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Abstract: Contemporary research has refined systems with complex fuzzy sets in order to improve
the design and model of real-life applications. Symmetry and antisymmetry are basic characteristics
of binary relations used when modeling the decision maker’s preferences. A recent focus has been
the analysis of a complex data set using the properties of fuzzy concept lattice and the complex soft
set. We will introduce a new concept to represent the information which utilizes the time factor,
called fuzzy parameterized complex multi-fuzzy soft expert set (FP-CMFSES), and investigate
part of its fundamental properties. This FP-CMFSES model allows us to validate the information
provided by an expert, at a given phase of time, using the properties of complex fuzzy sets. We then
construct an algorithm based on this concept by converting it from the complex state to the real
state. Eventually, we implement it to a decision-making problem to demonstrate the applicability of
the suggested method. A comparison among FP-CMFSES and other existing methods is made to
expose the dominance of the suggested method. Apart from that, we also propose the weighted fuzzy
parameterized complex multi-fuzzy soft expert set and investigate its application to decision-making.

Keywords: complex multi-fuzzy set; complex multi-fuzzy soft expert set; fuzzy parameterized
complex multi-fuzzy soft expert set; soft expert set; decision making

1. Introduction

Numerous categories of uncertainties occur in almost every domain of our daily life, which calls
for useful mathematic tools for handling these kinds of uncertainties. Various mathematic tools such
as fuzzy set (FS) theory [1], intuitionistic fuzzy set theory [2] and multi-fuzzy set (MFS) theory [3,4]
have been built and proved to be valuable in managing various types of the problems that contain
uncertainties. The fuzzy Delphi approach on military drivers’ performance [5] and the extended
weighted aggregated sum product assessment (WASPAS) method using intuitionistic fuzzy numbers
for a website evaluation [6] are examples of fuzzy hybrids used in decision-making. Unfortunately,
due to the insufficiency of parameterization tools, these mentioned theories seem to face their own
challenges. In order to overcome these challenges, Molodtsov [7] proposed the theory of soft sets to
manage the uncertainties in parameterized form, which is independent from the challenges that have
distressed the existing theoretical methods.

In recent years, the application of this theory has been implemented in many areas such as
information sciences, intelligent systems, game theory, measurement theory, probability theory and
the list continues. Currently, the study on soft sets is developing promptly such as fuzzy soft sets [8,9],
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intuitionistic fuzzy soft sets [10,11] and multi-fuzzy soft sets [12]. Following from there, Alkhazaleh and
Salleh [13] investigated the theory of soft expert sets, which later broadened to a fuzzy soft expert set
theory [14], a bipolar fuzzy soft expert set [15], a multi Q-fuzzy soft expert set [16], and a neutrosophic
soft expert set [17,18].

Recent studies in FS and MFS focused on establishing systems utilizing complex fuzzy sets
(CFS) [19,20] to better design and model the real-life applications. The ‘complex’ part has the capability
of managing the information of uncertainty and periodicity simultaneously. These models have
been utilized to denote the uncertainty and periodicity features of an object together in a single set.
Since then, the studies on CFS, in theories and applications, have established promptly (e.g., [21,22]).
Based on [3,19], Al-Qudah and Hassan [23] introduced a hybrid model of CFS and MFS, known as
the complex multi-fuzzy set (CMFS). This model seems handy in managing difficulties associated
with multidimensional characterization properties. Likewise, Al-Qudah and Hassan [24] presented
the concept of complex multi-fuzzy soft sets in order to assimilate the advantages of CMFS along
with sufficient parameterization tools. For making these models better functional in improving
decision-making results, Al-Qudah and Hassan [25] suggested the theory of the complex multi-fuzzy
soft expert set (CMFSES) in order to allow the users to be familiar with all of the experts’ opinion in a
single model, neglecting the need for any further cumbersome operations.

Theories such as fuzzy parameterized soft sets [26], fuzzy parameterized fuzzy soft sets [27],
intuitionistic fuzzy parameterized soft sets [28] and their generalizations [29–31] have been widely
studied. However, these theories that we mentioned above have a shortcoming, which is their inability
to represent the information which happens over a time period. To overcome this, we design a new
approach of FP-CMFSES that has the ability to handle the uncertainty data that is captured by the
amplitude term and phase term of the complex numbers, simultaneously. The contributions of this
study can be summarized as below:

1. Firstly, we generalize the concept of fuzzy parameterized fuzzy soft expert set to FP-CMFSES
to include the time frame, which is presented by the phase terms and the ability to represent
multi-dimensional data.

2. FP-CMFSES is used to put forth an algorithm on decision-making by converting it from a
complex state to a real state and subsequently provided the detailed decision steps.

3. Lastly, we introduce the weighted fuzzy parameterized complex multi-fuzzy soft expert set and
examine its application to decision-making.

Section 2 denotes some fundamental definitions and theories of the associated studies.
The FP-MFSES is also introduced in this section while Section 3 presents the formulation of the
FP-CMFSES and its operations. In Section 4, we demonstrate some operations on FP-CMFSES
together with a few propositions and theorems, while, in Section 5, an application of the corresponding
theory in decision-making is discussed. In this section too, the comparison is conducted to justify
the validity of the suggested approach while Section 6 is devoted to weighted fuzzy parameterized
complex multi-fuzzy soft expert set based on decision-making. Finally, Section 7 is the conclusion with
suggestion for further studies.

2. Preliminaries

In the current section, crucial theories are outlined corresponding to MFS and CMFS that are
consistent with this study as stated below.

2.1. Multi-Fuzzy Set (MFS)

The theory of MFS [3] is a newly developed method to denote some problems that possess
multidimensional characterization properties, which seems challenging to be explained in other
expansions of fuzzy set theory. The notion of a MFS is defined as follows:
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Definition 1 ([3]). Let k be a positive integer and U be a non-empty set. An MFS A in U is a set of
ordered sequences

A = {〈x, µ1 (x) , ..., µk (x)〉 : x ∈ U} , (1)

where µi ∈ P(U) (for i = 1, 2, ..., k) and P(U) is the set of all fuzzy subsets of U.
The function µA(x) = (µ1 (x) , ..., µk (x)) is known as the multi-membership function of MFS A,

and k denotes the dimension of A. The set of all MFS of dimension k in U is represented by MkFS(U).

2.2. Complex Multi Fuzzy Set and Complex Multi Fuzzy Soft Expert Set

Al-Qudah and Hassan [23] proposed a CMFS for dealing with uncertainties of two-dimensional
multi-fuzzy information in which it captures the amplitude terms and phase terms of the complex
numbers simultaneously.

Definition 2 ([23]). Denote (i =
√
−1 ). Let k be a positive integer and U be a non-empty set. A CMFS

A, defined on a universe of discourse U, is characterised by a multi-membership function µA(x) = (µ
j
A(x) )

(for j = 1, 2, ..., k), which assigns to any element x ∈ U a complex-valued grade of multi-membership functions
in A. µA(x) may all lie within the unit circle in the complex plane, and are thus of the form µA(x) =

(rj
A(x) · eiω j

A(x) ) (for j = 1, 2, ..., k), both rj
A(x) and ω

j
A(x) are real-valued and (rj

A(x) ) ∈ [0, 1] (for
j = 1, 2, ..., k). The CMFS A may be denoted as the set of ordered sequence

A =
{
〈x , µ1

A(x) = a1, µ2
A(x) = a2, ..., µk

A(x) = ak〉 : x ∈ U
}

=
{〈

x, r1
A(x) · eiω1

A(x), r2
A(x) · eiω2

A(x), ..., rk
A(x) · eiωk

A(x)〉 : x ∈ U
}

, (2)

where µj
A : U → {aj : aj ∈ C, |aj| ≤ 1} for j = 1, 2, ..., k.

The function (µA(x) = rj
A(x) · eiω j

A(x)) (for j = 1, 2, ...k) is known as the complex multi-membership
function of CMFS A, k denotes the dimension of A. The set of all CMFS of dimension k in U is represented by
CMkFS(U):

Let A = {x, ( (rj
A(x) · eiω j

A(x) )j∈k ) : x ∈ U } and B = {x, ( (rj
B(x) · eiω j

B(x) )j∈k ) : x ∈ U }.

Definition 3 ([23]). For every two CMFSs of dimension k in X, subset, equality, union, intersection operations,
and the complement operation are defined as follows:

1. A ⊂ B if and only if rj
A (x) ≤ rj

B (x) and ω
j
A (x) ≤ ω

j
B (x) , for all x ∈ U and j = 1, 2, ..., k.

2. A = B if and only if rj
A (x) = rj

B (x) and ω
j
A (x) = ω

j
B (x) , for all x ∈ U and j = 1, 2, ..., k.

3. A ∪ B = {〈x, rj
A∪B (x) .eiω j

A∪B(x)〉 : x ∈} = {〈x,∨ (rj
A (x) , rj

B(x) ).ei max[ω j
A(x),ω j

B(x)]〉 : x ∈ U},
for all j = 1, 2, ..., k.

4. A ∩ B = {〈x, rj
A∩B (x) .eiω j

A∩B(x)〉 : x ∈} = {〈x,∧ (rj
A (x) , rj

B(x) ).ei min[ω j
A(x),ω j

B(x)]〉 : x ∈ U},
for all j = 1, 2, ..., k.

