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Abstract

:

The purpose of this manuscript is to study and investigate generating functions for Boole type polynomials and numbers of higher order. With the help of these generating functions, many properties of Boole type polynomials and numbers are presented. By applications of partial derivative and functional equations for these functions, derivative formulas, recurrence relations and finite combinatorial sums involving the Apostol-Euler polynomials, the Stirling numbers and the Daehee numbers are given.
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1. Introduction


In literature, there are various different and useful manuscripts related to not only Boole type polynomials and numbers, but also the Peters type polynomials and numbers. Some of those have been recently given by Boas [1], Jordan [2], Kim et al. [3,4,5,6,7,8,9,10], Kucukoglu et al. [11], Kruchinin [12], Roman [13], Simsek [14,15,16,17,18,19,20], Simsek and So [21], and also Srivastava et al. [22,23]. By using generating function method, we give many important and fundamental properties of Boole type polynomials and numbers of higher order. We need the following notations:



N=1,2,3,…, N0=0,1,2,3,…. Z, R, C and Zp demonstrate respectively sets of integer numbers, real numbers, complex numbers, and p-adic integers. Marking that for n=0, 0n=1 and for n∈N, 0n=0.


(x)v=x(x−1)⋯(x−v+1),








(x)0=1 and


xv=x(x−1)⋯(x−v+1)v!,








where v∈N0 (cf. [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]).



The definition of the Apostol-Euler polynomials of order v, shown by En(x,λ), is given below.


FE(t,x;λ,v)=2λet+1vetx=∑n=0∞En(v)(x,λ)tnn!



(1)




(cf. [25,28,29,31,32]; and the references cited therein).



Setting v=1 in (1), we have the Apostol-Euler polynomials


En(x,λ)=En(1)(x,λ).











When x=0, we also have the Apostol-Euler numbers


En(λ)=En(0,λ).











When λ=1, the above equation reduces to the well-known the Euler numbers


En=En(1)








(cf. [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]).



The definition of the Stirling numbers of the first kind, shown by S1(n,k), is given below.


FS1(t,k)=(log(1+t))kk!=∑n=0∞S1(n,k)tnn!



(2)







If k>n, then


S1(n,k)=0








(cf. [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32]).



The definition of the Stirling numbers of the second kind, shown by S2(n,k), is given below.


FS(t,k)=(et−1)kk!=∑n=0∞S2(n,k)tnn!.



(3)







If k>n, then


S2(n,k)=0








(cf. [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32]).



The Peters polynomials are one of the members of the Sheffer polynomials, which are a very broad family of polynomial sequences. The definition of the Peters polynomials, shown by snx;λ,μ, is given below.


FPt,x;λ,μ=1+tx1+1+tλμ=∑n=0∞snx;λ,μtnn!,



(4)




where x,t∈C (cf. [1,2,13]).



Remark 1.

Recently, there have been various studies and papers about the Peters (type) polynomials. For example, see for detail, Boas [1], Jordan [2], Kim et al. [3,4,5,6,7,8,9,10], Kucukoglu et al. [11], Kruchinin [12], Roman [13], Simsek [14,15,16,17,18,19,20], Simsek and So [21], and also Srivastava et al. [22,23].



We now present some appropriate values of the snx;λ,μ.



When x=0, we have the Peters numbers:


sn(λ,μ)=sn(0;λ,μ)








(cf. [15,22]). When μ=1, we have the Boole polynomials:


ξ(x,λ)=sn(x;λ,1)








(cf. [2,13]). If λ=μ=1, we get the Changhee polynomials


Chn(x)=2sn(x;1,1)








(cf. [3,4]).





The definition of the Daehee numbers, shown by Dn, is given below.


FD(t,k)=log(1+t)t=∑n=0∞Dntnn!



(5)




(cf. [5]). For further information and generalization see also (cf. [11,15,16,17,18,23]). Recently, the first author defined the following combinatorial numbers and polynomials, respectively:


F(t,λ)=2λ(1+λt)−1=∑n=0∞Yn(λ)tnn!








and


F(t,x,λ)=(1+λt)xF(t,λ)=∑n=0∞Yn(x;λ)tnn!








(cf. [18] ).



Let d be an odd integer and χ be a Dirichlet character. That is χ(x+d)=χ(x). The first author [18] [Equation-(2.3)] defined the following interesting p-adic integral representation and equation:


∫Xλx(1+λt)xχ(x)dμ−q(x)=1+q(λq)d(1+λt)d+1∑j=0d−1(−1)jχ(j)(λq)j(1+λt)j,








where p is a fixed prime and d is a fixed positive integer with (p,d)=1, hence


X=Xd=limN←Z/dpNZ,X1=Zp,










μq(x)=μq(x+pNZp)=qxpN,








where q∈Zp with ∣1−q∣p<1 (see for detail, [26]) and


[x]q=1−qx1−q.











