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Abstract: We show, in a formal way, how a class of complex quasiprobability distribution functions
may be introduced by using the fractional Fourier transform. This leads to the Fresnel transform
of a characteristic function instead of the usual Fourier transform. We end the manuscript by
showing a way in which the distribution we are introducing may be reconstructed by using
atom-field interactions.
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1. Introduction

It has been already shown that quasiprobability distribution functions may be reconstructed by
the measurement of atomic properties in ion-laser interactions [1] and two-level atoms interacting with
quantized fields [2,3]. Such measurements of the wave function are realized usually by measuring
atomic observables, namely, the atomic inversion and polarization [4-7].

Although the first quasiprobability distribution functions were introduced in the quantum
realm [8-12], and are useful among other things to visualize the nonclassicality of states, for instance,
the squeezing of quadratures [13,14], they may be also used to analyze classical signals [15,16].

Ideal interactions, i.e., without taking into account an environment, have shown to lead to the
reconstruction of the Wigner function [3] by taking advantage of its expression in terms of the parity
operator. However, the interaction of a system with its environment [17] leads to s-parametrized
quasiprobability distribution functions [18-20]

0 k
Fos) = g 1 (S57) D' @) <1>

k=0

where D(a) = exp(aa® — a*a), with a and a' the annihilation and creation operators of the harmonic
oscillator, respectively, is the Glauber displacement operator [21]. The state D(a)|k) = |a,k) is a
so-called displaced number state [22]. Note that, in order to reconstruct a given quasiprobability
function it is needed to displace the system by an amplitude « and then measure the diagonal elements
of the displaced density matrix.

The parameter s defines different orderings and therefore different quasiprobability distribution
functions (QDF). The Glauber-Sudarshan P-function [21,23] is given for s = 1, and is used to obtain
averages of functions of normal ordered creation and annihilation operators; s = —1 gives the Husimi
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Q-function, used to obtain averages of functions of anti-normal ordered creation and annihilation
operators, while s = 0 is used for the symmetric ordering and gives the Wigner function.
Equation (1) may be rewritten as

F(a,s) = n(lzs)Tr { <z ha 1) D*(oc)pD(a)}, @)

that, by using the commutation properties under the symbol of trace, and if the system is in a pure
state |¢), may be casted into

Flas) = n(f_S)Tr{D(a) (1) aD*m)p} - s ne (1) D@ o

Recent studies have openned the possibility of measuring, instead of observables, non-Hermitian
operators [24]. It would be plausible that such measurements could be related to complex quasiprobability
distributions like the McCoy-Kirkwood-Rihaczek-Dirac distribution functions [9,10,12,25].

In this contribution we would like to introduce other kind of complex quasiprobabilities that,
although they could be introduced simply by taking s as a complex number, we introduce them in a
formal way by considering the fractional Fourier transform (FrFT) [26-28] of a signal. Then, by writing
the Dirac-delta function in terms of its FrFT, we are able to write a general expression for complex
quasiprobability distributions in terms of the Fresnel transform. Indeed, the representation of these
complex quasiprobability distributions in terms of a Fresnel transform implies that they are solutions of
a paraxial wave equation [3]. Finally, by using an effective Hamiltonian for the atom-field interaction,
we show how this quasiprobability distribution function may be reconstructed.

2. Fractional Fourier Transform

Up to a phase, the fractional Fourier Transform of a signal ¥(x) can be written by the
following expression [26-28]

Folp(x)] = exp (—iwi'a) p(x), @
that may be expressed in terms of an integral transform as
+o0
Folp@) = [ dvK(x50)9(x), ©)
where
, _ 1 eiw x2 x2 o
K(x,x";w) = =\ sinw exp [ cotw +i— 5 cotw —ixx' cscw| . (6)

Then, if we consider Equation (6) as a propagator, Dirac’s delta distribution function takes
the form

f+o°o° dx"K(x, x"; —w)K(x", x"; w)

6(x —x')
 x2 .
el cotwfz% cotw fj‘;o dx' eix" (x=x") cscw 7)

1
— 27sinw

= % exp 172 Cotw—i%zcotw} fj;odX"exp [ix" (x — x")] .

