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Abstract: In engineering practice, it is sometimes necessary to infer the representative value of
variable action under the condition that the test data is insufficient, but the classical statistics methods
adopted now do not take into account the influences of statistical uncertainty, and the inferring
results are always small, especially when characteristic and frequent values are inferred. Variable
actions usually obey a type I maximum distribution, so the linear regression estimation of the tantile
of type I minimum distribution can be employed to infer their characteristic and frequent values.
However, it is inconvenient to apply and cannot totally meet the demands of characteristic and
frequent values inference. Applying Jeffreys non-informative prior distribution, Bayesian methods
for inferring characteristic and frequent values of variable actions are put forward, including that with
known standard deviation, which could yield more advantageous results. The methods proposed are
convenient and flexible, possessing good precision.

Keywords: Bayesian methods; minor samples; representative values; statistical inference; variable
actions

1. Introduction

The inference for the representative values of variable actions including the characteristic value,
frequent value, and quasi-permanent value is fundamental to establish the methods of structural
design and assessment [1,2]. When the sample size is large enough (the test data are sufficient),
we usually use classical statistics such as the moment and maximum likelihood estimation methods.
However, the observed data are often insufficient in engineering and the classical statistics methods
adopted now do not take into account the influences of statistical uncertainty, and the inferring results
are always on the aggressive side, especially when characteristic and frequent values are inferred.
Therefore, we need to choose an appropriate method which is applicable to the case of a minor sample.

The values at any time point of variable actions usually obey a type I maximum distribution [3,4],
and the representative values of variable actions usually are expressed as a tantile of the distribution.
Type I maximum distribution and type I minimum distribution belong to the same extreme value
distribution families [5-7] and can be compared with each other [8,9]; therefore, the linear regression
estimation of the tantile of the type I minimum distribution can be employed to infer their characteristic
and frequent values. This method is applicable to the case of a minor sample and has taken into account
the influences of statistical uncertainty in the different confidence degrees; therefore, it is widely used
in machinery, electronics, and other fields to infer the service life of products [10,11]. However, it is
inconvenient because a lot of data must be sought, and the present numerical tables don’t totally meet
the demands of variable actions inference. Additionally, it is very difficult to establish a new numerical
table since that would require a tedious numerical simulation or Monte Carlo simulation.

In the representative values of variable actions, we generally let the average value at any time
point in the distribution of variable actions be the quasi-permanent value [1], so the classical statistical
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methods can be used to infer it since the result is less affected by the influences of statistical uncertainty
in the inferring. In this paper, we mainly focus on the methods for inferring characteristic and frequent
values of variable actions and put forward Bayesian methods [12-15] which are applicable to the case
of a minor sample, from the utility point.

2. Linear Regression Estimation

Generally, we suppose that the values at any time point of variable actions obey a type I maximum
distribution [4], the probability density function is:

fe(x) = e exp{—e~ 5"} &

where i, « are distributed parameters, —oco < p < 00,0 < & < oo. The characteristic value and frequent
value of variable actions are usually expressed as a down tantile with p calibration of the random
variable X, they can be written as x,, then

PIX <xp} =exp{—¢" T} =p @
Xp = p+ ka 3)
where p is a guaranteed rate of the characteristic value or frequent value, and k = — In(—In p).

It is assumed that the sample X has a capacity of 1, and is arranged in the order of small to large:
X(l),X(z), cee, X(n), the test values are X(1) X@) " X () respectively. Let

Y =-X @)

Then, Y obey type I minimum distribution with two parameters —y, «, the order statistic and up
tantile with p calibration are:

Yi) = =Xp—jrry J =12, m ©®)
Yp = —H—ka=—xp ©)
Let ~
_ TH Yy

V= —— @)
—fi=) Di(nnj)Y ZDI 1,1, ) [=X(n—js1)] ®)

j=1
=) C (n,n,7)Y() = ZClnn] X(n—j+1)] )

=1

where —Ji,« are the best linear invariant estimator of —u, «, respectively.D(n,n,j),Ci(n,n,j) are
coefficients which are dependent on the sort order j and sample capacity n, and can be looked up
in [16]. Then, the probability distribution of the random variable V is unrelated to the unknown
parameters —p, «, and it can be confirmed through a numerical simulation calculation [17]. Since

P{V < Z)yo,C} = P{_yr’ < ﬁ“'vp,cbz} = P{xp < PN“"vp,CE} (10

We can substitute the test value in the formula, and the characteristic value or frequent value of
variable actions can be inferred in accordance with the upper limit estimated value, that is,

Xp = i+ vpca= ZDI 1, )X (g1 +Upcz —Cr(n, 1, )X (n—jy1)] (11)
j=1 =
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where v, c is a down tantile with C calibration of the random variable V, the numerical table can be
looked up in [16], and C is a confidence degree.