5. Ac = {x, rj
Ac(x) · eiω j

Ac (x) : x ∈ X } = {x, [1− rj
A(x)] · ei[2π−ω

j
A(x)] : x ∈ U }, for all j = 1, 2, ..., k,

where ∨ and ∧ represents the max and min operator, respectively.

Definition 4 ([25]). Let k be a positive integer, U be a universe of elements, E denotes a set of parameters,
X represents a set of experts (agents), and O = {1 = agree, 0 = disagree} a set of opinions. Let Z = E×X×O
and A ⊆ Z. A pair (F ,A) is known as a CMFSES of dimension k (CMkFSES) over U, where F is a mapping
given by F : A → CMkFU , where CMkFU represents the collection of all complex multi-fuzzy subsets of U.

The CMFSES (F ,A) can be expressed as:

(F ,A) = {〈e,F (e)〉 : e ∈ A,F (e) ∈ CMkFU}, (3)
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where

F (e) = {〈x, µ
j
F (e)(x) = rj

F (e)(x) · eiω j
F (e)(x)〉 : e ∈ A, x ∈ U, j = 1, 2, ..., k}.

2.3. Fuzzy Parameterized Multi-Fuzzy Soft Expert Set (FP-MFSES)

We will now introduce the concept of FP-MFSES, and provide a corresponding illustrative example.

Definition 5. Let k denote a positive integer and U represent a universe of set, E denotes a set of
parameters, Iz(E) represents all fuzzy subsets of E, X represents a set of experts (agents), and O =

{1 = agree, 0 = disagree} is a set of opinions. Let Z = ϕ × X ×O and A ⊆ Z, where ϕ ⊂ Iz(E).
A pair ( f̈ ,A)ϕ is called an FP-MFSES of dimension k (FP- MkFSES) over U, where f̈ is a mapping expressed by

f̈ϕ : A → MkF(U),

where MkF(U) represents the collection of all multi-fuzzy subsets of U.

Example 1. Suppose that a company wants to manufacture new types of products and to take some experts
opinions regarding these products. Let U = {u1, u2} represent a set universe consisting of two kinds of products.
Suppose the parameter set E = {e1, e2} i.e., two criteria are considered in order to assess the performance of
these products, where e1 represents the “quality”, which consists of three levels: excellent, very good and good,
while e2 stands for the parameter “price” which also has three levels: high, medium and low, and Υ = { 0.2

e1
, 0.7

e2
}

a fuzzy subset of Iz(E). Let X = {x1, x2} represent a set of experts who are authorized to provide their opinions
corresponding to these products.

Hence, the FP-MFSES of dimension three ( f̈ ,A)Υ can be expressed as follows:

( f̈ ,A)Υ =
{
( 0.2

e1
, x1, 1) = { (0.8,0.44,0.6)

u1
, (1,0.65,51)

u2
}, ( 0.2

e1
, x2, 1) = { (0.6,0.3,0.5)

u1
, (0.4,0.6,0.6)

u2
},

( 0.7
e2

, x1, 1) = { (0.1,0.2,0.3)
u1

, (0.8,0.8,0.6)
u2

}, ( 0.7
e2

, x2, 1) = { (0.7,0.5,0.7)
u1

, (0.9,0.8,0.7)
u2

},
( 0.2

e1
, x1, 0) = { (0.8,0.3,0.5)

u1
, (0.8,0.7,0.62)

u2
}, ( 0.2

e1
, x2, 0) = { (0.6,0.5,0.44)

u1
, (0.7,0.7,0.6)

u2
},

( 0.7
e2

, x1, 0) = { (0.9,0.4,0.6)
u1

, (1,0,0.9)
u2
}, ( 0.7

e2
, x2, 0) = { (0.3,0.5,0.4)

u1
, (0.5,0.7,0.6)

u2
}
}

.

3. Fuzzy Parameterized Complex Multi-Fuzzy Soft Expert Set

In this current section, we propose the concept of FP-CMFSES and study their characterizations.
Then, we give an illustrative example of it.

Definition 6. Let k denote a positive integer and U represent a universe of elements, E denote a set of parameters,
Fz(E) represents the set of fuzzy subsets of E, X denote a set of experts, and O = {1 = agree, 0 = disagree}
a set of opinions. Let Z = Υ × X ×O and A ⊆ Z where Υ ⊂ Fz(E). Then, the pair (f ,A)Υ is known as
fuzzy parameterized complex multi-fuzzy soft expert set of dimension k (FP-CMkFSES) over U if and only if
fΥ : A → CMk(U) is a mapping into the set of all complex multi-fuzzy sets in U.

The FP-CMkFSES (f ,A)Υ can be written as a following set of ordered pairs:

(f ,A)Υ =
{(

σ = [
ηΥ (e)

e
, x, o], { fΥ (σ)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ Υ× X×O, e ∈ E, x ∈ X and o ∈ O

}
, (4)

such that η
Υ
(e) is the corresponding membership function of the fuzzy set Υ and f

Υ
(σ)(u) =

[
µ

j
f
Υ
(σ)

(u) =

rj
f
Υ
(σ)

(u) · e
iω j

f
Υ
(σ)

(u)]
, ∀u ∈ U and j = 1, 2, ..., k, where µ

j
f
Υ
(σ)

(u) is a complex-valued grade of

multi-membership function ∀u ∈ U and j = 1, 2, ..., k, for the FP-CMkFSES (f ,A)Υ. The values of
[µ

j
f
Υ
(σ)

(u)] may all lie within the unit circle in the complex plane, and are thus of the form [µ
j
f
Υ
(σ)

(u) =

rj
f
Υ
(σ)

(u) · e
iω j

f
Υ
(σ)

(u)
], where (i =

√
−1 ), each of the amplitude terms [rj

f
Υ
(e)(u)] and the phase terms
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[ω
j
f
Υ
(σ)

(u)] are both real-valued, and [rj
f
Υ
(σ)

(u)] ∈ [0, 1], ∀j ∈ {1, 2, .., k}. The set of all FP-CMFSES
of dimension k in U are denoted by FP-CMkFSES(U).

It follows that, letting U denote a universe of elements, E represent a set of parameters, and let
(f ,A)Υ, (g,B)h̄, (L,D)λ ∈PF-CMkFSES(U), which is defined as below:

(f ,A)Υ =
{(

σ = [
ηΥ (e)

e
, x, o], { fΥ (σ)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ Υ× X×O, e ∈ E, x ∈ X and o ∈ O

}
, (5)

(g,B)h̄ =
{(

σ = [
ηh̄ (e)

e
, x, o], {gh̄ (σ)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ h̄× X×O, e ∈ E, x ∈ X and o ∈ O

}
, (6)

(L,D)Υ =
{(

σ = [
ηλ (e)

e
, x, o], {Lλ (σ)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ λ× X×O, e ∈ E, x ∈ X and o ∈ O

}
. (7)

The following example aids in demonstrating this notion.

Example 2. Assume that U = {u1, u2} is a universe set, E = {e1, e2} is a set of attributes and X = {x1, x2}
be a set of experts. If Υ = { 0.4

e1
, 0.5

e2
} is a subset of Fz(E), then f

Υ
(σ)(u) is a complex multi-fuzzy soft expert set

of dimension three defined as follows:

f
Υ
(e1, x1, 1)(u) =

{
(0.3ei2π(1/4),0.5ei2π(2/4),0.5ei2π(4/4))

u1
, (0.4ei2π(2/4),0.6ei2π(3/4),0.7ei2π(3/4))

u2

}
,

f
Υ
(e1, x2, 1)(u) =

{
(0.6ei2π(3/4),0.5ei2π(1/4),0.3ei2π(0/4))

u1
, (0.5ei2π(2/4),0.5ei2π(2/4),0.3ei2π(2/4))

u2

}
,

f
Υ
(e2, x1, 1)(u) =

{
(0.8ei2π(4/4),0.6ei2π(1/4),0.8ei2π(1/4))

u1
, (1.0ei2π(1/4),0.0ei2π(2/4),0.3ei2π(3/4))

u2

}
,

f
Υ
(e2, x2, 1)(u) =

{
(0.41ei2π(1/4),0.7ei2π(1/4),0.1ei2π(4/4))

u1
, (0.55ei2π(2/4),0.6ei2π(4/4),0.8ei2π(1/4))

u2

}
,

f
Υ
(e1, x1, 0)(u) =

{
(0.5ei2π(2/4),0.4ei2π(3/4),0.4ei2π(2/4))

u1
, (0.42ei2π(2/4),0.16ei2π(2/4),0.7ei2π(3/4))

u2

}
,

f
Υ
(e1, x2, 0)(u) =

{
(0.2ei2π(3/4),0.3ei2π(3/4),0.3ei2π(0/4))

u1
, (0.5ei2π(2/4),0.45ei2π(2/4),0.4ei2π(1/4))

u2

}
,

f
Υ
(e2, x1, 0)(u) =

{
(0.7ei2π(1/4),0.5ei2π(1/4),0.81ei2π(4/4))

u1
, (1.0ei2π(1/4),0.2ei2π(3/4),0.5ei2π(2/4))

u2

}
,

f
Υ
(e2, x2, 0)(u) =

{
(0.24ei2π(3/4),0.8ei2π(2/4),0.2ei2π(3/4))

u1
, (0.5ei2π(2/4),0.7ei2π(4/4),0.75ei2π(2/4))

u2

}
.