N\* I

Now, if we apply the fractional Fourier transform to the Dirac delta function we obtain

Folste—y) = [ dK(xsw)s(x —y) = K(x,y;). ®

—00
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Then, applying the inverse fractional Fourier transform to Equation (8) we obtain an alternative
representation of the Dirac delta distribution function

—+o00
S(x—y)=F_u[Fulb(x—y)]] = /_oo dx"K(x,x"; —w)K(x",y; w)

—iex iy—zcotwfix—zcotw /+oodxlex [ixl(xf )} )
_27‘[ p 2 2 —00 p y )

From the above equation it may be seen that there is a phase multiplying the usual integral
representation of the Dirac delta function, that although could be omitted by using properties of
the delta function, we keep in order to obtain a quasiprobability distribution function as a fractional
Fourier (Fresnel) transform of the characteristic function.

3. Probability Distribution in the Phase Space

We define J (g, p), a probability distribution in the phase space, as

400 p+400
J@.p) =lm /700 dq'dp"P(q',p)é(q" — q)é(p — p'), (10)

and then, by using Equation (9), this distribution may be rewritten as

1 a2 2 —+00 —+o00 . . o a2 a2
J(q,p) — Hez% cotzxfz% cotB /_oo /_oo dudo eMP—07 Ty {pezvqlupﬂpz cotﬁfz% cotac} , (11)

that because

) 2 2 2 52 52
ivf—iup+il_ T e i i i i p il T i h —i 5
Pl —iup+isy cotf—i% cota _ e i tanﬁel > tanaezutanﬁqe vtanap ity cotf—i cota ivtanap, 1utan‘Bq, (12)

Equation (11) takes the form
j(q, p) = %eié COtleié cotp /+00 /+oo dudo eiupfizzqefi% tanﬁeié tana o
T oo S

2 o)
N . P A L 7,(77 . A1 ~
< Tr {pemtanﬁqe vtanap ity cot f—i cota ivtanap, zutanﬁq} ) (13)

Now, by using the equivalence

. PO N i . P N
ezutanﬁqe ivtanap _ e2uvtantxtanﬁezutanﬁq zvtanap/ (14)

Equation (13) may be casted into the final expression
1 .4 - p? +oo o0 . . 2 2
j(q,p) — o= ol cota—ity cotﬁ/ / dudo elup—zvqe—ZTtanﬁeITtantx %
—o0 —00

. P ” ,’2 .Az . n . ~
< Tr {ﬁemtanﬁqwtanzxpelp2 cotﬁfz% cotlxezvtanocpwtanﬁq} ) (15)

Casecota = —cotf =1

The above quasiprobability distribution function is defined for a range of parameters a and j,
however, for the sake of simplicity, we will consider the case cota = —cotf = .

We may relate the quasiprobability distribution function 7 (g, p) to the Wigner function, by noting
that, for cota = — cot B = 71, Equation (15) has the form

2 2
1 in(5+% too  pioo 2 2 uj _.op L oug
j(q/ P) = Lmzl,eln( P ) / / dudv e"™P 1l 27 T 27 Ty {p\eilﬁil% (_1)n€l#+l7} . (16)
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According to trace representation of Wigner function [20]

v AN 1 _jugop a iy eb
W(n' n)-Tr{pne (=1)" , (17)

we write the distribution (g, p) as the Fresnel transform of the Wigner function

; ﬁ+ﬁ> oo too I S
J(q,p) = 41m,em<2 : /_oo /_oo dudve”"’_wqelﬂﬂﬁw(E,—E) . (18)

7T 7T

It is easy to show that the quasiprobability distribution (18) can be normalized

2 .

. 12 A foA
V35S dadp T ) = § 13 [ dxdy [ 25 ape?] [ 15 dgen | et fpebiin)
- X . 2 oA coA
= I iy 6(x)6(y)e TR R Ty {p i) = ATy {p) = %

Therefore, for normalization reasons, the quasiprobability distribution is finally given in the form
J _ 1 teo e dud iup—ivg 71‘%71‘% Trip ivg—iup 20
@p) = 5 [ [ dudoeiwione r{pei-in), (0)
that, by applying the change of variables 8 = u/+/2 + iv/+/2 takes the form
J(a) = 21?/012'3@“/3**“*5(%“3'2% {6D(B)}, (21)

witha = q/vV2+ip/V2.