The linear regression estimation takes into account both the sample capacity and the sample order,
adequately utilizing the information of samples, can be used in the conditions of minor samples, and
considers the influences of statistical uncertainty with deferment confidence degrees. However, it is
inconvenient because a number of data such as D;(n,n,j),Ci(n,n,j), vp,c must be sought, and the
present numerical tables only give the numerical values when p = 0.90, 0.95, 0.99 and n < 25 [16]
and don’t meet totally the demands of the characteristic value and frequent value of variable actions
inference. Furthermore, it is very difficult to establish a new numerical table since that would require
a tedious numerical simulation.

3. Bayesian Inference Method

In this section, we consider the Bayesian inference methods. Firstly, we discuss Jeffreys
non-informative prior distribution of a type I maximum distribution and the specific formulas
are obtained. Then, Bayesian methods for inferring characteristic and frequent values of variable
actions are put forward, including that with known standard deviation, which could yield more
advantageous results.

3.1. Jeffreys Non-Informative Prior Distribution of Type I Maximum Distribution

As everyone knows, in the Bayesian analysis, the posterior distribution used for statistical
inference and decision is based on the prior distribution [5]. Therefore, how to obtain the prior
distribution is the key problem of the Bayesian method. This section is based on Fisher’s information
matrix to confirm prior distribution given by Jeffreys, and provide more kinds of prior distribution
for a type I maximum distribution; this laid the foundation for the establishment of Bayesian
inference method.

3.1.1. Jeffreys Principle

In 1961, Jeffreys proposed a selection method of a non-informative prior distribution based on the
information function, that is, the Jeffreys principle [18]. Jeffreys believes that, suppose the selection
of prior distribution abides by the same principle, 77(0) is a prior distribution of parameter 6, g(6) as
a parameter is a function of 6, 7 (77) is a prior distribution of parameter 77 = g(8). Then, the following
formula is tenable.

m(0) = 7g(8(0))18"(6)] (12)

If the 71(0) selected by Jeffreys principle satisfies Equation (12), then the prior distributions
determined by 6 and determined by the g(6) are always consistent and do not contradict each other.
The difficulty is how to find the 77(6) which satisfies the conditions given in Equation (12). Jeffreys
found 77(0) met the requirements by cleverly using the properties of the Fisher information matrix.

Let ¢(0) be a function of 8, 7 = ¢(6) and 6 have the same dimension. Then,

1 0g(0 1
1)1 = 1281 13
where |I (6)|%, |1 (17)|% denote the square root of determinant |I1(6)], |I(1)|, respectively.
Firstly, we denote Inp = Inp(x1, - - - x4;6), it is clear that,
dlnp,, dlnp., oq, dlnp,, 9g(),,
(86)_(817)(@)_(8;7)(W) (14)
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Hence,
dln dln 9 dln
61(6) :a E(W)(awy :aE %Tt)( an’”; (15)
In 0 0 In In 0
= (%) (55 = (SFHECH (5155

Thus, the proposition is proved.

In conclusion, Jeffreys just used the |I1(6) |% as the kernel of prior distribution.

3.1.2. The Steps for Searching Jeffreys Prior Distribution

In the last section, we obtained a result, that is, Jeffreys simply used the square root of the Fisher
information matrix determinant as the non-informative prior distribution.