Thus, we can view the FP-CMkFSES (f ,A)Υ as being comprised of the following collection
of approximations:

(f ,A)Υ =
{
{( 0.4

e1
, x1, 1), f

Υ
(e1, x1, 1)(u)}, {( 0.4

e1
, x2, 1), f

Υ
(e1, x2, 1)(u)},

{( 0.5
e2

, x1, 1), f
Υ
(e2, x1, 1)(u)}, {( 0.5

e2
, x2, 1), f

Υ
(e2, x2, 1)(u)},

{( 0.4
e1

, x1, 0), f
Υ
(e2, x1, 0)(u)}, {( 0.4

e1
, x2, 0), f

Υ
(e1, x2, 0)(u)},

{( 0.5
e2

, x1, 0), f
Υ
(e2, x1, 0)(u)}, {( 0.5

e2
, x2, 0), f

Υ
(e2, x2, 0)(u)}

}
.

We now introduce the ideas of the subset and equality operations on two FP-CMFSESs in the
following definition.

Definition 7. Let (f ,A)Υ and (g,B)h̄ be two FP-CMkFSES over U which then yields the following:

1. (f ,A)Υ is a FP-CMkFSE−subset of (g,B)h̄ if and only if the following conditions are fulfilled for e ∈ E:

(a) η
Υ
(e) is a fuzzy subset of ηh̄(e).

(b) f
Υ
(σ)(u) is a complex multi-fuzzy subset of gh̄(σ)(u)

(i.e., rj
f
Υ
(σ)

(u) ≤ rj
gh̄ (σ)

(u) for the amplitude terms and for the phase terms ω
j
f
Υ
(σ)

(u) ≤

ω
j
gh̄ (σ)

(u), for all σ ∈ A, u ∈ U, j = 1, 2, ..., k).
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In this case, we write (f ,A) ⊆ (g,B).
2. (f ,A)Υ and (g,B)h̄ are FP-CMkFSE−equal, if (f ,A)Υ is a FP-CMkFSE−subset of (g,B)h̄ and

(g,B)h̄ is a FP-CMkFSE−subset of (f ,A)Υ. In other words, (f ,A)Υ = (g,B)h̄ if the following
conditions are fulfilled for e ∈ A:

(a) η
Υ
(e) = ηh̄(e).

(b) f
Υ
(σ)(u) = gh̄(σ)(u) (i.e., rj

f
Υ
(σ)

(u) = rj
gh̄ (σ)

(u) for the amplitude terms and for the phase terms

ω
j
f
Υ
(σ)

(u) = ω
j
gh̄ (σ)

(u), for all σ ∈ A, u ∈ U, j = 1, 2, ..., k).

Example 3. Consider Example 2 and let Υ =
{

0.3
e1

, 0.7
e2

}
be a subset of Fz(E), h̄ =

{
0.5
e1

, 0.8
e2

}
be another subset

over Fz(E). Suppose that

AΥ =
{(

0.3
e1

, x1, 1
)

,
(

0.7
e2

, x2, 0
)}

, and Ah̄ =
{(

0.5
e1

, x1, 1
)

,
(

0.8
e2

, x2, 0
)

,
(

0.8
e2

, x2, 1
)}

.

Since Υ is a fuzzy subset of h̄, apparently AΥ ⊂ Bh̄. Let (f ,A)Υ and (g,B)h̄ be two FP-CM3FSESs
defined as follows:

(f ,A)Υ =
{{(

0.3
e1

, x1, 1
)

,
{
〈0.5ej2π(0.4),0.6ej2π(0.3),0.7ej2π(0.5)〉

u1
, 〈0.5ej2π(0.5),0.9ej2π(0.7),0.4ej2π(0.8)〉

u2

}}
,{(

0.7
e2

, x2, 0
)

,
{
〈0.3ej2π(0.6),0.4ej2π(0.5),0.3ej2π(0.4)〉

u1
, 〈0.3ej2π(0.1),0.1ej2π(0.2),0.2ej2π(0.5)〉

u2

}}}
.

and

(g,B)h̄ =
{{(

0.5
e1

, x1, 1
)

,
{
〈0.6ej2π(0.6),0.8ej2π(0.5),1.0ej2π(0.6)〉

u1
, 〈0.55ej2π(0.4),0.9ej2π(0.7),0.5ej2π(0.8)〉

u1

}}
,{(

0.8
e2

, x2, 0
)

,
{
〈0.7ej2π(0.6),0.8ej2π(0.8),0.4ej2π(0.4)〉

u2
, 〈0.44ej2π(0.2),0.2ej2π(0.7),0.52ej2π(0.8)〉

u2

}}
,{(

0.8
e2

, x2, 1
)

,
{
〈0.6ej2π(0.5),0.5ej2π(0.5),0.33ej2π(0.4)〉

u1
, 〈0.3ej2π(0.1),0.5ej2π(0.2),0.4ej2π(0.3)〉

u2

}}}
.

Hence, (f ,A)Υ ⊆ (g,B)h̄.

Proposition 1. Let (f ,A)Υ, (g,B)h̄,(L,D)λ ∈PF-CMkFSES(U). Then,

1. (f ,A)Υ = (g,B)h̄ and (g,B)h̄ = (L,D)λ ⇔(f ,A)Υ = (L,D)λ.
2. (f ,A)Υ ⊆ (g,B)h̄ and (g,B)h̄ ⊆ (f ,A)Υ ⇔(f ,A)Υ = (g,B)h̄.
3. (f ,A)Υ ⊆ (g,B)h̄ and (g,B)h̄ ⊆ (L,D)λ =⇒(f ,A)Υ ⊆ (L,D)λ.

Proof. The properties of ⊆ and = trivially follow from the definitions given above.

Following from that, we now introduce the definition of the empty and absolute FP-CMFSES .

Definition 8. An FP-CMkFSES (f ,A)Υ over U is said to be Υ-empty FP-CMkFSES , expressed by
(f ,A)φ̃k

Υ
, if f

Υ
(σ)(u) = (0, 0, ..., 0), for all σ ∈ A and u ∈ U (i.e., rj

f
Υ
(σ)

(u) = 0 and ω
j
f
Υ
(σ)

(u) = 0π,

for all σ ∈ A, x ∈ U, j = 1, 2, ..., k). If Υ = φ, then the Υ-empty PF-CMkFSES (f ,A)φ̃k
Υ

is called empty

FP-CMkFSES , denoted by (f ,A)φ̃k .

Definition 9. A FP-CMkFSES (f ,A)Υ over U is said to be Υ-absolute FP-CMkFSES , denoted by
(f ,A)Ũk

Υ
, if f

Υ
(σ)(u) = (1, 1, ..., 1), for all σ ∈ A and u ∈ U (i.e., rj

f
Υ
(σ)

(u) = 1 and ω
j
f
Υ
(σ)

(u) = 2π,

for all σ ∈ A, x ∈ U, j = 1, 2, ..., k). If Υ = E, then the Υ-absolute PF-CMkFSES (f ,A)Ũk
Υ

is called absolute

FP-CMkFSES , denoted by (f ,A)Ũk .

Now, we suggest the definitions of an agree-FP-CMFSESs and the disagree-FP-CMFSESs.
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Definition 10. An agree-PF-CMkFSES (f ,A)Υ1 over U is a PF-CMkFSE subset of (f ,A)Υ defined
as follows:

(f ,A)Υ1 =
{(

σ = [
ηΥ (e)

e
, x, 1], { fΥ (σ)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ Υ× X× {1}, e ∈ E, x ∈ X and 1 ∈ O

}
. (8)

Definition 11. A disagree-PF-CMkFSES (f ,A)Υ0 over U is a PF-CMkFSE subset of (f ,A)Υ defined
as follows:

(f ,A)Υ0 =
{(

σ = [
ηΥ (e)

e
, x, 0], { fΥ (σ)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ Υ× X× {0}, e ∈ E, x ∈ X and 0 ∈ O

}
. (9)

Example 4. Consider Example 2. The agree-PF-CMkFSES (f ,A)Υ1 over U is

(f ,A)Υ1 =
{
{( 0.4

e1
, x1, 1), f

Υ
(e1, x1, 1)(u)}, {( 0.4

e1
, x2, 1), f

Υ
(e1, x2, 1)(u)},

{( 0.5
e2

, x1, 1), f
Υ
(e2, x1, 1)(u)}, {( 0.5

e2
, x2, 1), f

Υ
(e2, x2, 1)(u)}}

}
,

and the disagree-PF-CMkFSES is

(f ,A)Υ0 =
{
{( 0.4

e1
, x1, 0), f

Υ
(e2, x1, 0)(u)}, {( 0.4

e1
, x2, 0), f

Υ
(e1, x2, 0)(u)},

{( 0.5
e2

, x1, 0), f
Υ
(e2, x1, 0)(u)}, {( 0.5

e2
, x2, 0), f

Υ
(e2, x2, 0)(u)}

}
.

4. Basic Operations on Fuzzy Parameterized Complex Multi-Fuzzy Soft Expert Set

In the current section, we demonstrate some fundamental theoretic operations on FP-CMFSESs,
which consists of the complement, union, intersection, AND and OR. We also investigate the structural
features of these operations based on FP-CMFSESs.