From the above expression it is direct to show that the Wigner function

Wiw) = [ e P {oD(B)}, @)
and the function [ («) may be easily related by the differential relation
7@ =ep{ L2 Lwaw @)
Y= OP\ 7 dadn -

The above quasiprobability function may be written as a trace by noting that

oz [ e (~Lier) by = 1 (227 @4

that leads to the trace representation of 7 (g, p)

TG p) = Tr{pbw (Zi”)nﬁ*m}. 25)

:2i+7r 2i+ 7

Last equation allows us to show that [J(gq,p) is correctly normalized, for this we do the
double integration

oo e s 2 2 (D (wei®) i\ _ o [ 5 4 io
/700 /700 j(q,p)dqdp—Tr{pM/d aD(a)D (oce )e —Tr{pAe }, (26)

where we have defined ,
g 20—

2+

(27)
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and

N ; 1
2 isinf|al? _ i _ // 2., 32 k%
A= 7r+21 /d ae D( (1 e )) - d“z1d°zy |z1) (22| B(z1,22,27,25) , (28)

with

i3 [ e (a0 (x (1-¢)) | )
= 27'<(Z41—i221> /::o duy exp (— (1 - em) a2 + oy ((1 - eie) z] — (1 - e*ie) zz)) X
X /::o day exp (— (1 - ei9> a2 + iay ((1 - e’9> zi + (1 —e ’9) zz)> (29)

_ 2{z1]z0) w —_ip _ |z1|? |ZZ€71’9‘ —9
T 42 1— e [_ (1_6 I)ZTZZ} “\T 2 T 2 l
) -

(z1]e” ’G”IZz

B(z1,22,27,23) =

By replacing Equation (29) into Equation (28) we obtain

A =100 , (30)

that shows that Equation (26) is correctly normalized

400 oo s
/ / J(q,p)dgdp = Tr {ﬁe*“’” 619”} =Tr{p}=1. (31)
4. Kirkwood Distribution and 7 (g, p) Distribution

The Kirkwood distribution is defined as [12,25,29,30]
1 oo e iup—ivg ,i%’ A~ vd—iup
K(q,p)zm/_oo /_oo dudve e ZTr{pe }, (32)
or an alternative way to write it as an expectation value [31] is

1 2.0P7 2 at2
K(g,p) = ——ez T Har <_i\f2 ez e 2
@r) =7, plezp

The Kirkwood function belongs to a class of QDFs that although is complex, still has the
same amount of information as other real QDFs, namely Wigner, Glauber Sudarshan or Husimi
distribution functions.

Being the QDF 7 (g, p) and Kirkwood distributions complex functions we show now some

differences between them.

\f2q> . (33)

4.1. Number State

The Kirkwood K(g, p) and J (g, p) distributions for number state |n), are represented by the

following equations
— " 7£7ﬁ+iqp
/Cn(q/p)—znn!m/ie 27 2T Hy (q)Ha(p) (34)

and

_ 1 f2i-m\" _n(g* +p?) 21 (q* + p*)
Jn(a,p) = 2i+ 7 <2i+ n) P ( 2i+ 7 Ln 4+ 12 ! (35)
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where, H,,(x) and L, (x) are Hermite and Laguerre polynomials, respectively.

4.2. Superposition of Two Coherent States

Now, we consider a superposition of two coherent states as:

1
24+ 2Re <0€1 |062>

<) = (1) + [az)) (36)

where a; = qi/V/2 + ipr/ /2, such that the Kirkwood K (g, p) and the J (g, p) distributions for the
superposition of two coherent states, |+ ), is given by

_ 1 1 T PR 2
Ji(qrp)_2i+n2:|:2Re<0€1|0c2> <exp< 2i+7'c<(q n)°+ (p pl))

)
2i41—712j:2Re1<zx1|zx2> <eXp <_214ﬂ;n ((‘7 —0)’ + (p - ”2)2>>)
)

1 1 i
+ - — - — — Oy — 7
srrrme e (O (30— —pn @) (m—e|fm-n)) @7
1 1 i .
+— _ _ _ ‘ i0 .
27T 721 2Re (w12 ( XP( 5@ (p1—=p2) —p(n qz))> <rx1 a | e (ar w)>)
and
exp & +iqp . .
Ki(q,p) = o5 SﬁRe Dy ) (eXp (—% 93+ p1) + (991 — pp1) + 30(p1+2p) + spr(d —2q)>)
exp 77 2+lqp .
+\fznw< ( 383+ p3) + (492 — pp2) + 502 (Pz+2p)+épz(fh—217))>
2
exp (5 - +ip . .
iﬁw ( ( 333+ p3) + (aq1 — pp2) + 52(p2 +2p) + 5p1 (a1 — Zq)))
exp(~ 5~ 15 +igp . .
iﬁw (eXP <—%(¢72 + 1) + (992 — pp1) + 591 (p1 +2p) + §p2(q2 — 217))) ,
respectively.