Let X = (Xy,Xp,--+,Xn) be a sample from the probability density function p(x|6), 6 =
(61,62, -+ ,0p) is a k dimensional parameter vector, the steps for searching Jeffreys prior distribution
when we have no prior information for 6 is as follows:

Step 1: Find the log-likelihood function of the sample:

1(6]x) = In lﬁr’(m@)] = ilnp(inG) (16)

Step 2: Find the information matrix of the sample:

1(0) = Exw(*ae‘ae-) i,j=12,-,p (17)
[y

In particular, when the single parameter k = 1,

10) = 70 20 08)
002
Step 3: The non-informative prior density of 0 is:
7(0) o [detl(0)]/? (19)

Where, detl(0) is the p x p order determinant of I(6). In particular, when the single parameter
k=1,
7(0) < [1(0)]'/ (20)

The above Equation (20) means that 77(9) is proportional to [I (9)]1/ 2, and the proportionality

coefficient can be confirmed by [ 71(6)d6 = 1. In the Bayesian formula, the proportionality coefficient
0
can be reduced, so we can omit the steps.

3.1.3. The Formulas of Jeffreys Non-Informative Prior Distribution of A Type I Maximum Distribution

Let the random variable X = (X1, Xp, - - - , X;;) obey the type I maximum distribution denoted
by Max(p,a), X; € (0,400),i = 1,2,---,n, whose probability density function is: f(x;|u,a) =
%e_¥ exp{—e~® }, where —co < jt < +00,0 < & < +c0,and p = iy — CE,/% SOX; 0= % - ox
and Cg is Euler’s constant.

It is clear that the log-likelihood function of the sample is:

noxj—p
@

n(E—p) — L e X — 1 xXj—
L(p,alx) = ln{zxi”f = }=-nlna— M — 267 e (21)
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When the y is unknown, & is known;

oL n &1 s o on 1l _xyop
7:O—|-7—Zfe_:x :f_zfg_a
ou v S v S
0L L1 _xw L1y
—_— = O —_ —67 o = — —@7 ®
ou? l; a? g a?

x—

Lete~ @ = yx=pu—walnyx = —%. Thus,

Hence,

When the « is unknown, p is known:

v« o2

oL n_'_n(f—y)_ixi—y X

%L 2n(X— L 2xi—y) 5 (xi—p)? _XiH
%—(0‘73”)—21{—(;3}% g L) -
=

2n(x— T oo(xj—p) ik P (xj—p)? ik
=2 (“3u)+l2 (“3;)6 2y a4u) e
=1 i=1
Lete o =yx=p—alnyx = —%.Thus,
x— _ x— X—u X
E(Xte o) = [12 xa”e*T%e*T}e_e “dx= [ yInyde?
. Iny+1 . Iny+1
= lim 227 — lim L8 4+ Cp=Cg —1
y—too @y or @ BE
Lete” @ =y,x=p—alnyx = —4- Thus,
2 x- a2 _x- - -
= W joo Yy L=t eme T gy [ F Iny)>de
o oo2 o o 0 y ]/
. 2 2
:yh_{{}o_(hweifmy*‘%‘FCEZ_ZCE: 1 Cp? - 2Ck

Then, the information matrix of the sample is,

I(0) = Ex\/x(_g%): _% + Zn[Eg)—V] - lE[ﬂe—lT]

)2 X

+3 LE[Gop = 2

50f13

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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The non-informative prior density of « is,

\/n(l + %2 + Cg? — 2Cg)

N—=

n(a) = [det(I(a)]2 = " (33)
Hence,
1
- 4
7T(a) o A (34)
When the y and a are both known but they are mutually independent.
The non-informative prior density of y, « is:
1
(@) = () e(a) & 5)
When the y and « are both known but they are not mutually independent;
0L n o 1 _xow X — % N e TR
8#8a:_ﬁ_1;{_ﬁe s P }:_EjLz;pe ' _izzl PR (36)
9°L n 1 oy Gxy—p _xie. n(Cg—1)
- =E(— -V Se @ T )= ——" 7
( ayaoc) (ucz i;aze +; Pl ) w? 37)

By combining Equation (25) with (32), we derive that the information matrix of the sample is,

n "(CEZ_l)
_ o o
I(u, ) = n(Cg—1) n(1+%2+C52—2CE) (38)
«? «?