4.1. Complement of FP-CMFSES

Here, we describe the complement operation for FP-CMFSES and provide a corresponding
illustrative example and a proof of a proposed proposition.

Definition 12. Let (f ,A)Υ be FP-CMkFSES over U. Then, the complement of (f ,A)Υ is expressed by
(f ,A)c

Υ and is defined by

(f ,A)c
Υ1

=
{(

σ = [
ηc

Υ
(e)
e

, x, o], {
f c
Υ(σ)(u)

u
: u ∈ U}

)
: σ ∈ ¬A ⊆ Υĉ × X×O

}
, (10)

where ηc
Υ
(e) = ĉ[η

Υ
(e)] = 1 − η

Υ
(e) such that ĉ is fuzzy complement, and f c

Υ(e)(u) = [µ
j
f c̆
Υ(e)

(u) =

rj
f c̆
Υ(e)

(u) · e
iω j

f c̆
Υ
(e)

(u)
= [1− rj

f
Υ
(e)(u)] · e

i[2π−ω
j
f
Υ
(e)(u)]], ∀u ∈ U and j = 1, 2, ..., k, where c̆ is the complex

multi-fuzzy complement.

Example 5. Consider the approximation given in Example 2, where

f
Υ
( 0.4

e1
, x1, 1) =

{
(0.3ei2π(1/4),0.5ei2π(2/4),0.5ei2π(4/4))

u1
, (0.4ei2π(2/4),0.6ei2π(3/4),0.7ei2π(3/4))

u2

}
.

By using the above definition, we obtain the complement of the approximation, which is given by

f c
Υ
( 0.6

e1
, x1, 1) =

{
(0.7ei2π(3/4),0.5ei2π(2/4),0.5ei2π(0/4))

u1
, (0.6ei2π(2/4),0.4ei2π(1/4),0.3ei2π(1/4))

u2

}
.

Proposition 2. Let (f ,A)Υ ∈ FP-CMkFSE(U), then ((f ,A)c
Υ)

c = (f ,A).
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Proof. From Definition 12, we have

(f ,A)c
Υ =

{(
σ = [

ηc
Υ
(e)
e

, x, o], {
f c
Υ(σ)(u)

u
: u ∈ U}

)
: σ ∈ ¬A ⊆ Υĉ × X×O

}
,

where

(f ,A)c
Υ =

{(
σ = [

ηc
Υ
(e)
e

, x, o], {
rj

f c̆
Υ(e)

(u) · e
iω j

f c̆
Υ
(e)

(u)

u
: u ∈ U}

)
: σ ∈ ¬A ⊆ Υĉ × X×O

}
=
{(

σ = [
1− η

Υ
(e)

e
, x, o], {

[1− rj
fΥ(e)

(u)] · ei[2π−ω
j
fΥ(e)(u)]

u
: u ∈ U}

)
: σ ∈ ¬A ⊆ Υĉ × X×O

}
.

Thus,

((f ,A)c
Υ)

c =
{(

σ = [
1− ηc

Υ
(e)

e
, x, o], {

[1− rj
f c
Υ(e)

(u)] · e
i[2π−ω

j
f c
Υ
(e)(u)]

u
: u ∈ U}

)
: σ ∈ ¬(¬A) ⊆

(Υĉ)ĉ × X×O
}

=
{(

σ = [
1− 〈1− η

Υ
(e)〉

e
, x, o], {

[1− 〈1− rj
fΥ(e)

(u)〉] · ei[2π−〈2π−ω
j
fΥ(e)(u)〉]

u
: u ∈ U}

)
:

σ ∈ ¬(¬A) ⊆ (Υĉ)ĉ × X×O
}

=
{(

σ = [
η

Υ
(e)
e

, x, o], {
rj

fΥ(e)
(u) · eiω j

fΥ(e)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ Υ× X×O

}
= (f ,A).

4.2. Union and Intersection of FP-CMFSES

In this part, we demonstrate the definitions of union and intersection operations of two
FP-CMFSESs, along with an illustrative example and some propositions on these two operations.

Let (f ,A)Υ and (g,B)h̄ be two FP-CMkFSESs over a universe U, where (f ,A)Υ ={(
σ = [

η
Υ
(e)
e

, x, o], { f
Υ
(σ)(u)

u
: u ∈ U}

)
: σ ∈ A ⊆ Υ × X × O

}
, and (g,B)h̄ =

{(
ρ =

[
ηh̄(e)

e
, x, o], {

fh̄(ρ)(u)
u

: u ∈ U}
)

: ρ ∈ B ⊆ h̄× X×O
}

.

Definition 13. The union of (f ,A)Υ and (g,B)h̄, expressed by (f ,A)Υ∪̆(g,B)h̄, is the FP-CMkFSES
(T , C)⊕ , where C⊕ = AΥ ∪ Bh̄, and ⊕ = Υ~∪h̄, ~∪ is fuzzy union, and ∀ε ∈ C⊕, u ∈ U, such that

T⊕(ε)(u) =



f
Υ
(ε)(u) = [rj

fΥ(ε)
(u) · eiω j

fΥ(ε)
(u)

]j∈{1,2,...,k} i f ε ∈ AΥ −Bh̄,

gh̄(ε)(u) = [rj
gh̄(ε)

(u) · eiω j
gh̄(ε)

(u)
]j∈{1,2,...,k} i f ε ∈ Bh̄ −AΥ,

f
Υ
(ε)(u) ∪ gh̄(ε)(u) = [max(rj

fΥ(ε)
(u), rj

gh̄(ε)
(u))

·ei max[ω j
fΥ(ε)

(u),ω j
gh̄(ε)

(u)]
]j∈{1,2,...,k} i f ε ∈ AΥ ∩ Bh̄.

(11)

Definition 14. The intersection of (f ,A)Υ and (g,B)h̄, expressed by (f ,A)Υ∩̆(g,B)h̄, is the FP-CMkFSES
(T , C)⊗ , where C⊗ = AΥ ∪ Bh̄, and ⊗ = Υ~∩h̄, ~∩ is fuzzy intersection, and ∀ε ∈ C⊗, u ∈ U, such that
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T⊕(ε)(u) =



f
Υ
(ε)(u) = [rj

fΥ(ε)
(u) · eiω j

fΥ(ε)
(u)

]j∈{1,2,...,k} i f ε ∈ AΥ −Bh̄,

gh̄(ε)(u) = [rj
gh̄(ε)

(u) · eiω j
gh̄(ε)

(u)
]j∈{1,2,...,k} i f ε ∈ Bh̄ −AΥ,

f
Υ
(ε)(u) ∩ gh̄(ε)(u) = [min(rj

fΥ(ε)
(u), rj

gh̄(ε)
(u))

·ei min[ω j
fΥ(ε)

(u),ω j
gh̄(ε)

(u)]
]j∈{1,2,...,k} i f ε ∈ AΥ ∩ Bh̄.

(12)

Example 6. Consider Example 2. Let Υ =
{

0.6
e1

, 0.4
e2

}
be a subset of Fz(E) and h̄ =

{
0.5
e1

, 0.8
e2

}
be another

subset over Fz(E).

AΥ =
{(

0.6
e1

, x1, 0
)

,
(

0.4
e2

, x2, 1
)}

, Bh̄ =
{(

0.5
e1

, x1, 0
)

,
(

0.8
e2

, x2, 0
)

,
(

0.8
e2

, x2, 1
)}

.

Suppose (f ,A)Υ and (g,B)h̄ are two FP-CM3FSESs over the same U given by

(f ,A)Υ =
{{(

0.6
e1

, x1, 0
)

,
{
〈0.2ej2π(0.4),0.7ej2π(0.4),0.1ej2π(0.9)〉

u1
, 〈0.8ej2π(0.4),0.3ej2π(0.7),0.3ej2π(0.2)〉

u2

}}
,{(

0.4
e2

, x2, 1
)

,
{
〈0.8ej2π(0.55),0.4ej2π(0.5),0.3ej2π(0.9)〉

u1
, 〈0.3ej2π(0.1),0.1ej2π(0.2),0.9ej2π(0.4)〉

u2

}}}
,

and

(g,B)h̄ =
{{(

0.5
e1

, x1, 0
)

,
{
〈0.1ej2π(0.6),0.8ej2π(0.5),1.0ej2π(0.6)〉

u1
, 〈0.4ej2π(0.4),0.9ej2π(0.7),0.5ej2π(0.8)〉

u2

}}
,{(

0.8
e2

, x2, 0
)

,
{
〈0.2ej2π(0.5),0.4ej2π(0.8),0.8ej2π(0.4)〉

u1
, 〈0.44ej2π(0.2),0.2ej2π(0.7),0.9ej2π(0.8)〉

u2

}}
,{(

0.8
e2

, x2, 1
)

,
{
〈0.8ej2π(0.4),0.3ej2π(0.6),0.4ej2π(0.5)〉

u1
, 〈0.3ej2π(0.1),0.5ej2π(0.2),0.4ej2π(0.3)〉

u2

}}}
.

