

z in a similar way,
see Equations (35) and (36) below.

Note that, since functions in D(H̊in,ε) are continuous in the connecting vertices, the eigenfunctions
ϕε

n can be evaluated in the connecting vertices, and, by the definition of τin (see Equation (23)), one has

τin ϕε
n = (ϕε

n(v1), . . . , ϕε
n(vN))

T .

So that, for any eigenfunction ϕε
n we can define the vector cε

n as

cε
n := τin ϕε

n.

We note that cε
n = ε−1/2cn, with

cn = (ϕn(v1), . . . , ϕn(vN))
T ,

and that the vectors cn are defined in the same way as the vectors ĉk in Equation (9).

Remark 7. In the non-generic case, zero is an eigenvalue of H̊in,ε. We denote by {ϕ̂ε
k}k=1,...,m the corresponding

set of (orthonormal) eigenfunctions given by ϕ̂ε
k(x) = ε−1/2 ϕ̂k(x/ε) where ϕ̂k are the eigenfunctions

corresponding to the eigenvalue zero of H̊in. The vectors ĉε
k := τin ϕ̂ε

k are related to the vectors ĉk by the
identity ĉε

k = ε−1/2 ĉk.

By the discussion above, and by the definitions (24), (25), and (27), we obtain

Ğin,ε
z = ε3/2 ∑

n∈N

cn(ϕε
n, ·)Hin,ε

λn − ε2z
; Gin,ε

z = ε3/2 ∑
n∈N

ϕε
n(cn, ·)CN

λn − ε2z
, (35)

and

Min,ε
z = ε ∑

n∈N

cn(cn, ·)CN

λn − ε2z
. (36)

5. Proof of Theorems 1 and 2

This section is devoted to the proofs of Theorems 1 and 2. Actually, we shall prove a finer version
of the results with more precise estimates of the remainders, see Theorems 3 and 4 below.

Remark 8. By Equation (31), it follows that, in the out/in decomposition (11), the resolvent Rε
z can be

written as

Rε
z =

(
R̊out

z O
O R̊in,ε

z

)
−
(
Rout,out,ε

z Rout,in,ε
z

Rin,out,ε
z Rin,in,ε

z

)
(37)

with

Rout,out,ε
z = Gout

z
(

Min,ε
z Mout

z − IN
)−1Min,ε

z Ğout
z ; (38)

Rin,out,ε
z = Gin,ε

z
(

Mout
z Min,ε

z − IN
)−1Ğout

z ; (39)

Rout,in,ε
z = Gout

z
(

Min,ε
z Mout

z − IN
)−1Ğin,ε

z ; (40)

Rin,in,ε
z = Gin,ε

z Mout
z
(

Min,ε
z Mout

z − IN
)−1Ğin,ε

z . (41)
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Note that since Mz = M∗z̄ holds true both for the “out” and “in” M-matrices (see Equation (A2)),
one infersRin,out,ε

z = Rout,in,ε∗
z̄ .

5.1. Generic Case. Proof of Theorem 1

In this section we study the limit of the relevant quantities in the generic case and prove Theorem 1.

Proposition 1. Let z ∈ C\R. In the generic case,

R̊in,ε
z = OB(Hin,ε)(ε

2); (42)

Ğin,ε
z = OB(Hin,ε ,CN)(ε

3/2) ; Gin,ε
z = OB(CN ,Hin,ε)(ε

3/2). (43)

Proof. We prove first Claim (42). For any ψin ∈ Hin,ε, since {ϕε
n}n∈N is an orthonormal set of

eigenfunctions inHin,ε, and by Equation (33), we infer

‖R̊in,ε
z ψin‖Hin,ε = ε2

(
∑

n∈N

|(ϕε
n, ψin)Hin,ε |2
|λn − ε2z|2

)1/2

≤ Cε2‖ψin‖Hin,ε ,

where in the latter inequality we used the bound |λn − ε2z|−2 ≤ 4|λn|−2 ≤ C, which holds true in the
generic case because |λn − ε2z| ≥ |λn|/2 ≥ C for all n ∈ N and ε small enough.

To prove the first claim in Equation (43), let ψin ∈ Hin,ε, then

Ğin,ε
z ψin = ε3/2 ∑

n∈N

cn(ϕε
n, ψin)Hin,ε

λn − ε2z
.

Hence, from the Cauchy–Schwarz inequality,

‖Ğin,ε
z ψin‖CN ≤ε3/2 ∑

n∈N

‖cn‖CN |(ϕε
n, ψin)Hin,ε |

|λn − ε2z|

≤ε3/2‖ψin‖Hin,ε

(
∑

n∈N

‖cn‖2
CN

|λn − ε2z|2

)1/2

≤ C ε3/2‖ψin‖Hin,ε ,

because ‖cn‖2
CN ≤ C and ∑n∈N |λn − ε2z|−2 ≤ C ∑n∈N |λn|−2 ≤ C. This proves the first Claim in

Equation (43); the second one is trivial, being Gin,ε
z the adjoint of Ğin,ε

z̄ .

Proposition 2. Let z ∈ C\R. In the generic case,

Min,ε
z = OB(CN)(ε). (44)

Proof. Recall Equation (36) and note that for any q ∈ CN ,

‖Min,ε
z q‖CN ≤ ε ∑

n∈N

‖cn‖CN |(cn, q)CN |
|λn − ε2z| ≤ ε‖q‖CN ∑

n∈N

‖cn‖2
CN

|λn − ε2z| ≤ Cε‖q‖CN ,

because ‖cn‖2
CN ≤ C and ∑n∈N |λn − ε2z|−1 ≤ C ∑n∈N |λn|−1 ≤ C.