The non-informative prior density of y, « is,

n

Nj—
S

7t(p,a) = [det(I(p, )] = (39)

a2
Hence,
1
o a) o —5 (40)

3.2. The Establishment of Bayesian Inference Method

In this section, we mainly elaborate on the established process of the Bayesian inference method,
including that with known standard deviation. The specific methods for inferring characteristic and
frequent values of variable actions are put forward by using the non-informative prior distribution
obtained in Section 3.1.

3.2.1. In Condition of Known Standard Deviation oy

When the standard deviation ox of a random variable X is known, where X is the value at any
time of variable actions, we can derive that the distributed parameter « = V6/m-ox = 0.7800%.
It is assumed that the test values of the sample X are x1, - - - , x4, then the joint probability density

function is
n(x—p) XK

1 _ o
fX],"',Xn (X1,' o /xnll’l) = Oéne * eXp{_E 1‘,6 ® }/ (41)
1=

where X is a sample mean. In Bayesian analysis, we usually select Jeffreys non-informative prior
distribution as the prior distribution of the unknown parameter u [18], using the above Equation (27),
we know that,

m,(0) = 1. (42)
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After a series of complex calculation, we can obtain that,

70u(0) fxy, %, (X1, Xn) 1 o) n e
7T (Q\xll. S, X ) = — M 1/ 4An X —e « exp{_ e 3 }, (43)
' " ffoo T (0) fxy, o X (X1, -, Xp)dO " Z

where the sign “oc” denotes “is proportional to”. With a variable substitution like Equation (3), we can
figure out the posterior distribution of the tantile x, that is,

1 n(X¥—z+ka) n x; Z+ka _ n x;
T, (z|x1, - xn) o i = exp{—) e~ b (e ak“ exp{—e%Ze*W}. (44)
' i=1
It is assumed that
xp—kae x;
U=e = ) e v. (45)

Then, the distribution of U is
g (ulxy, -+, x) o u et (46)

Hence, U obeys a standard Gamma distribution Ga(n,1) [9] with parameter n. According
to Equation (44), by using the upper limit estimation of an interval estimate, we can obtain the
characteristic value or frequent value of variable actions after a complex calculation, that is,

kq
47
y) (47)

(nlC)/ )

xp = (k+1n = (k+In

y= (48)

S| =
1=
N‘
=&
~

Il
-

1

where 7(,, ¢) is a down tantile with C calibration of the standard Gamma distribution Ga(n,1) and C is
a confidence degree, k1 = 7, 1,¢)/1-

In the condition of the standard deviation, ox of a random variable X is known, where X is the
value at any time of variable actions because the sample mean has little effect on the influence of
statistical uncertainty, so we can have a« = 0.780xJx approximately, and infer the characteristic value
or frequent value of variable actions by using Equation (47).

3.2.2. In the Condition of Unknown Parameter Information

When we have no information of parameter y, «, we usually select Jeffreys non-informative prior
distribution as the prior distribution of the unknown parameter y [18], by the above Equation (34),

we know that 1
7T;t,1x (91, 92) = & . (49)

Similarly, we can obtain the joint probability density function of x,, « after calculations, that is,

1 _ n(x—z+kbp) x; z+k92

fop,tx(z/ 92|x1/ T /xﬂ) X 92n+1 S exp{ Z e b2 . (50)

Since the distribution (50) is more complicated, we can use the linear term of the Taylor series
expansion to replace the exponential function, roughly. That is,

x;j—z+kbo x;—2+kby —Cpby
-7 _ L, —Ce__ ,—Ck
e 2 =e 2 e VE[1—

X;j —z+ kb, — Cgb, +1 X;i —z+ kb, — Cgbh 2



Symmetry 2019, 11, 346 8of 13

where Cg is Euler constant and Cg ~ 0.5772, the deployment point is w = 0. Since

ux = u+ Cga, where px is the mean of X, it is clear that, x; — ux = 0 at the deployment point.
Therefore, we can get a relatively simple and accurate solution after substitution of Equation (51) to
Equation (50). Through calculation, we obtain the joint posterior distributions of xy, «, that is,

1 e CE[(n-1)s24n(T-9)%] [~ CE (1-ktCp)—1n(x—y)

’ 25 e %2 , (52)