By using Definition 13, we have

(f ,A)Υ ∪̆ (g,B)h̄ =
{{(

0.5
e1

, x1, 0
)

,
{
〈0.2ej2π(0.6),0.8ej2π(0.5),1.0ej2π(0.9)〉

u1
, 〈0.8ej2π(0.4),0.9ej2π(0.7),0.5ej2π(0.8)〉

u2

}}
,{(

0.8
e2

, x2, 0
)

,
{
〈0.2ej2π(0.5),0.4ej2π(0.8),0.8ej2π(0.4)〉

u1
, 〈0.44ej2π(0.2),0.2ej2π(0.7),0.9ej2π(0.8)〉

u2

}}
,{(

0.8
e2

, x2, 1
)

,
{
〈0.8ej2π(0.55),0.5ej2π(0.6),0.4ej2π(0.9)〉

u1
, 〈0.3ej2π(0.1),0.5ej2π(0.2),0.9ej2π(0.4)〉

u2

}}}
.

By using Definition 14, we have

(f ,A)Υ ∩̆ (g,B)h̄ =
{{(

0.5
e1

, x1, 0
)

,
{
〈0.1ej2π(0.4),0.7ej2π(0.4),0.1ej2π(0.6)〉

u1
, 〈0.4ej2π(0.4),0.3ej2π(0.7),0.3ej2π(0.2)〉

u2

}}
,{(

0.8
e2

, x2, 0
)

,
{
〈0.2ej2π(0.5),0.4ej2π(0.8),0.8ej2π(0.4)〉

u1
, 〈0.44ej2π(0.2),0.2ej2π(0.7),0.9ej2π(0.8)〉

u2

}}
,{(

0.4
e2

, x2, 1
)

,
{
〈0.8ej2π(0.4),0.3ej2π(0.5),0.3ej2π(0.5)〉

u1
, 〈0.3ej2π(0.1),0.1ej2π(0.2),0.4ej2π(0.3)〉

u2

}}}
.

The following propositions explicitly characterise the combined operations of union and
intersection of FP-CMFSESs.

Proposition 3. Let (f ,A)Υ, (g,B)h̄,(L,D)λ ∈ FP-CMkFSES(U). Then,

1. (f ,A)Υ∪̆(f ,A)Υ = (f ,A)Υ, (f ,A)Υ∩̆(f ,A)Υ = (f ,A)Υ.
2. (f ,A)Υ∪̆(f ,A)φ̃k

Υ
= (f ,A)Υ, (f ,A)Υ∩̆(f ,A)φ̃k

Υ
= (f ,A)Υ.

3. (f ,A)Υ∪̆(f ,A)Ũk
Υ
= (f ,A)Ũk

Υ
, (f ,A)Υ∩̆(f ,A)Ũk

Υ
= (f ,A)Ũk

Υ
.

4. ((f ,A)Υ∪̆(g,B)h̄)∩̆(f ,A)Υ = (f ,A)Υ, ((f ,A)Υ∩̆(g,B)h̄)∪̆(f ,A)Υ = (f ,A)Υ.

Proof. We only outline the proof of assertion 4 since the proof of assertions 1, 2 and 3 comes directly
from Definitions 13 and 14.

Assume that ((f ,A)Υ∪̆(g,B)h̄) = (R,P)∆, where P∆ = AΥ ∪ Bh̄, and ∆ = Υ~∪h̄, (S,W)Ω =

((R,P)∆∩̆(f ,A)Υ)) where WΩ = P∆ ∪ AΥ, and Ω = ∆~∩Υ. Thus, Ω = (Υ~∪h̄)~∩Υ = Υ, since the
absorption property is valid for fuzzy sets.
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Let (S,W)Ω =
{(

ε,
{ u

SΩ(ε)(u) : u ∈ U
})

: ε ∈ W
}

, where

SΩ(ε)(u) =



R(ε) = [rj
R(ε)(u)e

iω j
R(ε)(u)]j∈{1,2,...,k} i f ε ∈ P∆ −AΥ,

f (ε) = [rj
f (ε)(u)e

iω j
f (ε)(u)]j∈{1,2,...,k} i f ε ∈ AΥ −P∆,

R(ε) ∩ f (ε) = [min(rj
R(ε)(u), rj

f (ε)(u)).

ei min[ω j
R(ε)(u), ω

j
f (ε)(u)]]j∈{1,2,...,k} i f ε ∈ P∆ ∩A.

(13)

We consider the case when ε ∈ P∆ ∩Aλ as the other cases are trivial. Then, by using Equation (13),
we have

SΩ(ε)(u) = R(ε)
⋂

f (ε)

= min(rj
R(ε)(u), rj

f (ε)(u)).e
i min[ω j

R(ε)(u), ω
j
f (ε)(u)]

= min(rj
(f

Υ
(ε)~∪gh̄ (ε))

(u), rj
f
Υ
(ε)

(u)) · e
i min[ω j

(f
Υ
(ε)~∪gh̄ (ε))

(u), ω
j
f
Υ
(ε)

(u))]

= min(max[rj
f
Υ
(ε)

(u), rj
gh̄ (ε)

(u)], rj
f
λ
(ε)
(u)) · e

i min(max[ω j
f
Υ
(ε)

(u),ω j
gh̄ (ε)

(u)], ω
j
f
Υ
(ε)

(u))

= min([rj
f
Υ
(ε)

(u)], [rj
f
Υ
(ε)

(u)]) · e
i min([ω j

f
Υ
(ε)

(u)],[ω j
f
Υ
(ε)

(u)])

= f (ε) u f (ε)
= f (ε),

which implies that R(ε) u f (ε) = f (ε).
Therefore, we have ((f ,A)Υ∪̆(g,B)h̄)∩̆(f ,A)Υ = (f ,A)Υ. Thus, the first part of assertion 4 is

proven. Likewise, we can prove the second part of assertion 4. This completes the proof.

4.3. AND and OR of FP-CMFSESs

We now introduce the notion of AND and OR operations on two FP-CMFSESs with a
proposition of these two operations.

Definition 15. Let (f ,A)Υ and (g,B)h̄ be two FP-CMkFSESs over U. Then, “(f ,A)Υ AND (g,B)h̄"
denoted by (f ,A)Υ∧(g,B)h̄ is defined as (f ,A)Υ∧(g,B)h̄ = (O,A×B)Ω, where Ω = Υ× h̄ and (O,A×
B)Ω = OΩ(α, β), such that

ÕΩ(α, β) = [min(rj
fΥ(α)

(u), rj
gh̄(β)

(u)) · ei min[ω j
fΥ(α)

(u),ω j
gh̄(α)

(u)]
], (14)

∀u ∈ U, j = 1, 2, ..., k and ∀(α, β) ∈ AΥ ×Bh̄.

Example 7. Consider Example 2. Let Υ =
{

0.7
e1

, 0.5
e2

}
and h̄ =

{
0.4
e1

, 0.3
e2

}
,

AΥ =
{(

0.7
e1

, x1, 1
)

,
(

0.5
e2

, x2, 0
)}

, Bh̄ =
{(

0.4
e1

, x1, 1
)

,
(

0.3
e2

, x2, 1
)}

.

Suppose (f ,A)Υ and (g,B)h̄ are two FP-CM3FSESs over the same U given by

(f ,A)Υ =
{{(

0.6
e1

, x1, 0
)

,
{
〈0.5ej2π(0.6),0.8ej2π(0.4),0.1ej2π(0.9)〉

u1
, 〈0.4ej2π(0.8),0.5ej2π(0.3),0.3ej2π(0.2)〉

u2

}}
,{(

0.4
e2

, x2, 1
)

,
{
〈0.6ej2π(0.45),0.8ej2π(0.5),0.6ej2π(0.9)〉

u1
, 〈0.3ej2π(0.2),0.1ej2π(0.8),0.3ej2π(0.7)〉

u2

}}}
,

and
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(g,B)h̄ =
{{(

0.5
e1

, x1, 0
)

,
{
〈0.4ej2π(0.8),0.5ej2π(0.5),0.3ej2π(0.3)〉

u1
, 〈1.0ej2π(0.7),0.8ej2π(0.2),0.4ej2π(0.8)〉

u2

}}
,{(

0.8
e2

, x2, 1
)

,
{
〈0.2ej2π(0.4),0.3ej2π(0.6),0.7ej2π(0.5)〉

u1
, 〈0.2ej2π(0.1),0.8ej2π(0.5),0.6ej2π(0.7)〉

u2

}}}
.

By using Definition 15, we have

(f ,A)Υ∧(g,B)h̄ = (O,A×B)Ω ={{(
0.7
e1

, x1, 1
)(

0.4
e1

, x1, 1
)

,
{
〈0.4ej2π(0.6),0.5ej2π(0.4),0.1ej2π(0.3)〉

u1
, 〈0.4ej2π(0.7),0.5ej2π(0.2),0.3ej2π(0.2)〉

u2

}}
,{(

0.7
e1

, x1, 1
)(

0.3
e2

, x2, 1
)

,
{
〈0.2ej2π(0.4),0.3ej2π(0.4),0.1ej2π(0.5)〉

u1
, 〈0.2ej2π(0.1),0.5ej2π(0.3),0.3ej2π(0.2)〉

u2

}}
,{(

0.5
e2

, x2, 0
)(

0.4
e1

, x1, 1
)

,
{
〈0.4ej2π(0.45),0.5ej2π(0.5),0.3ej2π(0.3)〉

u1
, 〈0.3ej2π(0.2),0.1ej2π(0.2),0.3ej2π(0.7)〉

u2

}}
,{(

0.5
e2

, x2, 0
)(

0.3
e2

, x2, 1
)

,
{
〈0.2ej2π(0.4),0.3ej2π(0.5),0.6ej2π(0.5)〉

u1
, 〈0.2ej2π(0.1),0.1ej2π(0.5),0.3ej2π(0.7)〉

u2

}}}
.