Theorem 3. Let z ∈ C\R. In the generic case

Rε
z =

(
R̊out

z +OB(Hout)(ε) OB(Hin,ε ,Hout)(ε3/2)

OB(Hout ,Hin,ε)(ε
3/2) OB(Hin,ε)(ε

2)

)
, (45)
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where the expansion has to be understood in the out/in decomposition (11).

Proof. Note that
(

Min,ε
z Mout

z − IN
)−1

= OCN (1) by Equation (44) and because Mout
z is bounded and

does not depend on ε. Hence,
(

Min,ε
z Mout

z − IN
)−1Min,ε

z = OCN (ε).
To conclude, by Equations (38)–(41), and by expansions (43), we infer: Rout,out,ε

z = OB(Hout)(ε);

Rout,in,ε
z = OB(Hin,ε ,Hout)(ε3/2); Rin,out,ε

z = OB(Hout ,Hin,ε)(ε
3/2) (this is obvious since it is the adjoint of

Rout,in,ε
z̄ ); andRin,in,ε

z = OB(Hin,ε)(ε
3).

Expansion (45) follows by taking into account the bound (42), and from Remark 8.

Theorem 1 is a direct consequence of Theorem 3.

5.2. Non-Generic Case. Proof of Theorem 2

In this section we study the limit of the relevant quantities in the non-generic case and prove
Theorem 2.

Recall that, in the non-generic case, {ϕ̂ε
k}k=1,...,m denotes a set of orthonormal eigenfunctions

corresponding to the zero eigenvalue, see also Remark 7.

Proposition 3. Let z ∈ C\R. In the non-generic case

R̊in,ε
z =−

m

∑
k=1

ϕ̂ε
k(ϕ̂ε

k, ·)Hin,ε

z
+OB(Hin,ε)(ε

2); (46)

Ğin,ε
z =−

m

∑
k=1

ĉk(ϕ̂ε
k, ·)Hin,ε

ε1/2z
+OB(Hin,ε ,CN)(ε

3/2); (47)

Gin,ε
z =−

m

∑
k=1

ϕ̂ε
k(ĉk, ·)CN

ε1/2z
+OB(CN ,Hin,ε)(ε

3/2). (48)

Proof. We prove first Claim (46). By Equation (33) we infer

R̊in,ε
z = −

m

∑
k=1

ϕ̂ε
k(ϕ̂ε

k, ·)Hin,ε

z
+ ε2 ∑

n:λn 6=0

ϕε
n(ϕε

n, ·)Hin,ε

λn − ε2z
. (49)

Note that the second sum runs over λn 6= 0, hence one has the bound |λn − ε2z| ≥ |λn|/2 ≥ C,
for ε small enough. For this reason, the bound in Equation (46) on the second term at the r.h.s. of
Equation (49) can be obtained with an argument similar to the one used in the proof of bound (42).

To prove Claim (47) we proceed in a similar way. We note that, see Equation (35),

Ğin,ε
z = −

m

∑
k=1

ĉk(ϕ̂ε
k, ·)Hin,ε

ε1/2z
+ ε3/2 ∑

n:λn 6=0

cn(ϕε
n, ·)Hin,ε

λn − ε2z
,

and bound the second term at the r.h.s. by reasoning in the same way as in the proof of Proposition 1.
Claim (48) follows by noticing that Gin,ε

z is the adjoint of Ğin,ε
z̄ .

Next we prove a proposition on the expansion of the N × N, z-dependent matrix Min,ε
z . Recall

that Ĉ was defined in Definition 5.

Proposition 4. Let z ∈ C\R. In the non-generic case,

Min,ε
z = − 1

εz
Ĉ +OB(CN)(ε). (50)
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Proof. The claim immediately follows from Equation (36), after noticing that

Min,ε
z = − 1

εz
Ĉ + ε ∑

n:λn 6=0

cn(cn, ·)CN

λn − ε2z

and by treating the second term at the r.h.s. with argument similar to the one used in the proof of
Proposition 2.

We set
M̃in,ε

z := εMin,ε
z

and recall that Mout
z is invertible (see Remark A3), then

(Min,ε
z Mout

z − IN)
−1 = εMout

z
−1

(M̃in,ε
z − εMout

z
−1

)−1. (51)

In the following proposition we give an expansion formula for the term (M̃in,ε
z − εMout

z
−1

)−1 in
the non-generic case.

Proposition 5. Let z ∈ C\R. In the non-generic case, decompose the space CN as CN = P̂CN ⊕ P̂⊥CN ,
and denote by Ĉ0 the restriction of Ĉ to P̂CN . Then, the map P̂⊥Mout

z
−1P̂⊥ is invertible in P̂⊥CN .

Set
Nz := (P̂⊥Mout

z
−1P̂⊥)−1 : P̂⊥CN → P̂⊥CN , (52)

then

(M̃in,ε
z − εMout

z
−1

)−1

=−
(

zĈ−1
0 +OB(P̂CN)(ε) −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz +OB(P̂⊥CN ,P̂CN)(ε)

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 +OB(P̂CN ,P̂⊥CN)(ε) ε−1Nz +OB(P̂⊥CN)(1)

)
,

(53)

to be understood in the decomposition CN = P̂CN ⊕ P̂⊥CN .