Ty, (2, 02]x1, -, 20 ) o

where, s is the sample standard deviation. Select

-C - oS _ _ m
e[e E(l—k+9c25>—1]n<x—y>: 5 {[e CE(l_k+CE)_1]n(x_y)}m(i)2‘

(53)
=0 m! 6,2
Let _
u=2r"1% (54)
s//n’
—Cg _1 2 + _=\2
e n s“+n(x, —x
i (U RGP 5 -
%
We can obtain the joint distributions of U, V/, as follows:
k+eCE—cp—1,"
[ee]
1 n+m \/ ¢CE /n
7T ,0lx1, ¢ ,%x —_— T —vc- /7
U'V(u Ul ! H)O( (n—1+u2)2 mZ::() ( 2 ) m! (56)
v n+m
-3,

-1

\/iu m e 2
] n+m 7

'[\/(n—l)-s-uZ 2" r(ngm)

where the last fraction in Equation (56) is the probability density function of x? distribution [9] with
n + m degree of freedom. Then, the marginal distribution of U can be obtained, after integration to v
in the above formula, that is,

oy (ulxy, -+, xn) & !

(n—1)+1

[(n=1) 2] 2
k+eCE—Cp—1 )m (57)
. 020: r[(”*1)+m+l} \/L’CE/n [ V2u ]m
o 2 m! \/(n_1)+u2

Hence, U obey the noncentral ¢ distribution [9] with parameter A and degree of freedom
n — 1, where
k4eE—Cp—1

VeCE /n

Then, we can obtain the characteristic value or frequent value of variable actions by using the
upper estimation of an interval estimate after a complex calculation, that is,

A = (0.152751 + 0.749306k ) /. (58)

_ twea1-0)

Xp =X+ \/ﬁ

where f(,,_1 ) 1_c) is a up tantile with 1 — C calibration of the noncentral { distribution with parameter A
and degree of freedom n — 1, and C is a confidence degree, ko = £(,_111-¢)/ /1. Since the parameter A
in the present f(,,_1 5 1) numerical tables don’t totally meet the demands of variable actions inference,
and it is very difficult to establish a new numerical table, we use a relatively simple and accurate
solution to calculate ¢, 1, 1_c) [19], thatis

s =X+ ks, (59)
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AZ_Z
At ziicy/1+ S

Eo— o) = , 60
(n—1,A,1-C) 1 2€%_C ) ( )
n—1

where z1_¢ is a up tantile with 1 — C calibration of the standard normal distribution.

The guarantee rate, p, of the characteristic value or frequent value of variable actions is no less
than 0.90 [1], such as the wind load and snow load, p = 0.98 (characteristic value) and p = 0.90 (frequent
value) [20-23]. In the next section, we mainly, through contrastive analysis, present the accuracy of the
Bayesian inference method in the light of p > 0.90 [24-26].

4. Contrastive Analysis

It is assume that the sample X has a capacity of 10, and is arranged in the order from small to
large, the test values are X(1) X@2) " X () respectively, see Table 1, measurements: kN/ m2, through
calculation, we obtain the statistical result as follows:

X = 1.418 kN /m?
s = 0.355 kN /m?
5 =s/x = 0250
a = 0.780 s = 0.277 (kN/m?)
#=x—05772 a = 1.258 (kN/m?)

In order to perform a contrastive analysis on the accuracy between different inference methods,
we select the guarantee rate p of x, as 0.90, 0.95, and 0.99 from the present v, c numerical tables.
The inferring results from different confidence degrees and different guarantee rates are listed in
Table 2, including the result inferred by using Equation (47) when ox = s, where “coefficient” refers to
vp,c from Equation (11), ky from Equation (47), k; from Equation (59), and k from x, = p + ka, which
is the inferring formula of the moment method, respectively. The value of D;(10,10,j), C;(10, 10, f)
and the numerical results are listed in Table 1.

Table 1. Test value of sample and numerical tables of C;(10, 10, j), D;(10, 10, j).