Here q is an indeterminate. If q∈C, we assume that q<1. It is well-known that


limq→1[x]q=x








(see, for detail, [18] [Equation-(2.3)]).



By using the previous equation, we have


(1+q)∑j=0d−1(−1)jχ(j)(λq)j(1+λt)j+z(λq)d(1+λt)d+1=∑n=0∞Chn,χ(z;λ,q)tnn!,








where the polynomials Chn,χ(z;λ,q), which are the so-called generalized Apostol-Changhee polynomials, are given by


Chn,χ(z;λ,q)=∑j=0nnjλn−j(z)n−jChj,χ(λ,q)








where the numbers Chn,χ(λ,q), which are the so-called generalized Apostol-Changhee numbers, are given by


Chn,χ(λ,q)=∫Xλx+n(x)nχ(x)dμ−qx



(6)




(see, for detail, [18] [Equations-(2.4) and (2.5)]).



In light of the previous equations, the authors [21] defined the following special polynomials y7,n(x;λ,q,d):


Kd(t,x;λ,q)=(1+q)(1+λt)x(λq)d(1+λt)d+1=∑n=0∞y7,n(x;λ,q,d)tnn!.



(7)







When x=0, we have the special combinatorial numbers:


y7,n(λ,q,d)=y7,n(0;λ,q,d).








Substituting d=1 into (7), we also have the special combinatorial polynomials:


y7,n(x;λ,q)=y7,n(x;λ,q,1)








(cf. [19,21]).



Here, brief information about notations and index for the above special combinatorial numbers and polynomials is given as follows:



The first author has recently defined many different Peters and Boole type combinatorial numbers and polynomials. He gave some notations for these numbers and polynomials. For instance, in order to distinguish them from each other, these polynomials are labeled by the following symbols:



yj,n(x;λ,q), j=1,2,…,7, and also Yn(x;λ). Therefore, the number 7 is only used for index representation for these polynomials (cf. [16,17,18,19,20,21]).



Results of this paper are briefly summarized below.



Some fundamental properties of Boole type numbers of higher order and Boole type polynomials of higher order. We derive some fundamental properties of these numbers, and polynomials are given in Section 2.



PDEs and functional equations related to generating functions for Boole type polynomials of higher order, the Daehee numbers and logarithm function are given. Using these equations, derivative formulae and recurrence relations are given in Section 3.




2. Generating Function for the Polynomials y7,n(x;λ,q,d) of Order v and the Numbers y7,n(λ,q,d) of Order v


In this section, we define the generalization of the numbers y7,n(λ,q,d) as follows:


Fv(t;λ,q,d)=1+q(λq)d(1+λt)d+1v=∑n=0∞y7,n(v)(λ,q,d)tnn!.



(8)







We also define the generalization of the polynomials y7,n(x;λ,q,d) as follows:


Gv(t,x;λ,q,d)=(1+λt)xFv(t;λ,q,d)=∑n=0∞y7,n(v)(x;λ,q,d)tnn!.



(9)







We investigate some properties of the polynomials y7,n(x;λ,q,d) and the numbers y7,n(λ,q,d). We give identities and formulas involving these numbers and polynomials, the Apostol-Euler numbers, and the Stirling numbers.



By (8) and (9), we have


y7,n(v)(λ,q,d)=y7,n(v)(0;λ,q,d),








and


y7,n(x;λ,q,d)=y7,n(1)(x;λ,q,d).











In order to give a computation formula for the numbers y7,n(v)(λ,q,d), we set


1+q(λq)d(1+λt)d+1v=1+q2v2(λq)dedlog(1+λt)+1v.











Combining the above equation with (1) and (2), we get


∑m=0∞y7,m(v)(λ,q,d)tmm!=1+q2v∑n=0∞En(v)(λdqd)dn(log(1+λt))nn!=1+q2v∑m=0∞∑n=0mdnλmEn(v)(λdqd)S1(m,n)tmm!.











Comparing the coefficients of tmm! on both sides of the above equation, a computation formula for the numbers y7,m(v)(λ,q,d) is given by the following theorem:



Theorem 1.

Let q>0, v,d,m∈N and λ∈C. Then we have


y7,m(v)(λ,q,d)=1+q2vλm∑n=0mdnEn(v)(λdqd)S1(m,n).













Using (8), we obtain


(1+q)v=∑j=0vvj(λq)dj(1+λt)dj∑n=0∞y7,n(v)(λ,q,d)tnn!.