Proof. We postpone the proof of the fact that the map P̂⊥Mout
z
−1P̂⊥ is invertible in P̂⊥CN to the

appendix, see Remark A4.
Next we prove that the expansion formula (53) holds true. We start by noticing that the map

z−1Ĉ + εMout
z
−1 is invertible. In fact, by Remark A4 and since (q, Ĉq)CN = ∑m

k=1 |(ĉk, q)CN |2 ≥ 0,
we infer

Im
(
q, (z−1Ĉ + εMout

z
−1

)q
)
CN = − Im z

|z|2 (q, Ĉq)CN − ε Im z‖Gout
z Mout

z
−1q‖2

Hout 6= 0,

because it is the sum of two non-positive (or non-negative) terms and ‖Gout
z Mout

z
−1q‖2

Hout 6= 0 by the

injectivity of Gout
z Mout

z
−1, see Remark A1.

Moreover we have the a-priori estimate

(M̃in,ε
z − εMout

z
−1

)−1 = OB(CN)(ε
−1). (54)

The latter follows from (see also Equation (A3))

‖q‖CN‖(M̃in,ε
z − εMout

z
−1

)q‖CN ≥|(q, M̃in,ε
z − εMout

z
−1q)CN |

≥| Im(q, M̃in,ε
z − εMout

z
−1q)CN |

=ε| Im z|(‖Gin,ε
z q‖2

Hin,ε + ‖Gout
z Mout

z
−1q‖2

Hout) ≥ εCz‖q‖2
CN ,
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for some positive constant Cz, from the injectivity of Gout
z Mout

z
−1. Hence, setting q = (M̃in,ε

z −
εMout

z
−1

)−1 p, it follows that ‖(M̃in,ε
z − εMout

z
−1

)−1 p‖CN ≤ (εCz)−1‖p‖CN .
Next we use the expansion (see Equation (50))

M̃in,ε
z = −1

z
Ĉ +OB(CN)(ε

2), (55)

which, together with the a-priori estimate (54), gives

(M̃in,ε
z − εMout

z
−1

)−1 =− (z−1Ĉ + εMout
z
−1

)−1 + (z−1Ĉ + εMout
z
−1

)−1OB(CN)(ε
2)(M̃in,ε

z − εMout
z
−1

)−1

=− (z−1Ĉ + εMout
z
−1

)−1 + (z−1Ĉ + εMout
z
−1

)−1OB(CN)(ε). (56)

Here we used the formula (A + B)−1 = A−1 − A−1B(A + B)−1. Note that by using instead the
complementary formula (A + B)−1 = A−1 − (A + B)−1BA−1, we obtain

(M̃in,ε
z − εMout

z
−1

)−1 = −(z−1Ĉ + εMout
z
−1

)−1 +OB(CN)(ε)(z
−1Ĉ + εMout

z
−1

)−1. (57)

Next we analyze the term (z−1Ĉ + εMout
z
−1

)−1.
We start by noticing that the map z−1Ĉ0 + εP̂Mout

z
−1P̂ : P̂CN → P̂CN is invertible, because Ĉ0 is

invertible in P̂CN and εP̂Mout
z
−1P̂ = OCN (ε).

By the identification (to be understood in the decomposition CN = P̂CN ⊕ P̂⊥CN)

Mout
z
−1

=

(
P̂Mout

z
−1P̂ P̂Mout

z
−1P̂⊥

P̂⊥Mout
z
−1P̂ P̂⊥Mout

z
−1P̂⊥

)
, (58)

we have the identity

z−1Ĉ + εMout
z
−1

=

(
z−1Ĉ0 + εP̂Mout

z
−1P̂ εP̂Mout

z
−1P̂⊥

εP̂⊥Mout
z
−1P̂ εP̂⊥Mout

z
−1P̂⊥

)
.

Hence, from the block-matrix inversion formula, we obtain

(z−1Ĉ + εMout
z
−1

)−1 =

(
Dε

z −Dε
z P̂Mout

z
−1P̂⊥Nz

−Nz P̂⊥Mout
z
−1P̂Dε

z ε−1Nz + Nz P̂⊥Mout
z
−1P̂Dε

z P̂Mout
z
−1P̂⊥Nz

)
,

with Dε
z : P̂CN → P̂CN given by

Dε
z :=

(
z−1Ĉ0 + εP̂Mout

z
−1P̂− εP̂Mout

z
−1P̂⊥(P̂⊥Mout

z
−1P̂⊥)−1P̂⊥Mout

z
−1P̂

)−1
;

note that Dε
z is well-defined because it is the inverse of a map of the form z−1Ĉ0 + OB(P̂CN)(ε),

and z−1Ĉ0 is invertible in P̂CN .
Moreover, it holds true,

Dε
z = zĈ−1

0 +OB(P̂CN)(ε).

Hence,

(z−1Ĉ + εMout
z
−1

)−1

=

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz + zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 P̂Mout
z
−1P̂⊥Nz

)
+OB(CN)(ε).
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The latter can also be written as

(z−1Ĉ + εMout
z
−1

)−1 =

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)
+OB(CN)(ε).

Using this expansion formula in Equation (56) we obtain

(M̃in,ε
z − εMout

z
−1

)−1

=−
(

zĈ−1
0 −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)

+

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)
OB(CN)(ε) +OB(CN)(ε)

=−
(

zĈ−1
0 +OB(P̂CN)(ε) −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz +OB(P̂⊥CN ,P̂CN)(ε)

OB(P̂CN ,P̂⊥CN)(1) ε−1Nz +OB(P̂⊥CN)(1)

)
.

On the other hand, using Equation (57), we obtain

(M̃in,ε
z − εMout

z
−1

)−1 =−
(

zĈ−1
0 −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)

+OB(CN)(ε)

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)
+OB(CN)(ε)

=−
(

zĈ−1
0 +OB(P̂CN)(ε) OB(P̂⊥CN ,P̂CN)(1)

−zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 +OB(P̂CN ,P̂⊥CN)(ε) ε−1Nz +OB(P̂⊥CN)(1)

)
.