J o X0-j+1) C1(10,10,9) Dy(10,10,7)  —x(10-j+1)Cr(10,105)  x(10—j41)D1(10,10,5)
1 2.05 —0.0727 0.0273 0.1490 0.0560
2 1.86 —0.0780 0.0400 0.1451 0.0744
3 1.72 —0.0772 0.0525 0.1328 0.0903
4 147 —0.0719 0.0654 0.1057 0.0961
5 1.39 —0.0617 0.0793 0.0858 0.1102
6 1.29 —0.0454 0.0946 0.0586 0.1220
7 1.22 —0.0207 0.1124 0.0253 0.1371
8 1.11 0.0179 0.1342 —0.0199 0.1490
9 1.05 0.0851 0.1642 —0.0894 0.1724
10 1.02 0.3246 0.2300 —0.3311 0.2346
Sum 0 1 0.2619 1.2422

By comparing and analyzing the inferred results between different methods, the value of the
moment method is the lowest, and the higher the confidence degree C, the higher the divergence within
the other inferring results. This is mainly because the moment method does not take into account
the influences of statistical uncertainty which are produced by the smaller sample and the inferred
results are always on the aggressive side. With reference to the linear regression estimation results
using Equation (11), Bayesian results inferred using Equation (59) have better precision compared with
those of the previous ones, and the higher the values of p,C, the lower the relative error. When the
inferred results are conservative, it can apply to any case in which the confidence degree C is no less
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than 0.90. Because more parameter information is known, Bayesian results inferred using Equation (47)
are obviously better than the linear regression estimation results and Bayesian results inferred with no
parameter information. These advantages are more evident when the values of p,C are higher. Hence,
when the standard deviation oy is unknown, we can also select a larger value to infer the result by
using Equation (47). In this research, we also compare and analyze the inferred results with different p,
C when the sample sizes are n = 5 and n = 20; the same conclusions can be obtained.

Table 2. Inferred results of x,.

Guarantee Inferring C=0.6 C=0.75 C=0.6 C=0.95 Moment Method
Rate p Method Coefficientx, Coefficientx, Coefficientx, Coefficientx, Coefficient x,

Equation (11)  2.720 1.954 3.130 2.062 3.860 2.253 4410 2397
Equation (59)  1.982 2121 2.256 2.219 2.768 2.400 3.175 2.545 2.250 1.881

0.90 relativeerror ~ \ 0085  \ 0076  \ 0065 \ 0062
Equation (47) 1048 1903 1191 1938 1421 1987 1571  2.015 \ \
Equation (11) 3560 2174 4080 2311 4980 2546 5670 2727
095 Equation (39) 2550 2.323 2884 2442 3515 2.665 4022 2846 2970  2.080
: relative error \ 0.068 \ 0.057 \ 0.047 \ 0.044
Equation (47) 1048 2102 1191 2138 1421 2186 1571 2214 \ \
Equation (11) 5480 2677 6230 2874 7570 3224 8570  3.486
099 Equation (59) 3843 2782 4319 2951 5231 3275 5973 3538 4600 2531

relative error \ 0.039 \ 0.027 \ 0.016 \ 0.015
Equation (47)  1.048 2.553 1.191 2.589 1.421 2.637 1.571 2.665 \ \

The error of the Bayesian inference method with no parameter information mainly comes from
the approximate method used in Equation (51). On the basis of Equation (51), we can show that the
join posterior distribution of y, « is

,il{xi*[91+(1+cffc)92]}2
1 2 N
Toua (01, 02]x1, -+, xp) We (Veh0a) : (61)
e 92

In fact, it is also the join posterior distribution of the distributed parameter y/, 0’ which comes
from the normal distribution N(4/, ¢'?), where

W=p+1+C—-e)a, (62)
o = VeCa. (63)

This is equivalent to when we use the normal distribution N(3/, ¢’?) to replace the previous type I
maximum distribution. Because the probability density function curve of the normal distribution and
the type I maximum distribution are more similar on the right-hand side, we can obtain a relatively
accurate result in the case of guarantee rate p is higher.