From the previous equation, we have


(1+q)v=∑n=0∞∑j=0vvj(λq)djdjnλntn∑n=0∞y7,n(v)(λ,q,d)tnn!.











Hence


(1+q)v=∑n=0∞∑k=0n∑j=0vnkvj(λq)dj(dj)kλky7,n−k(v)(λ,q,d)tnn!.











Making some straightforward calculations in the previous equation, a recurrence relation for y7,n(v)(λ,q,d) is obtained. This relation is given by the following theorem:



Theorem 2.

Let


y7,0(v)(λ,q,d)=1+q(λq)d+1v.











For n∈N, we have


∑k=0n∑j=0vnkvj(λq)dj(dj)kλky7,n−k(v)(λ,q,d)=0.













With the help of Equation (8), setting the following equation:


Fv1+v2(t;λ,q,d)=Fv1(t;λ,q,d)Fv2(t;λ,q,d).











Making some calculations in the previous equation, another recurrence relation for y7,n(v)(λ,q,d) is also obtained. This relation is given by the following theorem:



Theorem 3.

Let q>0, v1,v2,d,n∈N and λ∈C. Then we have


y7,n(v1+v2)(λ,q,d)=∑j=0nnjy7,j(v1)(λ,q,d)y7,n−j(v2)(λ,q,d).



(10)









Setting v1=v2=1 in (10), we compute the following few values of the numbers y7,n(2)(λ,q,d):


y7,0(2)(λ,q,d)=1+q(λq)d+12,










y7,1(2)(λ,q,d)=−2dλ(λq)d(1+q)2((λq)d+1)3








and


y7,2(2)(λ,q,d)=8(dλ)2(λq)2d(1+q)2((λq)d+1)4−(λ2(λq)d((d)2+(2d)2(λq)d)(1+q)2((λq)d+1)4.











A relation between the numbers y7,n(v)(λ,q,d) and the polynomials y7,n(v)(x;λ,q,d) is given by the following theorem.



Theorem 4.

Let q>0, v,d,n∈N and λ∈C. Then we have


y7,n(v)(x;λ,q,d)=∑j=0nnj(x)jλjy7,n(v)(λ,q,d).













Proof. 



∑n=0∞y7,n(v)(x;λ,q,d)tnn!=(1+λt)x∑n=0∞y7,n(v)(λ,q,d)tnn!=∑n=0∞xn(λt)n∑n=0∞y7,n(v)(λ,q,d)tnn!=∑n=0∞∑j=0nnj(x)jλjy7,n(v)(λ,q,d)tnn!.











Comparing the coefficients of tnn! on both sides of the above equation, we have the derived result. □





Using definition of the numbers y7,n(v)(x;λ,q,d), we have


(1+λt)x=1+q(λq)d(1+λt)d+1−v∑n=0∞y7,n(v)(x;λ,q,d)tnn!.











After elementary calculation, we obtain


∑n=0∞(x)nλntnn!=∑n=0∞y7,n(−v)(x;λ,q,d)tnn!∑n=0∞y7,n(v)(x;λ,q,d)tnn!.











Making some straightforward calculations in the previous equation, and after that comparing the coefficients of tnn! on both sides of the above equation, we have the following theorem:



Theorem 5.

Let q>0, v,d,n∈N and λ∈C. Then we have


(x)n=1λn∑j=0nnjy7,n−j(−v)(x;λ,q,d)y7,j(v)(x;λ,q,d).













Substituting λt=ez−1 into (9), we have


1+q2v2(λq)dezd+1vezx=∑m=0∞y7,m(v)(x;λ,q,d)(ez−1)mλmm!.











Combining the previous equation with (1) and (3), we obtain


1+q2v∑n=0∞dnEn(v)xd;λdqdznn!=∑m=0∞y7,m(v)(x;λ,q,d)λm∑n=0∞S2(n,m)znn!.











Since S2(n,m)=0 for m>n, we have


1+q2v∑n=0∞dnEn(v)xd;λdqdznn!=∑n=0∞∑m=0ny7,m(v)(x;λ,q,d)λmS2(n,m)znn!.











Comparing the coefficients of znn! on the both sides of the above equation, we derive the following theorem:



Theorem 6.

Let q>0, v,d,n∈N and λ∈C. Then we have


1+q2vEn(v)xd;λdqd=1dn∑m=0ny7,m(v)(x;λ,q,d)λmS2(n,m).













Setting


Fv+k(t;λ,q,d)=Fv(t;λ,q,d)Fk(t;λ,q,d).