Hence Expansion (53) must hold true

Recall that, for Im z 6= 0, P̂Mout
z P̂ is invertible in P̂CN , see Remark A3.

Proposition 6. Let z ∈ C\R. In the non-generic case,

(Min,ε
z Mout

z − IN)
−1Min,ε

z = P̂(P̂Mout
z P̂)−1P̂ +OB(CN)(ε).

Proof. Taking into account Expansion (55), rewritten in the decomposition CN = P̂CN ⊕ P̂⊥CN ,
one has

M̃in,ε
z = −1

z
Ĉ +OB(CN)(ε

2) = −
(

z−1Ĉ0 0
0 0

)
+OB(CN)(ε

2).

So that, by Equation (53),

(M̃in,ε
z − εMout

z
−1

)−1M̃in,ε
z =

(
IP̂CN 0

−Nz P̂⊥Mout
z
−1P̂ 0

)
+OB(CN)(ε).
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By the latter expansion and by the identification (58) it follows that (recall Equation (51) and the
definition of Nz in Equation (52))

(Min,ε
z Mout

z − IN)
−1Min,ε

z

=Mout
z
−1

(M̃in,ε
z − εMout

z
−1

)−1M̃in,ε
z

=

(
P̂Mout

z
−1P̂ P̂Mout

z
−1P̂⊥

P̂⊥Mout
z
−1P̂ P̂⊥Mout

z
−1P̂⊥

)(
IP̂CN 0

−Nz P̂⊥Mout
z
−1P̂ 0

)
+OB(CN)(ε)

=

(
P̂Mout

z
−1P̂− P̂Mout

z
−1P̂⊥Nz P̂⊥Mout

z
−1P̂ 0

0 0

)
+OB(CN)(ε). (59)

To conclude, we apply the block-matrix inversion formula to Equation (58) to obtain

Mout
z =

(
D̃z −D̃z P̂Mout

z
−1P̂⊥Nz

−Nz P̂⊥Mout
z
−1P̂D̃z Nz + Nz P̂⊥Mout

z
−1P̂D̃z P̂Mout

z
−1P̂⊥Nz

)
,

with
D̃z = (P̂Mout

z
−1P̂− P̂Mout

z
−1P̂⊥Nz P̂⊥Mout

z
−1P̂)−1.

Hence it must be

P̂Mout
z P̂ = D̃z = (P̂Mout

z
−1P̂− P̂Mout

z
−1P̂⊥Nz P̂⊥Mout

z
−1P̂)−1,

so that
(P̂Mout

z P̂)−1 = P̂Mout
z
−1P̂− P̂Mout

z
−1P̂⊥Nz P̂⊥Mout

z
−1P̂.

This, together with Equation (59), allows us to infer the expansion

(Min,ε
z Mout

z − IN)
−1Min,ε

z =

(
(P̂Mout

z P̂)−1 0
0 0

)
+OB(CN)(ε) = P̂(P̂Mout

z P̂)−1P̂ +OB(CN)(ε)

and conclude the proof of the proposition.

We are now ready to state and prove the main theorem for the non-generic case. In the statement
of the theorem, we assume that Ker Ĉ ⊂ CN , i.e., P̂ 6= 0. In this way the quantity (ĉk, Ĉ−1

0 ĉk′)CN is
certainly well defined. We discuss the case Ker Ĉ = CN (i.e., P̂ = 0) separately in the proof of point (ii)
of Theorem 2 (after the proof of Theorem 4).

Theorem 4. Let z ∈ C\R. In the non-generic case assume that Ker Ĉ ⊂ CN , then

Rε
z =

(
R̂out

z +OB(Hout)(ε) OB(Hin,ε ,Hout)(ε1/2)

OB(Hout ,Hin,ε)(ε
1/2) −z−1 ∑m

k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε +OB(Hin,ε)(ε).

)
,

where the expansion has to be understood in the out/in decomposition (11).

Proof. We analyze term by term the r.h.s. in Equation (37).
Term out/out: by Proposition 6 and Lemma 1, it immediately follows that

R̊out
z −Rout,out,ε

z = R̂out
z +OB(Hout)(ε).
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Term out/in: by Equation (51) and by the definition of Rout,in,ε
z , recalling that Gout

z and Mout
z
−1

are bounded, it is enough to prove that

ε(M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z = OB(Hin,ε ,CN)(ε

1/2). (60)

Taking into account the fact that for all ψ ∈ Hin,ε, ‖∑m
k=1 ĉk(ϕ̂ε

k, ψ)Hin,ε‖CN ≤ C‖ψ‖Hin,ε , and the
fact that ∑m

k=1 ĉk(ϕ̂ε
k, ψ)Hin,ε ∈ P̂CN (it is a linear combination of vectors in P̂CN , see Rem 4) we infer

that (see Equation (47)),

Ğin,ε
z ψ = qε + pε qε := −

m

∑
k=1

ĉk(ϕ̂ε
k, ψ)Hin,ε

ε1/2z

with qε ∈ P̂CN , ‖qε‖CN ≤ Cε−1/2‖ψ‖Hin,ε , and ‖pε‖CN ≤ Cε3/2‖ψ‖Hin,ε .
Hence, by the expansion (53), we infer

ε(M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z ψ

=− ε
(
zĈ−1

0 − zNz P̂⊥Mout
z
−1P̂Ĉ−1

0 +OB(CN)(ε)
)
qε + ε(M̃in,ε

z − εMout
z
−1

)−1 pε.
(61)

Here the leading term is
ε
(
zĈ−1

0 − zNz P̂⊥Mout
z
−1P̂Ĉ−1

0
)
qε,

and for it we have the bound

‖ε
(
zĈ−1

0 − zNz P̂⊥Mout
z
−1P̂Ĉ−1

0
)
qε‖CN ≤ Cε1/2‖ψ‖Hin,ε .