We plot both distribution in Figures 1 and 2. In both figures a more uniform behaviour may be
seen in the QDF 74 (g, p) than in the Kirkwood function. In fact, the real and imaginary parts of the
distribution we have introduced here, look like Wigner function for number states (Figure 1) and

Scrhodinger cat states (Figure 2).
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Figure 1. In figures (a,c) we can see the phase space distribution of the real and imaginary parts of the
Kirkwood function for a number state |n = 3). In figures (b,d) we see the distribution 7 (g, p), for the

same number state, again, the real and imaginary parts, respectively.

RelP, (q,0) °

>
&

(P, (q.p)]

Figure 2. In figures (a,c) we can see the phase space distribution of the real and imaginary parts of the

Kirkwood function for two superposition of coherent states | ) wiht gy = —go =4 and p; = p» = 0.
In figures (b,d) we see the distribution 7 (g, p), again, the real and imaginary parts, respectively.

5. Reconstruction of Distribution 7 («)
It is not difficult to show that the real part of QDF 7 (a) may be measured. This can be achieved
by measuring the atomic polarization in the dispersive interaction between an atom and a quantized
(38)

field [3], whose Hamiltonian reads
H=- Xa*aaz,
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with o, = |e) (e| — |g)(g|, the Pauli matrix corresponding to the atomic inversion operator, where |g)
and |e) represent the ground and excited states of the two-level atom. The parameter y is the dispersive
coupling constant. The above Hamiltonian yields the evolution operator

U(t) = exp{—ixtatac.}, (39)

from which we can obtain the evolved wavefunction |¢(t)) = U(t)|¢(0)), that allows the calculation
of averages of different observables.

The average of observable o = |e)(g| + |g) (e| then can be obtained for an arbitrary initial field,
which we conveniently write as |r(0)) = D*(«)|¢(0)) and the atom is initially in a superposition of
atomic states, [4(0)) = \%(\g} + |e)). Then we write

(o()) = 5 (16(0)ID(@) exp 2ixta*a} DY (@)g(0)) +c.c.). (40)

Of course, if in this equation we set t = 71/(2)), we would recover the Wigner distribution
function [3,18,32,33], as

o (5= ) ) = (9(0)[D(w) cos{ra’a} D () 9(0)), (41)
()

is proportional to the s-parametrized quasiprobability distribution function of Equation (2) for
s = 0[1-3,32,33].

It is also easy to show that the imaginary part of the QDF may be associated to the observable
oy = i(le) (gl —[g)el)

(oy(1)) = & ((9(O)]D(w) expi2ixtaa} D' (@)[g(0)) — c.c.). 42)
If we set the interaction time t = arda;x”%: , we obtain that
Re{T (@)} o< (ox),  Im{T (&)} o (oy). (43)

Therefore, by measuring the polarizations o, and ¢y we are able to measure the QDF 7 («).

6. Conclusions

We have introduced a set of parametrized (in terms of « and ) quasiprobability distribution
functions, Equation (15), by using the fractional Fourier transform. This has lead us to generalize QDF
to Fresnel transforms of the characteristic function instead of their usual Fourier transforms. We have
also shown how such QDF may be reconstructed in the dispersive atom-field interaction. We have
also given a (differential) relation that allows the calculation of the newly introduced QDF from the
Wigner function.

Finally, we would like to stress that the distribution function we are introducing may be of
importance in problems in which non-Hermitian operators are measured.