Using the previous equation, we derive the following theorem:



Theorem 7.

Let q>0, v,d,n∈N and λ∈C. Then we have


y7,n(v)(x+y;λ,q,d)=∑j=0nnj(x+y)jy7,n−j(v)(λ,q,d).



(11)









Proof. 



∑n=0∞y7,n(v)(x+y;λ,q,d)tnn!=(1+λt)x+y1+q(λq)d(1+λt)d+1v=∑n=0∞(y)nλntnn!∑n=0∞y7,n(v)(x;λ,q,d)tnn!.











Comparing the coefficients of tnn! on both sides of the above equation, we have the derived result. □





Combining the following the Chu-Vandermonde identity with (11)


∑j=0kmjn−mk−j=nk.



(12)




we have


y7,n(v)(x+y;λ,q,d)=∑j=0nnj(x)n−jy7,n(v)(x;λ,q,d)








and


y7,n(v)(x+y;λ,q,d)=∑j=0nnj(y)n−jy7,n(v)(λ,q,d).











Combining (12) with (11), we arrive at the following corollary:



Corollary 1.

Let q>0, v,d,n∈N and λ∈C. Then we have


y7,n(v)(x+y;λ,q,d)=∑j=0nnj∑k=0j(x)k(y)j−ky7,n−j(v)(λ,q,d).













Kucukoglu [27] defined the following generating functions:


Fd(t;λ,q,v)=log(1+λt)(λq)d(1+λt)d−1v=∑n=0∞In,d(v)(λ,q)tnn!



(13)




and


Gd(t,x;λ,q,v)=(1+λt)xFd(t;λ,q,v)=∑n=0∞In,d(v)(x;λ,q)tnn!.



(14)







Combining (14) with (9), we have


Gv(t,x;λ,q,d)Gd(t,x;λ,q,v)=(1+λt)2x(1+q)v(log(1+λt))v((λq)2d(1+λt)2d−1)v.











From the above equation, we get


Gv(t,x;λ,q,d)Gd(t,x;λ,q,v)=(1+q)vG2d(t,2x;λ,q,v).











From the equality in (14) with 2d and 2x instead of d respectively x, we arrive at the following one:


∑n=0∞y7,n(v)(x;λ,q,d)tnn!∑n=0∞In,d(v)(x;λ,q)tnn!=(1+q)v∑n=0∞In,2d(v)(2x;λ,q)tnn!.











Using the Cauchy product and comparing the coefficients of tnn! on both sides of the above equation, we have the following theorem:



Theorem 8.

Let q>0, v,d,n∈N and λ∈C. Then we have


In,2d(v)(t,2x;λ,q)=1(1+q)v∑j=0nnjIj,d(v)(x;λ,q)y7,n−j(v)(x;λ,q,d).



(15)









Remark 2.

When v=1, (15) reduce to


In,2d(t,2x;λ,q)=11+q∑j=0nnjIj,d(x;λ,q)y7,n−j(x;λ,q,d)













(cf. [21]).




3. Partial Derivative Equations and Their Applications


In this section, we deal with some partial derivative equations and functional equations involving generating functions for the polynomials y7,n(v)(x;λ,q,d), the Daehee numbers and logarithm function. By using these equations, we derive derivative formulas for the polynomials y7,n(v)(x;λ,q,d), and some identities including these polynomials, recurrence relations of these polynomials, the Daehee numbers and finite combinatorial sums.



3.1. Partial Derivative Equations and Derivative Formulas


Differentiating both side of (9) with respect to x, we get the following partial differential equations:


∂∂xGv(t,x;λ,q,d)=log(1+λt)Gv(t,x;λ,q,d)



(16)




and


∂∂xGv(t,x;λ,q,d)=λtFD(λt)Gv(t,x;λ,q,d).



(17)







By using the above derivative equations, here we derive two derivative formulas for the polynomials y7,n(v)(x;λ,q,d). Using these formulas, we derive a combinatorial sums including these polynomials and the Daehee numbers.



Combining (9) with (16), we get


∑n=0∞∂∂xy7,n(v)(x;λ,q,d)tnn!=∑n=1∞(−1)n−1λntnn∑n=0∞y7,n(v)(x;λ,q,d)tnn!.











After some elementary calculations from the above equation, we arrive at the following theorem:



Theorem 9.

Let n∈N. Then we have


∂∂xy7,n(v)(x;λ,q,d)=∑j=0n−1(−1)jnj+1j!λj+1y7,n−1−j(v)(x;λ,q,d).



(18)









Combining (9) with (17), we get


∑n=0∞∂∂xy7,n(v)(x;λ,q,d)tnn!=∑n=0∞λn+1Dntn+1n!∑n=0∞y7,n(v)(x;λ,q,d)tnn!.