The remainder is bounded by

‖OB(CN)(ε
2)qε + ε(M̃in,ε

z − εMout
z
−1

)−1 pε‖CN ≤ Cε2‖qε‖CN + C‖pε‖CN ≤ Cε3/2‖ψ‖Hin,ε ;

in the latter bound we used (M̃in,ε
z − εMout

z
−1
)−1 = OB(CN)(ε

−1), see Equation (53) (see also Equation (54)).
Hence,

‖ε(M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z ψ‖CN ≤ Cε1/2‖ψ‖Hin,ε ,

and the bound (60) holds true.
The bound on the term in/out follows immediately by noticing thatRin,out,ε

z = Rout,in,ε∗
z̄ .

Term in/in; by Equation (51), we have that

Rin,in,ε
z = εGin,ε

z (M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z .

Taking into account Equation (61) and the expansion (48), we infer that, for all ψ ∈ Hin,ε the
leading term inRin,in,ε

z ψ is given by

m

∑
k=1

ϕ̂ε
k(ĉk, ·)CN

ε1/2z
(
ε
(
zĈ−1

0 − zNz P̂⊥Mout
z
−1P̂Ĉ−1

0
)
qε
)
=ε1/2

m

∑
k=1

ϕ̂ε
k(ĉk, Ĉ−1

0 qε)CN

=− 1
z

m

∑
k,k′=1

ϕ̂ε
k(ĉk, Ĉ−1

0 ĉk′)CN (ϕ̂ε
k′ , ψ)Hin,ε .

the remainder being of order ε. From the latter formula and from the expansion (46) we infer

R̊in,ε
z −Rin,in,ε

z = −z−1
m

∑
k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε +OB(Hin,ε)(ε).
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Theorem 2-(i) follows immediately from Theorem 4.

Proof of Theorem 2 - (ii). If Ker Ĉ = CN then ĉk = 0, for all k = 1, . . . , m, see Remark 4. Hence,
expansions (47), (48), and (50) read respectively

Ğin,ε
z = OB(Hin,ε ,CN)(ε

3/2); Gin,ε
z = OB(CN ,Hin,ε)(ε

3/2); Min,ε
z = OB(CN)(ε).

Reasoning along the lines of the analysis of the generic case, see the proof of Theorem 3, and taking
into account the expansion (46), one readily infers

Rε
z =

(
R̊out

z +OB(Hout)(ε) OB(Hin,ε ,Hout)(ε3/2)

OB(Hout ,Hin,ε)(ε
3/2) −∑m

k=1
ϕ̂ε

k(ϕ̂ε
k ,·)Hin,ε
z +OB(Hin,ε)(ε

2),

)

which implies the statement in Theorem 2 - (ii).

Proof of Theorem 2 - (iii). To prove the second part of Theorem 2, recall that ĉk′ ∈ P̂CN and
Ĉ−1

0 ĉk′ ∈ P̂CN , hence ĈĈ−1
0 ĉk′ = Ĉ0Ĉ−1

0 ĉk′ = ĉk′ . By the definition of Ĉ this is equivalent to

m

∑
k=1

(δk,k′ − (ĉk, Ĉ−1
0 ĉk′))ĉk = 0.

If the vectors {ĉk}m
k=1 are linearly independent this linear combination is zero if and only if

δk,k′ − (ĉk, Ĉ−1
0 ĉk′) = 0 for all k. Hence, expansion (15) follows from Equation (14).

Remark 9. Denote by Λ the operator inHin,ε defined by

D(Λ) := Hin,ε, Λ :=
m

∑
k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε .

Λ is selfadjoint and Λ2 = Λ. The first claim is obvious (recall that Ĉ0 is selfadjoint). To prove the second
claim, note that, since (ϕ̂ε

l′ , ϕε
k)Hin,ε = δl′ ,k,

Λ2 =
m

∑
l,k,k′=1

(
δl,k − (ĉl , Ĉ−1

0 ĉk)CN

) (
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

l (ϕ̂ε
k′ , ·)Hin,ε ,

but
m

∑
k=1

(
δl,k − (ĉl , Ĉ−1

0 ĉk)CN

) (
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
=δl,k′ − 2(ĉl , Ĉ−1

0 ĉk′)CN +
m

∑
k=1

(ĉl , Ĉ−1
0 ĉk)CN (ĉk, Ĉ−1

0 ĉk′)CN

=δl,k′ − 2(ĉl , Ĉ−1
0 ĉk′)CN + (ĉl , Ĉ−1

0 ĈĈ−1
0 ĉk′)CN = δl,k′ − (ĉl , Ĉ−1

0 ĉk′)CN ,

where we used the fact that Ĉ−1
0 ĈĈ−1

0 = Ĉ−1
0 Ĉ0Ĉ−1

0 = Ĉ−1
0 . Hence,

Λ2 =
m

∑
l,k′=1

(
δl,k′ − (ĉl , Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

l (ϕ̂ε
k′ , ·)Hin,ε = Λ.

Hence, Λ is an orthogonal projection inHin,ε.
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Appendix A. Proof of the Kreı̆n Resolvent Formulae

We use several known results from the theory of self-adjoint extensions of symmetric operators.
We follow, for the most, the approach and the notation from the papers by A. Posilicano [24]

and [22]. Other approaches would be possible, such as the one based on the use of boundary triples,
see, e.g., [25–28].

When no misunderstanding is possible, in this appendix we omit the suffixes “out”, “in”, and ε.