Author Contributions: J.A.A.-C. conceived the idea and developed it under A.Z.-S. and HM.M.-C. supervision.
The manuscript was written by all authors, who have read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank CONACYT for support.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2019, 11, 344 90f 10

References

1.  Leibfried, D.; Meekhof, D.M.; King, B.E.; Monroe, C.; Itano, W.M.; Wineland, D.]. Experimental determination
of the motional quantum state of a trapped atom. Phys. Rev. Lett. 1996, 77, 4281. [CrossRef] [PubMed]

2. Bertet, P; Auffeves, A.; Maioli, P; Osnaghi, S.; Meunier, T.; Brune, M.; Raimond, J.M.; Haroche, S.
Direct measurement of the Wigner function of a one-photon fock state in a cavity. Phys. Rev. Lett.
2002, 89, 200402. [CrossRef] [PubMed]

3. Lutterbach, L.G.; Davidovich, L. Method for direct measurement of the Wigner function in cavity QED
and ion traps. Phys. Rev. Lett. 1997, 78, 2547. [CrossRef]

4. Leonhardt, U. Measuring the Quantum State of Light; Cambridge University Press: Cambridge, UK, 1997.

5. Lvovsky, A.IL; Raymer, M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys.
2009, 81, 299-332. [CrossRef]

6. Wallentowitz, S.; Vogel, W. Reconstruction of the quantum-mechanical state of a trapped ion. Phys. Rev. Lett.
1995, 75, 2932-2935. [CrossRef] [PubMed]

7. Wallentowitz, S.; Vogel, W. Unbalanced homodyning for quantum state measurements. Phys. Rev. A
1996, 53, 4528-4533. [CrossRef] [PubMed]

8. Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749. [CrossRef]

9. McCoy, N.H. On the function in quantum mechanics which corresponds to a given function in classical
mechanics. Proc. Natl. Acad. Sci. USA 1932, 18, 674. [CrossRef] [PubMed]

10. Dirac, PA.M. On the analogy between classical and quantum mechanics. Rev. Mod. Phys. 1945, 17, 195.
[CrossRef]

11. Husimi, K. Some formal properties of the density matrix Proc. Phys. Math. Soc. Jpn. 1940, 22, 264-314.

12. Kirkwood, J.G. Quantum statistics of almost classical assemblies. Phys. Rev. 1933, 44, 31-37. [CrossRef]

13. Kiesel, T.; Vogel, W.; Bellini, M.; Zavatta, A. Nonclassicality quasiprobability of single-photon-added thermal
states. Phys. Rev. A 2011, 83, 032116. [CrossRef]

14. Moya-Cessa, H.; Vidiella-Barranco, A. Interaction of squeezed states of light with two-level atoms. J. Mod. Opt.
1992, 39, 2481-2499. [CrossRef]

15. Alonso, M.A. Wigner functions in optics: Describing beams as ray bundles and pulses as particle ensembles.
Adv. Opt. Photonics 2001, 3, 272-365. [CrossRef]

16. Bastiaans, M.].; Wolf, K.B. Phase reconstruction from intensity measurements in linear systems. J. Opt. Soc.
Am. A 2003, 20, 1046-1049. [CrossRef]

17. Yazdanpanah, N.; Tavassoly, M.K,; Jurez-Amaro, R.; Moya-Cessa, H.M. Reconstruction of quasiprobability
distribution functions of the cavity field considering field and atomic decays. Opt. Commun. 2017, 400, 69-73.
[CrossRef]

18. Royer, A. Wigner function as the expectation value of a parity operator. Phys. Rev. A 1977, 15, 449. [CrossRef]

19. Wiinsche, A. Displaced Fock states and their connection to quasi-probabilities. Quantum Opt. 1991, 3, 359-383.
[CrossRef]

20. Moya-Cessa, H.; Knight, P.L. Series representation of quantum-field quasiprobabilities. Phys. Rev. A
1993, 48, 2479. [CrossRef] [PubMed]

21. Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766. [CrossRef]

22. De Oliveira, EA.M.; Kim, M.S.; Knight, P.L.; Buzek, V. Properties of displaced number states. Phys. Rev. A
1990, 41, 2645. [CrossRef] [PubMed]

23. Sudarshan, E.C.G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light
beams. Phys. Rev. Lett. 1963, 10, 277. [CrossRef]

24. Pati, AK,; Singh, U.; Sinha, U. Measuring non-Hermitian operators via weak values. Phys. Rev. A
2015, 92, 052120. [CrossRef]

25. Rihaczek, A.N. Signal energy distribution in time and frequency. IEEE Trans. Inf. Theory 1968, 14, 369-374.
[CrossRef]