Definition 16. Let (f ,A)Υ and (g,B)h̄ be two PF-CMkFSESs over U. Then, “(f ,A)Υ OR (g,B)h̄” denoted
by (f ,A)Υ∨(g,B)h̄ is defined by (f ,A)Υ∨(g,B)h̄ = (O,A×B)Ω, where Ω = Υ× h̄ and (O,A×B)Ω =

OΩ(α, β), such that

ÕΩ(α, β) = [max(rj
fΥ(α)

(u), rj
gh̄(β)

(u)) · ei max[ω j
fΥ(α)

(u),ω j
gh̄(β)

(u)]
], (15)

∀u ∈ U, j = 1, 2, ..., k and ∀(α, β) ∈ AΥ ×Bh̄.

Example 8. Consider Example 7. By using Definition 16, we have

(f ,A)Υ∨(g,B)h̄ = (O,A×B)Ω ={{(
0.7
e1

, x1, 1
)(

0.4
e1

, x1, 1
)

,
{
〈0.5ej2π(0.8),0.8ej2π(0.5),0.3ej2π(0.9)〉

u1
, 〈1.0ej2π(0.8),0.8ej2π(0.3),0.4ej2π(0.8)〉

u2

}}
,{(

0.7
e1

, x1, 1
)(

0.3
e2

, x2, 1
)

,
{
〈0.5ej2π(0.6),0.8ej2π(0.6),0.7ej2π(0.9)〉

u1
, 〈0.4ej2π(0.8),0.8ej2π(0.5),0.6ej2π(0.7)〉

u2

}}
,{(

0.5
e2

, x2, 0
)(

0.4
e1

, x1, 1
)

,
{
〈0.6ej2π(0.5),0.8ej2π(0.5),0.6ej2π(0.9)〉

u1
, 〈1.0ej2π(0.8),0.8ej2π(0.8),0.4ej2π(0.8)〉

u2

}}
,{(

0.5
e2

, x2, 0
)(

0.3
e2

, x2, 1
)

,
{
〈0.6ej2π(0.45),0.8ej2π(0.6),0.7ej2π(0.9)〉

u1
, 〈0.3ej2π(0.2),0.8ej2π(0.8),0.6ej2π(0.7)〉

u2

}}}
.

Proposition 4. If (f ,A)Υ and (g,B)h̄) are two FP-CMkFSESs over U, then we have the following properties:

1. ((f ,A)Υ ∨ (g,B)h̄)
c = (f ,A)c

Υ ∧ (g,B)c
h̄,

2. ((f ,A)Υ ∧ (G̃, B))c = (f ,A)c
Υ ∨ (g,B)c

h̄.

Proof. Suppose that (f ,A)Υ∨(g,B)h̄ = (O,A× B)Ω. Then, we have ((f ,A)Υ ∨ (g,B)h̄)
c = (O,A×

B)c
Ω = (Oc,¬(A× B))Ω, where ¬(A× B)Ω = ¬(AΥ ∨ Bh̄)Ω. Thus, Ωĉ = (Υ ∨ h̄)ĉ = Υĉ ∧ h̄ĉ, since

the De Morgan’s property is valid for fuzzy sets.
Hence,

(f ,A)c
Υ ∧ (g,B)c

h̄ = (f c,A)Υ ∧ (gc,B)h̄ = (J ,¬A×¬B)Ω = (J ,¬(A×B)Ω,

where JΩ(¬α,¬β) = [min(rj
f c
Υ(¬α)

(u), rj
gc

h̄(¬β)
(u)) · e

i min[ω j
f c
Υ
(¬α)

(u),ω j
gc

h̄(¬α)
(u)]

], ∀(¬α,¬β) ∈ (¬A× ¬B),
j = 1, 2, ..., k and u ∈ U.

We take (¬α,¬β) ∈ (¬A×¬B) and j = 1, 2, ..., k, therefore,

OΩ
c(¬α,¬β) = rj

Oc(¬α,¬β)
(x) · ei[ω j

Oc(¬α,¬β)
(x)]

= [1− rj
O(α,β)(x)] · ei[2π−ω

j
O(α,β)(x)]

= [1−max(rj
fΥ(α)

(u), rj
gh̄(β)

(u))] · ei[2π−max(ω j
fΥ(α)

(u),ω j
gh̄(α)

(u))]
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= min(1− rj
fΥ(α)

(u), 1− rj
gh̄(β)

(u)) · ei min(2π−ω
j
fΥ(α)

(u),2π−ω
j
gh̄(α)

(u))

= min(rj
f c
Υ(¬α)

(u), rj
gc

h̄(¬β)
(u)) · e

i min[ω j
f c
Υ
(¬α)

(u),ω j
gc

h̄(¬α)
(u)]

= JΩ(¬α,¬β).

Hence, OΩ
c and JΩ are the same operator, thus the first assertion of Proposition 2 is proven.

Likewise, we can prove the second assertion too.

5. An Application of Fuzzy Parameterized Complex Multi-Fuzzy Soft Expert Set

In this current section, we give an implementation of FP-CMFSES in solving a
decision-making problem.

Example 9. Assume that a person wishes to purchase a travelling ticket from one of the travel agencies to
travel to some countries and wants to gain opinions from some experts regarding these countries in terms of the
living cost and weather. As a matter of fact, a year consists of four seasons and the living cost, and weather is
different for each season. Suppose that there are three countries u1, u2 and u3 under consideration. This set of
countries is denoted by U = {u1, u2, u3}. Suppose that the parameter set E = {e1, e2} represents the factors
that the traveler takes when traveling, where e1 stands for “living cost”, which includes three levels: cheap,
medium and expensive; e2 stands for "weather" which includes three cases: hot, mild and cool. The degree
of importance of e1 and e2 are 0.4, 0.6, respectively. That is, the subset of parameters is Υ = { 0.4

e1
, 0.6

e2
}.

Let X = {x1, x2} be a set of experts. Based on the input, the traveler constructed the FP-CM3FSES as follows:

(f ,A)Υ =
{{

( 0.4
e1

, x1, 1),
{

(0.8ei2π(2/4),0.3ei2π(3/4),0.1ei2π(1/4))
u1

, (0.5ei2π(4/4),0.8ei2π(3/4),0.3ei2π(1/4))
u2

,

(0.1ei2π(1/4),0.5ei2π(2/4),0.7ei2π(1/4))
u3

}}
,{

( 0.4
e1

, x2, 1),
{

(0.6ei2π(3/4),0.22ei2π(4/4),0.7ei2π(2/4))
u1

, (0.8ei2π(3/4),0.7ei2π(3/4),0.3ei2π(1/4))
u2

,

(0.1ei2π(1/4),0.3ei2π(4/4),0.2ei2π(3/4))
u3

}}
,{

( 0.6
e2

, x1, 1),
{

(0.1ei2π(4/4),0.5ei2π(3/4),0.2ei2π(1/4))
u1

, (0.7ei2π(2/4),0.42ei2π(3/4),0.35ei2π(1/4))
u2

,

(0.1ei2π(1/4),0.8ei2π(3/4),0.3ei2π(2/4))
u3

}}
,{

( 0.6
e2

, x2, 1),
{

(0.2ei2π(3/4),0.5ei2π(2/4),0.8ei2π(4/4))
u1

, (0.5ei2π(2/4),0.1ei2π(1/4),0.5ei2π(3/4))
u2

,

(0.1ei2π(1/4),0.3ei2π(3/4),0.2ei2π(2/4))
u3

}}
,{

( 0.4
e1

, x1, 0),
{

(0.2ei2π(2/4),0.7ei2π(1/4),0.9ei2π(3/4))
u1

, (0.5ei2π(4/4),0.2ei2π(1/4),0.3ei2π(3/4))
u2

,

(0.9ei2π(3/4),0.5ei2π(2/4),0.3ei2π(3/4))
u3

}}
,{

( 0.4
e1

, x2, 0),
{

(0.35ei2π(1/4),0.6ei2π(3/4),0.1ei2π(2/4))
u1

, (0.1ei2π(4/4),0.7ei2π(2/4),0.3ei2π(1/4))
u2

,

(0.1ei2π(4/4),0.5ei2π(2/4),0.2ei2π(3/4))
u3

}}
,{

( 0.6
e2

, x1, 0),
{

(0.2ei2π(1/4),0.5ei2π(3/4),0.8ei2π(4/4))
u1

, (0.9ei2π(2/4),0.4ei2π(3/4),0.3ei2π(1/4))
u2

,

(0.5ei2π(2/4),0.8ei2π(3/4),0.2ei2π(1/4))
u3

}}
,{

( 0.6
e2

, x2, 0),
{

(0.8ei2π(1/4),0.5ei2π(2/4),0.2ei2π(4/4))
u1

, (0.5ei2π(2/4),0.9ei2π(3/4),0.3ei2π(1/4))
u2

,

(0.1ei2π(4/4),0.5ei2π(3/4),0.2ei2π(2/4))
u3

}}}
.