Appendix A.1. Proofs of Lemmata 1 and 2

We denote by τ̊ the restriction of the maps τ to the domain D(H̊), by Equations (22) and (23)
we infer

τ̊ : D(H̊ε)→ C2N , τ̊ = diag(τ̊out, τ̊in);

τ̊out : D(H̊out)→ CN , τ̊outψ := Ψ′(0);

τ̊in : D(H̊in,ε)→ CN , τ̊inψ := (ψ(v1), ..., ψ(vN))
T ;

where in τ̊in we used the definition of τin and the fact that functions in D(H̊in,ε) are continuous in the
connecting vertices.

Remark A1. The map τ̊ is surjective. Hence, the map Ğε
z = τR̊ε

z = τ̊R̊ε
z is also surjective as a map from

Hε → C2N (the operator R̊ε
z : Hε → D(H̊ε) is obviously surjective). We conclude that Gε

z = Ğε∗
z̄ is an

injective map from C2N → Hε (it is the adjoint of a surjective map). A similar statement holds true also for the
corresponding “out” and “in” operators.

Remark A2. We claim that for all z ∈ ρ(H̊ε) and q ∈ C2N one has Gε
zq ∈ Hε

2 and

(−∆ + Bε − z)Gε
zq = 0, (A1)

and similar properties hold true for the “out” and “in” operators (here ∆ denotes the maximal Laplacian inHε,
i.e., D(∆) := Hε

2, ∆ψ = ψ′′).
To prove that Gε

zq ∈ Hε
2 and that Equation (A1) holds true we start by discussing the case Bε = 0. In such a case

it is possible to obtain an explicit formula for the integral kernel of R̊ε
z,0 = R̊ε

z,Bε=0, see, e.g., ([2], Lemma 4.2).
By this explicit formula it is easily seen that the operator Gε

z,0 = Gε
z,Bε=0 maps any vector q ∈ C2N in a function

in Hε
2 and that (−∆− z)Gε

z,0q = 0. It is not needed to investigate the detailed properties of the boundary
conditions in the vertices of Gε, it is enough to take into account the dependence on x, y ∈ Gε of the integral
kernel R̊ε

z,0(x, y) (see also ([22], Examples 5.1 and 5.2)). That the same is true for Bε 6= 0 follows immediately
from the resolvent identity

R̊ε
z = R̊ε

z,0 − R̊ε
z,0BεR̊ε

z,

which gives Ğε
z = Ğε

z,0 − Ğε
z,0BεR̊ε

z and Gε
z = Gε

z,0 − R̊ε
zBεGε

z,0.

In consideration of the remark above, we infer that the maps (N × N, z-dependent matrices) Mz

in Equations (26), (27) and (28) are all well defined. Moreover, by the resolvent identities

Rz − Rw = (z− w)RzRw and Rz = R∗z̄

it follows that
Ğz − Ğw = (z− w)ĞzRw,
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Gz − Gw = (z− w)RwGz,

Mz −Mw = (z− w)ĞwGz and Mz = M∗z̄ . (A2)

Let us denote by K the space C2N or CN depending on if we are reasoning with operators inHε,Hout

orHin,ε. By Equation (A2), it follows that for any projection P in K and any self-adjoint operator Θ in
Ran P, the map MP,Θ

z := PMzP−Θ is invertible in Ran P. To see that this is indeed the case, note that
by Equation (A2) one has

MP,Θ
z −MP,Θ

w = (z− w)PĞwGzP and MP,Θ
z = MP,Θ∗

z̄ .

So that, for Im z 6= 0 and for all q ∈ K, such that Pq 6= 0, it holds

Im(q, MP,Θ
z q)K =

1
2i
(
q, (MP,Θ

z −MP,Θ
z̄ )q

)
K = Im z‖GzPq‖2

H 6= 0; (A3)

because Gz is injective. Hence, MP,Θ
z is invertible in Ran P for Im z 6= 0.

Remark A3. By the discussion above, it follows that the maps Mout
z : CN → CN , P̂Mout

z P̂ : P̂CN → P̂CN ,
and (Mε

z −Θ) : C2N → C2N are invertible for all Im z 6= 0.

By ([22], Theorem 2.1) (see also ([24], Theorem 2.1)) it follows that: for any z ∈ C\R the operators
R̂out

z and Rε
z are the resolvents of a self-adjoint extension of the symmetric operators H̊out �Ker τ̊out and

H̊ε �Ker τ̊ respectively.
We are left to prove that such self-adjoint extensions coincide with Ĥout and Hε respectively.
Let us focus attention on Rε

z (similar considerations hold true for R̂out
z ). Since the self-adjoint

operator associated to Rε
z is an extension of H̊ε �Ker τ̊ , to prove that Rε

z is the resolvent of Hε, we just
need to check that in the connecting vertices functions in Ran Rε

z satisfy the boundary conditions
required by D(Hε). The remaining boundary conditions are clearly satisfied because the map τ̊

evaluates functions only in the connecting vertices.
Define the maps:

σout : Hout
2 → CN σoutψ := Ψ(0);

σin : Hin,ε
2 → CN

σinψ := −
(√

din(v1)(1din(v1)
, Ψ′(v1))Cdin(v1)

, ...,
√

din(vN)(1din(vN), Ψ′(vN))Cdin(vN )

)T
;

and
σ : Hε

2 = Hout
2 ⊕H

in,ε
2 → C2N σ := diag(σout, σin).