26. Namias, V. The fractional order Fourier transform and its application to quantum mechanics. J. Inst.
Math. Appl. 1980, 25, 241-265. [CrossRef]

27. Agarwal, G.S.; Simon, R. A simple realization of fractional Fourier transform and relation to harmonic

oscillator Green’s function. Opt. Commun. 1994, 110, 23. [CrossRef]


http://dx.doi.org/10.1103/PhysRevLett.77.4281
http://www.ncbi.nlm.nih.gov/pubmed/10062500
http://dx.doi.org/10.1103/PhysRevLett.89.200402
http://www.ncbi.nlm.nih.gov/pubmed/12443461
http://dx.doi.org/10.1103/PhysRevLett.78.2547
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/PhysRevLett.75.2932
http://www.ncbi.nlm.nih.gov/pubmed/10059446
http://dx.doi.org/10.1103/PhysRevA.53.4528
http://www.ncbi.nlm.nih.gov/pubmed/9913427
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1073/pnas.18.11.674
http://www.ncbi.nlm.nih.gov/pubmed/16577495
http://dx.doi.org/10.1103/RevModPhys.17.195
http://dx.doi.org/10.1103/PhysRev.44.31
http://dx.doi.org/10.1103/PhysRevA.83.032116
http://dx.doi.org/10.1080/09500349214552511
http://dx.doi.org/10.1364/AOP.3.000272
http://dx.doi.org/10.1364/JOSAA.20.001046
http://dx.doi.org/10.1016/j.optcom.2017.05.001
http://dx.doi.org/10.1103/PhysRevA.15.449
http://dx.doi.org/10.1088/0954-8998/3/6/005
http://dx.doi.org/10.1103/PhysRevA.48.2479
http://www.ncbi.nlm.nih.gov/pubmed/9909881
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1103/PhysRevA.41.2645
http://www.ncbi.nlm.nih.gov/pubmed/9903398
http://dx.doi.org/10.1103/PhysRevLett.10.277
http://dx.doi.org/10.1103/PhysRevA.92.052120
http://dx.doi.org/10.1109/TIT.1968.1054157
http://dx.doi.org/10.1093/imamat/25.3.241
http://dx.doi.org/10.1016/0030-4018(94)90165-1

Symmetry 2019, 11, 344 10 of 10

28.

29.

30.

31.

32.

33.

Fan, H.-Y; Chen, J.-H. On the core of the fractional Fourier transform and its role in composing complex
fractional Fourier transformations and Fresnel transformations. Front. Phys. 2015, 10, 100301. [CrossRef]
Praxmeyer, L.; Woédkiewicz, K. Quantum interference in the Kirkwood-Rihaczek representation.
Opt. Commun. 2003, 223, 349-365. [CrossRef]

Praxmeyer, L.; Wédkiewicz, K. Hydrogen atom in phase space: The Kirkwood-Rihaczek representation.
Phys. Rev. A 2003, 67, 054502. [CrossRef]

Moya-Cessa, H. Relation between the Glauber-Sudarshan and Kirkwood-Rihaczec distribution functions.
J. Mod. Opt. 2013, 60, 726-730. [CrossRef]

Moya-Cessa, H.; Roversi, ].A.; Dutra, S.M.; Vidiella-Barranco, A. Recovering coherence from decoherence:
A method of quantum state reconstrucion. Phys. Rev. A 1999, 60, 4029-4033. [CrossRef]

Moya-Cessa, H.; Dutra, S.M.; Roversi, ].A.; Vidiella-Barranco, A. Quantum state reconstruction in the presence
of dissipation. J. Mod. Opt. 1999, 46, 555-558. [CrossRef]

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s11467-014-0445-x
http://dx.doi.org/10.1016/S0030-4018(03)01682-1
http://dx.doi.org/10.1103/PhysRevA.67.054502
http://dx.doi.org/10.1080/09500340.2013.807364
http://dx.doi.org/10.1103/PhysRevA.60.4029
http://dx.doi.org/10.1080/09500349908231283
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Fractional Fourier Transform
	Probability Distribution in the Phase Space
	Kirkwood Distribution and J(q,p) Distribution
	Number State
	Superposition of Two Coherent States

	Reconstruction of Distribution J()
	Conclusions
	References