According to the inferred result, we can also know that the inferred results are higher than the
moment method in accordance with C = 0.90 and C = 0.95, and the changes of C have a great influence
on the inferred results; relatively, the inferred results are more suitable in accordance with C = 0.60
and C = 0.75, and there is a little difference between them. Moreover, we select C = 0.75 to infer the
result, which can take into account the influences of statistical uncertainty more fully, and have less
relative error. In this article, we suggest selecting the confidence degree C = 0.75. In order to make
a convenient application, the numerical tables of k1, k in the case of C = 0.75 are listed in Table 3:
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Table 3. Numerical tables of k1, k, (C = 0.75).

kq
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.999

k>

1255 2509 2615 2732 2865 3.018 3199 3419 3702 4100 4778 7.032
1237 2425 2527 2641 2770 2918 3.093 3307 3581 3.966 4.624 6.806
1223 2365 2466 2577 2703 2848 3.019 3228 3496 3.872 4515 6.648
1211 2320 2419 2529 2653 2795 2963 3.168 3432 3.802 4434 6.529
1200 2285 2382 2491 2613 2754 2920 3122 3382 3747 4370 6.437
1191 2256 2353 2460 2581 2720 2884 3.084 3341 3703 4319 6.362
1184 2232 2328 2434 2554 2692 2854 3.053 3308 3.666 4276 6.300
1177 2212 2307 2412 2531 2668 2829 3.026 3279 3.634 4240 6.248
1171 2194 2288 2393 2511 2648 2808 3.003 3254 3.607 4209 6.203
1165 2179 2272 2377 2494 2630 2789 2983 3233 3.584 4181 6.163
1160 2.165 2258 2362 2479 2614 2772 2966 3214 3.563 4.157 6.129
1155 2153 2246 2349 2466 2600 2757 2950 3197 3544 4136 6.098
1151 2142 2235 2337 2453 2587 2744 2936 3.182 3528 4117 6.070
1.147 2132 2224 2327 2443 2575 2732 2923 3168 3513 4100 6.046
1144 2123 2215 2317 2433 2565 2721 2911 3156 3499 4.084 6.023
1.140 2115 2207 2308 2423 2555 2711 2901 3.145 3487 4.070 6.002
1137 2108 2199 2300 2415 2547 2702 2891 3134 3475 4.057 5983
1134 2101 2192 2293 2407 2539 2693 2882 3124 3465 4.044 5966
1132 2.094 218 2286 2400 2531 2685 2874 3115 3455 4.033 5949
1129 2088 2179 2279 2393 2524 2678 2866 3.107 3.446 4.023 5934
1127 2082 2173 2273 2387 2518 2671 2859 3.099 3437 4.013 5920
1124 2077 2167 2268 2381 2511 2665 2852 3.092 3429 4.004 5907
1122 2072 2162 2263 2376 2506 2.659 2846 3.085 3422 3995 5895
1120 2.068 2157 2258 2370 2500 2.653 2840 3.079 3415 3987 5.883
1118 2.063 2153 2253 2366 2495 2648 2834 3.073 3408 3980 5.872
1116 2.059 2149 2248 2361 2490 2.643 2829 3.067 3402 3972 5862
1108 2.041 2130 2229 2341 2470 2621 2806 3.043 3375 3942 5818
1102 2.027 2116 2214 2325 2453 2604 2788 3.023 3354 3917 5783
1.09¢ 2015 2104 2202 2313 2440 2590 2773 3.007 3337 3.897 5754
1.091 2.006 2094 2191 2302 2429 2578 2760 2994 3322 3881 5730

5. Conclusions

1.

When the test dates are insulfficient, the statistical uncertainty has a great influence on inferring the
representative values of variable actions, especially, the characteristic value and frequent value,
the moment method adopted presently does not take into account the influences of statistical
uncertainty and the inferred results are always on the aggressive side.

The linear regression estimation is applicable to infer the characteristic value and frequent value
of variable actions in the case of a minor sample; however, it is inconvenient because of the
amount of data that must be sought and the present numerical tables don’t totally meet the
demands of characteristic and frequent values inference.

The Bayesian inference method presented in this paper is applicable to infer the characteristic
value and frequent value of variable actions in the case of a minor sample and it is more convenient
than the linear regression estimation. These methods consider the condition in which the standard
deviation is known, yielding a better inference of the result.

The Bayesian inference method with no parameter information presented in this paper has good
precision when the confidence degree is no less than 0.90, it is convenient and flexible, and can be
applied to any case in which the confidence degree is no less than 0.90.

We suggest selecting the confidence degree C = 0.75 to infer the characteristic value and frequent
value of variable actions.
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