In our example, the amplitude terms represent the degrees of belongingness to the living cost and
weather, whereas the phase terms denote the degrees of belongingness to the phase of seasons.
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Suppose that the traveler would like to select one of the three countries based on the living cost
and weather. We apply the following Algorithm 1 to this problem in order to achieve a good selection
in deciding the best country in terms of the living cost and weather. We outline the steps required in
this process as follows.

Algorithm 1: Using FP-CMkFSES .

Step 1. Construct FP-CMkFSES (f ,A)Υ over U.
Step 2. Convert the FP-CMkFSES (f ,A)Υ to the FP-MkFSES ( f̈ ,A)Υ by obtaining the weighted

aggregation values of µ
j
f̈
Υ
(σ˙̀ )

(u),∀σ˙̀ ∈ A,∀u` ∈ U and j = 1, 2, ..., k as in the

following equation:

µ
j
f̈
Υ
(σ˙̀ )

(u`) = ν1rj
f
Υ
(σ˙̀ )

(u`) + ν2(1/2π)ω
j
f
Υ
(σ˙̀ )

(u`), (16)

where rj
f
Υ
(σ˙̀ )

(u`) and ω
j
f
Υ
(σ˙̀ )

(u`) (for j = 1, 2, ..., k) are the amplitude and phase terms in the

FP-CMkFSES (f ,A)Υ, respectively. µ
j
f̈
Υ
(σ˙̀ )

(u`) is the multi-membership function in the

FP-MkFSES ( f̈ ,A)Υ and ν1, ν2 are the weights for the amplitude terms (the degrees of
belongingness to the living cost and weather) and the phase terms (the degrees of
belongingness to the phase of seasons), respectively, where ν1 and ν2 ∈ [0, 1] and ν1 + ν2 = 1.

Step 3. Find the values of C ˙̀` for agree-FP-MkFSES and disagree-FP-MkFSES, respectively, ∀σ˙̀ ∈ A
and ∀u` ∈ U using

C ˙̀` =
∑k

j=1 µ
j
f̈
Υ
(σ˙̀ )

(u`)

k
. (17)

Step 4. Compute the score of each element u` ∈ U by the following formulas:

K` = ∑
x∈X

∑̇
`

C ˙̀`(ηΥ
(e ˙̀ )), S` = ∑

x∈X
∑̇
`

C ˙̀`(ηΥ
(e ˙̀ )), (18)

for the agree-FP-MkFSES and disagree-FP-MkFSES, respectively, where η
Υ
(e ˙̀ ) is the

corresponding membership function of the fuzzy set Υ and X is the set of the experts.
Step 5. Find the value of the scoreR` = K` − S` for each element x` ∈ U.
Step 6. The optimal decision is any element in s, where s = maxx`∈U{R`}.

Now, convert the FP-CMkFSES (f ,A)Υ to FP-MkFSES ( f̈ ,A)Υ. To implement this step,
we assume that the weight for the amplitude term is ν1 = 0.7 and the weight for the phase term is
ν2 = 0.3 to obtain the weighted aggregation values of µ

j
f̈
Υ
(σ˙̀ )

(u`),∀σ˙̀ ∈ A,∀u ∈ U and j = 1, 2, ..., k.

We calculate µ
j
f̈
Υ
(σ1)

(u1), when σ1 = ( 0.4
e1

, x1, 1) and j = 1, 2, 3 as shown below:

µ1
f̈
Υ
( 0.4

e1
,x1,1)

(u1) = ν1r1
f
Υ
( 0.4

e1
,x1,1)

(u1) + ν2(1/2π)ω1
f
Υ
( 0.4

e1
,x1,1)

(u1)

= (0.7)(0.8) + (0.3)(1/2π)(2π)(2/4)
= 0.71,

µ2
f̈
Υ
( 0.4

e1
,x1,1)

(u2) = ν1r2
f
Υ
( 0.4

e21 ,x1,1)
(u2) + ν2(1/2π)ω2

f
Υ
( 0.4

e1
,x1,1)

(u2)

= (0.7)(0.3) + (0.3)(1/2π)(2π)(3/4)
= 0.435,

µ3
f̈
Υ
( 0.4

e1
,x1,1)

(u3) = ν1r3
f
Υ
( 0.4

e1
,x1,1)

(u3) + ν2(1/2π)ω3
f
Υ
( 0.4

e1
,x1,1)

(u3)

= (0.7)(0.1) + (0.3)(1/2π)(2π)(1/4)
= 0.145.
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Then, for σ1 = ( 0.4
e1

, x1, 1), the FP-MkFSE-values are given by

(µ1
f̈
Υ
(σ1)

(u1), µ2
f̈
Υ
(σ1)

(u1), µ3
f̈
Υ
(σ1)

(u1)) = (0.71, 0.435, 0.145).

In the same way, we calculate the FP-MkFSE-values, ∀σ ∈ A and ∀u ∈ U and the results are
displayed in Table 1.

Table 1. Values of ( f̈ ,A)Υ.

U u1 u2 u3

( 0.4
e1

, x1, 1) (0.71, 0.435, 0.145) (0.65, 0.785, 0.285) (0.145, 0.5, 0.565)
( 0.4

e1
, x2, 1) (0.645, 0.454, 0.64) (0.785, 0.715, 0.285) (0.145, 0.51, 0.365)

( 0.6
e2

, x1, 1) (0.37, 0.575, 0.215) (0.64, 0.519, 0.32) (0.145, 0.785, 0.36)
( 0.6

e2
, x2, 1) (0.365, 0.5, 0.86) (0.5, 0.145, 0.575) (0.145, 0.435, 0.29)

( 0.4
e1

, x1, 0) (0.29, 0.565, 0.855) (0.65, 0.215, 0.435) (0.855, 0.5, 0.435)
( 0.4

e1
, x2, 0) (0.32, 0.645, 0.22) (0.37, 0.64, 0.285) (0.37, 0.5, 0.365)

( 0.6
e2

, x1, 0) (0.215, 0.575, 0.86) (0.78, 0.505, 0.285) (0.5, 0.785, 0.215)
( 0.6

e2
, x2, 0) (0.635, 0.575, 0.44) (0.5, 0.855, 0.285) (0.37, 0.575, 0.29)

From Table 1, we can give the values of C ˙̀`, for agree-FP-MkFSES and disagree-FP-MkFSES (as
explained in Definition 5 earlier and formulated in Step 3 of Algorithm 1) presented in Tables 2 and 3,
respectively.

Table 2. Tabular representation of the agree-FP-MkFSES.

U e1 e2 e3

( 0.4
e1

, x1) 0.43 0.573 0.403
( 0.4

e1
, x2) 0.580 0.595 0.34

( 0.6
e2

, x1) 0.387 0.493 0.43
( 0.6

e2
, x2) 0.575 0.407 0.29

K` = ∑
x∈X

∑̇
`

C ˙̀`(ηΥ (e ˙̀ )) K1 = 0.981 K2 = 1.007 K3 = 0.729

Table 3. Tabular representation of the disagree-FP-MkFSES.

U e1 e2 e3

( 0.4
e1

, x1) 0.57 0.433 0.597
( 0.4

e1
, x2) 0.395 0.432 0.412

( 0.6
e2

, x1) 0.55 0.523 0.5
( 0.6

e2
, x2) 0.55 0.547 0.412

S` = ∑
x∈X

∑̇
`

C ˙̀`(ηΥ (e ˙̀ )) S1 = 1.046 S2 = 0.988 S3 = 0.950

Let K` and S` represent the score of each numerical grade for the agree-FP-MkFSES and
disagree-FP-MkFSES, respectively. These values are given in Table 4.
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Table 4. The scoreR` = K` − S` .

U K` S` R`

u1 K1 = 0.981 S1 = 1.046 R1 = −0.065
u2 K2 = 1.007 S2 = 0.988 R2 = 0.019
u3 K3 = 0.729 S3 = 0.950 R3 = −0.221

Clearly, the maximum choice value is 0.019 as shown in Table 4 and so the optimal decision is to
select u2 in terms of the living cost and weather.

Comparison between FP-CMFSES and the Existing Method

We have used the FP-CMFSES to determine the appropriate country from the three countries
to travel in terms of the living cost and weather, where its amplitude terms represent the degrees of
belongingness to the living cost and weather and its phase terms represent the degrees of belongingness
to the phase of seasons. In this section, we will compare our proposed FP-CMFSES model against
the existing method of a fuzzy parameterized fuzzy soft expert set (FPFSES) [31].

FPFSES is able to solve a decision-making problem using a single membership function, but it
is not able to solve the decision-making problem, which involves multi-agent, multi-attribute,
multi-object, multi-index and uncertainty utilizing multi-membership functions. An additional reason
is its inability to deal with problems that have a periodic nature, as its structure lacks the phase term.

Consider a decision-making problem in Example 9 above. It can be seen that the FPFSES cannot
describe this problem, since it is unable to represent multi-membership functions simultaneously.
In addition, it is unable to represent variables in two dimensions, whereas our proposed model
FP-CMFSES can completely characterize these parameters.