We recall the following formula which is obtained by integrating by parts

(
(−∆ + Bε − z̄)φ, ψ

)
Hε −

(
φ, (−∆ + Bε − z)ψ

)
Hε = ∑

v∈V

[
(Φ′(v), Ψ(v))Cd(v) − (Φ(v), Ψ′(v))Cd(v)

]
∀φ, ψ ∈ Hε

2.
(A4)

Fix χ ∈ Hε and let q =
(

Mε
z −Θ

)−1Ğε
zχ ∈ C2N and ψ = Gε

zq.
For all φ ∈ D(H̊ε) and ψ as above, the identity (A4) gives

(
τφ, q

)
C2N = ∑v∈C

[
(Kin

v
⊥Φin ′(v), Kin

v
⊥Ψin(v))Cd(v) − (Kin

v Φin(v), Kin
v Ψin ′(v))Cd(v)

]
+ ∑N

j=1 φout
j
′
(0)ψout

j (0). (A5)

In what follows we use the decomposition C2N = CN ⊕ CN , so that q = (qout, qin) and
τφ = (τoutφout, τinφin).
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Let φ = (φout, 0) ∈ D(H̊ε). Then Identity (A5) gives

(
τoutφout, qout)

CN =
N

∑
j=1

φout
j
′
(0)ψout

j (0). (A6)

Take φout ∈ D(H̊out), such that φout
1
′
(0) = 1 and φout

j = 0 for all j = 2, . . . , N. Then (τoutφout)j = δ1,j,
j = 1, . . . , N and Equation (A6) gives ψout

1 (0) = q1. In a similar way it is possible to show that
ψout

j (0) = qj for all j = 2, . . . , N. Hence, σoutψout = qout.

Next let φ = (0, φin). Then Identity (A5) gives

(
τinφin, qin)

CN = ∑
v∈C

[
(Kin

v
⊥

Φin ′(v), Kin
v
⊥

Ψin(v))Cd(v) − (Kin
v Φin(v), Kin

v Ψin ′(v))Cd(v)

]
. (A7)

Take φin such that φin(v1) = 1, Φin ′(v1) = 0 and Φin ′(vj) = Φin(vj) = 0 for all j = 2, . . . , N.
Hence, (τinφin)j = δ1,j, j = 1, . . . , N, and Kin

v1
Φin(v1) = (din(v1))

1/21din(v1)
. Hence, Equation (A7)

gives

qin
1 = −

(
(din(v1))

1/21din(v1)
, Kin

v1
Ψin ′(v1)

)
Cd(v1) = −

(
(din(v1))

1/21din(v1)
, Ψin ′(v1)

)
Cd(v1) = (σinψin)1.

In a similar way one can prove qin
j = (σinψin)j, j = 2, . . . , N, hence, σinψin = qin.

We also note that the function ψ is continuous in the connecting vertices (whenever the vertex
degree is larger or equal than two). To see that this is indeed the case, consider in Equation (A7)
a function φin such that φin(vj) = 0, j = 1, . . . , N, Φin ′(v1) = (1,−1, 0, . . . , 0)T := e, Φin ′(vj) = 0,
j = 2, . . . , N. Since Kin⊥

v1
e = e, condition (A7) gives (e, Ψin(v1)) = 0. Repeating the process, moving

−1 in the vector e on all the positions (from the second one on) one obtains the continuity of ψ in the
vertex v1. The same holds true for every connecting vertex.

We have proved that for any χ ∈ Hε, setting q =
(

Mε
z −Θ

)−1Ğε
zχ ∈ C2N , one has:

σoutGout
z qout = qout ; σinGin,ε

z qin = qin ; σGε
zq = q. (A8)

Let χ ∈ Hε and set ψ = Rε
zχ. One has that

τψ = τ
(

R̊ε
z − Gε

z
(

Mε
z −Θ

)−1Ğε
z
)
χ =

(
I−Mε

z(Mε
z −Θ)−1)Ğε

zχ = −Θ(Mε
z −Θ)−1Ğε

zχ.

On the other hand, noticing that σR̊ε
zχ = 0, by the definition of D(H̊ε) (see Equations (10), (6), and (17)),

and by Equation (A8) it follows that

σψ = −(Mε
z −Θ)−1Ğε

zχ.

We conclude that ψ satisfies the condition τψ = Θσψ. Taking into account the fact that ψin is continuous
in the connecting vertices, it is easy convince oneself that the condition τψ = Θσψ is equivalent to

Ψout′(0) = −
(√

din(v1)(1din(v1)
, Ψin′(v1))Cdin(v1)

, ...,
√

din(vN)(1din(vN), Ψin′(vN))Cdin(vN )

)T
,

and
ψin(vj) = ψj(0);

which, in turns, is equivalent to the Kirchhoff boundary conditions in D(Hε).
The fact that the resolvent formula holds true for all z ∈ ρ(Hε) ∩ ρ(H̊ε), follows from ([29],

Theorem 2.19).
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To prove the resolvent formula for R̂out
z , let χ ∈ Hout and set ψ = R̂out

z χ. By the first formula
in (A8), one has

Ψ(0) = −P̂(P̂Mout P̂)−1P̂Ğout
z χ,

hence, P̂⊥Ψ(0) = 0. Moreover,

P̂Ψ′(0) = P̂τoutψ =
(
I− P̂Mout

z P̂(P̂Mout P̂)−1)P̂Ğout
z χ = 0.

Hence, the boundary conditions in D(Ĥout) are satisfied, see Definition 7.

Appendix A.2. Proof of Lemma 3

Recall that we are denoting by K the space C2N or CN depending on if we are reasoning with
operators inHε,Hout orHin,ε.

Remark A4. By Identities (A2) we infer

M−1
w −M−1

z = (z− w)M−1
w ĞwGz M−1

z .

Hence, for Im z 6= 0, and for any projection P in K, and q ∈ PK

Im(q, PM−1
z Pq)K =

1
2i
(
q, P(M−1

z −M−1
z̄ )Pq

)
K = − Im z‖Gz M−1

z Pq‖2
H 6= 0 (A9)

because Gz M−1
z is an injective map, being the composition of injective maps.