Therefore


∑n=0∞∂∂xy7,n(v)(x;λ,q,d)tnn!=∑n=0∞n∑j=0n−1n−1jDjλj+1y7,n−1−j(v)(x;λ,q,d)tnn!.











Comparing the coefficients of tnn! on both sides of the above equation, we arrive at the following theorem:



Theorem 10.

Let n∈N. Then we have


∂∂xy7,n(v)(x;λ,q,d)=n∑j=0n−1n−1jDjλj+1y7,n−1−j(v)(x;λ,q,d).



(19)









Using (5), the following well-known explicit formula for the Daehee numbers is given by


Dj=(−1)jj!j+1








(cf. [2,5]). Combining (19) and (18) with this formula, we derive the following finite combinatorial sum:



Corollary 2.

Let n∈N. Then we have


n∑j=0n−1n−1jDjλj+1y7,n−1−j(v)(x;λ,q,d)=∑j=0n−1(−1)jnj+1j!λj+1y7,n−1−j(v)(x;λ,q,d).



(20)










3.2. Recurrence Relations


Here, we give partial differential equations for generating functions Gv(t,x;λ,q,d). With the help of these equations, two recurrence relations for the polynomials y7,n+1(v)(x;λ,q,d) are given.



Differentiating both sides of (9) with respect to t, we obtain the following partial derivative equations:


∂∂tGv(t,x;λ,q,d)=xλGv(t,x−1;λ,q,d)−vdqdλd+11+qGv+1(t,x+d−1;λ,q,d)



(21)




and


∂∂tGv(t,x;λ,q,d)=λx1+λtGv(t,x;λ,q,d)−vdqdλd+11+qG1(t,d−1;λ,q,d)Gv(t,x;λ,q,d).



(22)







Combining (9) with (21), we get


∑n=0∞y7,n+1(v)(x;λ,q,d)tnn!=xλ∑n=0∞y7,n(v)(x−1;λ,q,d)tnn!−vdqdλd+11+q∑n=0∞y7,n(v+1)(x+d−1;λ,q,d)tnn!.











Comparing the coefficients of tnn! on both sides of the above equation, we arrive at the following theorem:



Theorem 11.

Let n∈N0. Then we have


y7,n+1(v)(x;λ,q,d)=xλy7,n(v)(x−1;λ,q,d)−vdqdλd+11+qy7,n(v+1)(x+d−1;λ,q,d).













Assume that λt<1. Combining (9) with (22), we get, with y7,n(d−1;λ,q,d)=y7,n(1)(d−1;λ,q,d),


∑n=0∞y7,n+1(v)(x;λ,q,d)tnn!=λx∑n=0∞−λtn∑n=0∞y7,n(v)(x;λ,q,d)tnn!−vλd(λq)d1+q∑n=0∞y7,n(d−1;λ,q,d)tnn!∑n=0∞y7,n(v)(x;λ,q,d)tnn!.











Therefore


∑n=0∞y7,n+1(v)(x;λ,q,d)tnn!=λx∑n=0∞∑j=0n(−1)jnjj!λjy7,n−j(v)(x;λ,q,d)tnn!−vdqdλd+11+q∑n=0∞∑j=0nnjy7,j(d−1;λ,q,d)y7,n−j(v)(x;λ,q,d)tnn!.











Comparing the coefficients of tnn! on both sides of the above equation, we arrive at the following theorem:



Theorem 12.

Let n∈N0. Then we have


y7,n+1(v)(x;λ,q,d)=λx∑j=0n(−1)jnjj!λjy7,n−j(v)(x;λ,q,d)−vdqdλd+11+q∑j=0nnjy7,j(d−1;λ,q,d)y7,n−j(v)(x;λ,q,d).















4. Conclusions


In the recent extensive written works about the theory of special functions, especially special numbers and polynomials, there are widespread manuscripts and books including special numbers and polynomials such as combinatorial numbers and polynomials, Apostol type numbers and polynomials, Peters type polynomials and numbers, Boole polynomials and numbers, Stirling numbers, Changhee numbers and Daehee numbers. In this paper, we give some new families of combinatorial numbers, which are generalizations and unifications of the Peters and Boole polynomials and numbers with the help of generating functions. By using these functions and their PDEs and functional equations, we derived various interesting properties and identities of these polynomials and numbers. Appropriate relationships of our polynomials and numbers and the results of this paper are compared with earlier results. Consequently, the results of this paper may potentially be used, not only in analytic number theory and for special numbers and polynomials, but also in other areas.
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