Thus, the proposed method has certain advantages. Firstly, this method uses the FP-CMFSES to
represent the the decision-making problem, which involves multi-agent, multi-attribute, multi-object,
multi-index and uncertainty utilizing multi-membership functions. FP-CMFSES includes evaluation
information missing in the FPFSES model, such as the time frame, which is presented by the phase
terms and the ability to represent multi-dimensional data. Secondly, the FP-CMFSES that is used in
our method has the ability to handle the uncertainty information that is captured by the amplitude
terms and phase terms of the complex numbers, simultaneously. Finally, a practical formula is
employed to convert the FP-CMFSES from the complex state to the real state, which employs a
simple computational process without the need to carry out directed operations on complex numbers.

6. Weighted of Fuzzy Parameterized Complex Multi-Fuzzy Soft Expert Set Based Decision-Making

In this present segment, we present the idea for assigning relative weights to the experts by
establishing a novel notion called WFP-CMFSES and apply it to decision-making problems.

To begin with, we propose the concept of WFP-CMFSES .

Definition 17. Let k be a positive integer, U be a universe of elements, E be a set of parameters, Fz(E)
denote the set of fuzzy subsets of E, X be a set of experts, and Fz(X) denote all fuzzy subsets of X and
O = {1 = agree, 0 = disagree} a set of opinions. Let Z = Υ× v ×O and A ⊆ Z , where Υ ⊂ Fz(E)
and v ⊂ Fz(X). Then, the pair (f ,A)Υ,v is called a a weighted fuzzy parameterized complex multi-fuzzy soft
expert set of dimension k (WFP-CMkFSES) over U if and only if fΥ,v : A → CMk(U) is a mapping into
the set of all complex multi-fuzzy sets in U.

TheWFP-CMkFSES (f ,A)Υ,v can be written as the following set of ordered pairs:

(f ,A)Υ,v =
{(

σ =
[ η

Υ
(e)
e

,
ηv (x)

x
, o
]
,
{ f

Υ,v (σ)(u)
u

: u ∈ U
})

: σ ∈ A ⊆ Υ×v×O, e ∈ E, x ∈ X and o ∈ O
}

, (19)
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such that η
Υ
(e) and ηv (x) are the corresponding membership functions of the fuzzy set Υ and

v, respectively.
Obviously, a revised version of Algorithm 1 can be developed to cope with the decision-making

problems based on WFP-CMFSESs (see Algorithm 2). In the revised algorithm, we assign the
relative weight to each of the experts where the choice of the experts may not be of equal importance
and compute the weighted choice values R̄` instead of choice valuesR`. Now, we use Algorithm 2 to
select the appropriate country from the three countries of choice.

The following algorithm may be used to solve the decision-making problem in Example 9,
where the data are represented by theWFP-CMkFSES (f ,A)Υ,v.

Algorithm 2: UsingWFP-CMkFSES .

Step 1. ConstructWFP-CMkFSES (f ,A)Υ,v over U.
Step 2. Convert theWFP-CMkFSES (f ,A)Υ,v to the weighted fuzzy parameterized multi-fuzzy

soft expert set (WFP-MkFSES) ( f̈ ,A)Υ,v as it was illustrated in step 2 of Algorithm 1.
Step 3. Find the values of C ˙̀` for agree-WFP-MkFSES and disagree-WFP-MkFSES respectively,

∀σ˙̀ ∈ A and ∀u` ∈ U using

C ˙̀` =
∑k

j=1 µ
j
f̈
Υ,v (σ˙̀ )

(u`)

k
. (20)

Step 4. Compute the score of each element u` ∈ U by the following formulas:

K̄` = ∑
x∈X

∑̇
`

C ˙̀`(ηΥ
(e ˙̀ ))(ηv (x ˙̀ )), S̄` = ∑

x∈X
∑̇
`

C ˙̀`(ηΥ
(e ˙̀ ))(ηv (x ˙̀ )) (21)

for the agree-WFP-MkFSES and disagree-WFP-MkFSES, respectively, where η
Υ
(e ˙̀ ) and

ηv (x ˙̀ ) are the corresponding membership functions of the fuzzy set Υ and v, respectively.
Step 5. Find the value of the score R̄` = K̄` − S̄` for each element u` ∈ U.
Step 6. The optimal decision is any element in s, where s = maxu`∈U{R̄`}.

To illustrate the above idea, let us reconsider Example 9.

Example 10. Consider Example 9. Suppose that the traveler has assigned the following weights for the experts
in X: for the expert “x1”: v1 = 0.5, for the expert “x2”: v2 = 0.7. Then, the fuzzy subset of experts

is v =
{0.5

x1
,

0.7
x2

}
and the FP-CMkFSES (f ,A)Υ in Example 9 is changed into a WFP-CMkFSES

(f ,A)Υ,v.

Tables 5 and 6 give the numerical grade for agree-WFP-MkFSES and disagree -WFP-MkFSES.

Table 5. Tabular representation of the numerical grade for WFP-MkFSES.

U e1 e2 e3

( 0.4
e1

, 0.5
x1
) 0.43 0.573 0.403

( 0.4
e1

, 0.7
x1
) 0.580 0.595 0.34

( 0.6
e2

, 0.5
x1
) 0.387 0.493 0.43

( 0.6
e2

, 0.7
x1
) 0.575 0.407 0.29

K̄` = ∑
x∈X

∑̇
`

C ˙̀`(ηΥ (e ˙̀ ))(ηv (x ˙̀ )) K̄1 = 0.606 K̄2 = 0.600 K̄3 = 0.426
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Table 6. Tabular representation of the numerical grade for disagree-WFP-MkFSES.

U e1 e2 e3

( 0.4
e1

, 0.5
x1
) 0.57 0.433 0.597

( 0.4
e1

, 0.7
x1
) 0.395 0.432 0.412

( 0.6
e2

, 0.5
x1
) 0.55 0.523 0.5

( 0.6
e2

, 0.7
x1
) 0.55 0.547 0.412

S̄` = ∑
x∈X

∑̇
`

C ˙̀`(ηΥ (e ˙̀ ))(ηv (x ˙̀ )) S̄1 = 0.621 S̄2 = 0.594 S̄3 = 0.558

Now, we calculate the score R̄` = K̄` − S̄` for each element u` ∈ U , where K̄` and S̄`,
represent the score of each numerical grade for the agree-WFP-MkFSES and disagree-WFP-MkFSE,
respectively. The scores are tabulated in Table 7 below.

Table 7. The scoreR` = K` − S`.

U K` S` R`

u1 K1 = 0.606 S1 = 0.621 R̄1 = −0.015
u2 K2 = 0.600 S2 = 0.594 R̄2 = 0.006
u3 K3 = 0.426 S3 = 0.558 R̄3 = −0.132

From Table 7, it is clear that the weighted optimal choice value max1≤`≤3{R̄`} = R̄2, so the
optimal decision is to select u2. Hence, it is recommended for the traveler to choose the country u2 as
the desirable alternative.

Note that the results obtained using Algorithm 1 and Algorithm 2 are the same. However,
by incorporating weights on the experts’ advice may reduce the biased information given by the experts.

7. Conclusions

Al-Qudah and Hassan [25] introduced the idea of CMFSES as a substantial and important
generalization of the soft expert set and complex multi-fuzzy set and concentrated on the utilization
of CMFSES based decision-making. In this paper, we have presented the idea of FP-CMFSES by
giving an important degree to each parameter in the CMFSES’s domain. In addition, we discussed
some basic operations of FP-CMFSES like equality, subset, complement, intersection, union,
AND operation, and OR operation and some properties and illustrative examples were provided too.
Then, we introduced an adjustable approach to decision-making using the FP-CMFSES theory and
its associated algorithm constructed. This algorithm is then applied to determine the best country in
terms of the living cost and weather, where its amplitude terms represent the degrees of belongingness
to the living cost and weather, and its phase terms represent the degrees of belongingness to the
phase of seasons. The advantage of using FP-CMFSES is manifested in representing information of
two dimensions for one object simultaneously or objects with multi-dimensional characterization
properties in one model. This type of decision-making problems cannot be solved by conventional
methods such as the FPFSES [31]. A comparison of the FPFSES to FP-CMFSES was presented
and the preferability of FP-CMFSES was revealed. Finally, we defined the notion of weighted
FP-CMFSES where experts’ relative weights have been considered and applied it to solve a
decision-making problem. Our preliminary study is yet to be applied to problems of many fields that
contain uncertainty such as pattern recognition, image processing, and fuzzy control. For further
study, we will attend to the algebraic structure of FP-CMFSES such as group, ring and field.
We plan to extend this concept to other types of algebraic structures such as monomial algebras [32]
and semigroups [33,34] in the future. We are eager to extend our work to other multi-criteria
decision-making models and applications for modeling vagueness and uncertainty.



Symmetry 2019, 11, 358 18 of 19

Author Contributions: Y.A.-Q., M.H. and N.H. conceived and worked together to achieve this work.

Funding: This research was funded by Universiti Putra Malaysia under vote number 9001103.

Acknowledgments: We are indebted to Universiti Kebangsaan Malaysia for providing technical support and
facilities for this research.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Sebastian, S.; Ramakrishnan, T.V. Multi-fuzzy sets. Int. Math. Forum 2010, 5, 2471–2476.
4. Sebastian, S.; Ramakrishnan, T.V. Multi-fuzzy sets: An extension of fuzzy sets. Fuzzy Inf. Eng. 2011, 3, 35–43.

[CrossRef]
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