Hence, the map PM−1
z P is invertible in PK.

To prove that the map Min,ε
z Mout

z − IN is invertible (the proof of the second statement in
Equation (30) is analogous) note that it is enough to show that Min,ε

z −Mout
z
−1 is invertible (because

Mout
z is). Let q ∈ CN , by Equations (A3) and (A9)

Im(q, Min,ε
z −Mout

z
−1q)CN = Im z

(
‖Gin,ε

z q‖2
CN + ‖Gout

z Mout
z
−1q‖2

CN

)
6= 0.

Formula (31), comes from the block matrix inversion formulaMout
z −IN

−IN Min,ε
z


−1

=

Mout
z
−1

+ Mout
z
−1(Min,ε

z −Mout
z
−1)−1Mout

z
−1 Mout

z
−1(Min,ε

z −Mout
z
−1)−1

(
Min,ε

z −Mout
z
−1)−1Mout

z
−1 (

Min,ε
z −Mout

z
−1)−1

 ,

together with the identities

Mout
z
−1(Min,ε

z −Mout
z
−1)−1

=
(

Min,ε
z Mout

z − IN
)−1(

Min,ε
z −Mout

z
−1)−1Mout

z
−1

=
(

Mout
z Min,ε

z − IN
)−1

and
Mout

z
−1

+ Mout
z
−1(Min,ε

z −Mout
z
−1)−1Mout

z
−1

=
(

Min,ε
z Mout

z − IN
)−1Min,ε

z .

Appendix B. Estimates on Eigenvalues and Eigenfunctions of H̊in

In this appendix we prove the following proposition on the asymptotic behavior of eigenvalues
and eigenfunctions of H̊in.
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Proposition A1. Recall that we denoted by {λn}n∈N the eigenvalues of the Hamiltonian H̊in, and by {ϕn}n∈N
a corresponding set of orthonormal eigenfunctions. There exists n0 such that for any n ≥ n0:

λn > n2C (A10)

and
sup

x∈G in
|ϕn(x)| ≤ C (A11)

for some positive constant C which does not depend on n.

Proof. Claim (A10) is just the Weyl law. For Bin = 0 a proof can be found in ([30], Proposition 4.2) (see
also [31]). For Bin 6= 0 bounded, claim (A10) can be deduced by a perturbative argument.

To prove the bound (A11) we follow the lines in the proof of Theorem A.1 in [32]. For b ∈ L∞(0, `)
and real valued, and λ > 0 let f be the solution of the equation

− f ′′ + b f = λ f , (A12)

with initial conditions f (0) = f0 and f ′(0) = f ′0. Then f (x) can be written as

f (x) =
∫ x

0

sin(
√

λ(x− y))√
λ

b(y) f (y)dy + f0 cos(
√

λx) +
f ′0√
λ

sin(
√

λx), (A13)

from which it immediately follows that

| f (x)| ≤ M +
∫ x

0

1√
λ
|b(y)|| f (y)|dy,

with

M = | f0|+
| f ′0|√

λ
.

Then from Gronwall’s lemma, see, e.g. ([33], page 103), one has

| f (x)| ≤ M exp
( ∫ x

0

|b(y)|√
λ

dy
)
≤ M exp

( ∫ `

0
|b(y)|dy

)
, (A14)

where we assumed λ > 1. By equation (A13) and by the estimate (A14) it follows that∣∣∣∣ f (x)− f0 cos(
√

λx)−
f ′0√
λ

sin(
√

λx)
∣∣∣∣ ≤ M exp

( ∫ `

0
|b(y)|dy

) ∫ x

0

|b(y)|√
λ

dy ≤ C
(
| f0|√

λ
+
| f ′0|
λ

)
where C is a positive constant which does not depend on λ, f0 and f ′0. We have then proved that

f (x) = f0 cos(
√

λx) +
f ′0√
λ

sin(
√

λx) +OL∞((0,`))

(
| f0|√

λ
+
| f ′0|
λ

)
. (A15)

Any component of the eigenfunction ϕn satisfies in the corresponding edge an equation of the
form (A12) with some initial data in x = 0. Then the discussion on the function f (x) above applies
to all the components of the vector ϕn. By the normalization condition ‖ϕn‖Hin = 1 it follows that it
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must be ‖ f ‖L2((0,l)) = C, with C ≤ 1 (here f denotes a generic component of ϕn, i.e., the restriction of
ϕn to a generic edge of G in). Hence, from the identity

∫ `

0

∣∣∣∣ f0 cos(
√

λx) +
f ′0√
λ

sin(
√

λx)
∣∣∣∣2 dx

=
`

2

(
| f0|2 +

| f ′0|2
λ

)
+

cos(2
√

λ`)− 1
4
√

λ

(
| f0|2 −

| f ′0|2
λ

)
+

Re ( f̄0 f ′0)
λ

sin2(
√

λ`)

one infers

C2 = ‖ f ‖2
L2((0,l)) =

`

2

(
| f0|2 +

| f ′0|2
λ

)
+O

(
| f0|2√

λ
,
| f ′0|2

λ3/2 ,
| f0|| f ′0|

λ

)
.

The latter estimate implies that there exists λ̃ such that, for all λ > λ̃, the inequalities | f0| ≤ C1

and | f ′0|/
√

λ ≤ C1 hold true for some positive constant C1 which does depend on λ. The bounds
| f0| ≤ C1 and | f ′0|/

√
λ ≤ C1, together with estimate (A15) and the fact that λn → +∞ for n → ∞,

imply (A11).
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