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1. Introduction

The present paper is a continuation of our previous papers [1–3] to prove some uncertainty
principles (UP) for a general class of integral operators, including the Fourier transform,
the Fourier–Bessel transform, the Dunkl transform [4], the generalized Fourier transform [5],
the deformed Fourier transform [6] and the Clifford transform. Other versions of UP for integral
operators have been proved in [7–9].

It is well-known that the uncertainty principles set restrictions on the time-frequency
(or space–time) concentration of a nonzero function. Different forms of the UP have been studied by
the mathematical community throughout the 20th century, and this is still a field of research today (see
e.g., the survey [10] and the book [11] for the most well known forms of UP). His first significant results
and outstanding issues go back to the works of Norbert Wiener, Andrei Kolmogorov, Mark Kerin and
Arne Beurling.

The term UP is associated with Werner Heisenberg’s 1927 statement [12]

∆(x)∆(p) ≥ h̄
2

, (1)

which has become a fundamental element of quantum physics, where ∆(x) (respectively, ∆(p)) is
the standard deviation of position x (respectively, of momentum p) and h̄ is the Planck constant.
The Heisenberg’s UP has a great importance in symmetry problems in physics, for example there is a
connection between the space–time UP and the conformal symmetry in string theory (see e.g., [13–16]).

In this paper, we will follow the notation in [1]. More precisely, let Ω and Ω̂ be two convex cones
in Rd (i.e., for all δ > 0 and x ∈ Ω, we have δx ∈ Ω) with non-empty interior, and endowed with the
Borel measures µ and µ̂. For 1 ≤ p ≤ ∞, we define the Lebesgue spaces Lp(Ω, µ) and Lp(Ω̂, µ̂) in the
usual way.

We assume that the measure µ (and µ̂) is absolutely continuous with respect to the Lebesgue
measure dx, and has a polar decomposition of the form

dµ(rζ) = r2`−1 dr Q(ζ) dσ(ζ), (2)
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where dσ is the Lebesgue measure on the unit sphere Sd−1 of Rd and Q ∈ L1(Sd−1, dσ) such that
Q 6= 0. Then the measure µ is homogeneous of degree 2`, that is, for any f ∈ Cc(Ω), and δ > 0,∫

Ω
f
( x

δ

)
dµ(x) = δ2`

∫
Ω

f (x)dµ(x). (3)

Let ∆ be a second order differential operators defined initially on C∞
c (Ω). Assume that ∆ is:

1. Self-adjoint
〈∆ f , g〉µ = 〈 f , ∆g〉µ, ∀ f , g ∈ C∞

c (Ω), (4)

2. Positive
〈(−∆) f , f 〉µ ≥ 0, ∀ f ∈ C∞

c (Ω), (5)

where 〈·, ·〉µ is inner product on L2(Ω, µ).

Let {Kξ}ξ∈Ω be the system of the eigenvectors of |x|a1 ∆x and the corresponding eigenvalues are
{|ξ|a2}ξ∈Ω, that is

|x|a1 ∆xKξ = −|ξ|a2Kξ , (6)

where a1, a2 are positive real numbers such that a2 6= 0 and the superscript in ∆x indicates the
relevant variable.

Next, assume that the kernel K : Ω×Ω −→ C, (x, ξ) 7→ Kξ(x) satisfies:

1. K is continuous,
2. K is polynomially bounded:

|Kξ(x)| ≤ cK(1 + |x|)m(1 + |ξ|)m̂, m, m̂ > 0, (7)

3. K is homogeneous:
Kξ(δx) = Kδξ(x), δ > 0. (8)

One can then define the integral operator T on the Schwartz space S(Ω) by

T ( f )(ξ) =
〈

f ,Kξ

〉
µ
=
∫

Ω
f (x)Kξ(x)dµ(x), ξ ∈ Ω̂. (9)

Assume that T can be extended to an unitary operator from L2(Ω, µ) onto L2(Ω̂, µ̂) with inverse

T −1( f )(x) =
∫

Ω
f (ξ)Kξ(x)dµ̂(ξ), x ∈ Ω, (10)

and satisfies a Parseval-type equality,

〈T ( f ), T (g)〉µ̂ = 〈 f , g〉µ, (11)

where 〈·, ·〉µ̂ is the inner product on L2(Ω̂, µ̂).
For ρ > 0, we define the measures

dµρ(x) = (1 + |x|)ρ dµ(x) and dµ̂ρ(ξ) = (1 + |ξ|)ρ dµ̂(ξ). (12)

Then T extends into a continuous operator from L1(Ω, µm) to

Cm̂(Ω̂) =

 f continuous, s.t. ‖ f ‖∞,m̂ := sup
ξ∈Ω̂

| f (ξ)|
(1 + |ξ|)m̂ < ∞

 . (13)
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We define â accordingly for µ̂ and assume that â = a. Then we introduce the dilation operators
Dδ, D̂δ, δ > 0:

Dδ f (x) =
1
δa f

( x
δ

)
, D̂δ f (x) =

1
δâ f

( x
δ

)
, (14)

then by the homogeneity of the kernel, we have

T Dδ = D̂ 1
δ
T . (15)

Moreover, since the measures µ, µ̂ are absolutely continuous with respect to the Lebesgue measure,
then the dilation operator D (respectively, D̂) is continuous from (0, ∞) × L2(Ω, µρ) to L2(Ω, µρ)

(respectively, from (0, ∞)× L2(Ω̂, µ̂ρ) to L2(Ω̂, µ̂ρ)).
As ∆ is self-adjoint, then by Inequality (6) one has, for any f ∈ C∞

c (Ω):

T (|x|a1 ∆ f )(ξ) =
〈
|x|a1 ∆ f ,Kξ

〉
µ

=
〈

f , |x|a1 ∆Kξ

〉
µ

(16)

= −
〈

f , |ξ|a2Kξ

〉
µ
= −|ξ|a2T ( f )(ξ).

We consider the nonnegative and self-adjoint extension of |x|a1 ∆ (still denoted by the same
symbol) defined by

(−|x|a1 ∆) f = T −1 [|ξ|a2T ( f )] , f ∈ Dom(∆), (17)

where Dom(|x|a1 ∆) = { f ∈ L2(Ω, µ) : |ξ|a2T ( f ) ∈ L2(Ω, µ)}.
By (3), the measure of the ball Br = {x ∈ Ω : |x| < r} of center 0 and radius r is majorized by the

power of the radius r i.e.,
µ(Br) ≤ c r2`. (18)

Assume also that the semigroup {Wt}t>0 = {exp (t|x|a1 ∆)}t>0 generated by |x|a1 ∆ satisfies

‖Wt‖1→∞ ≤ c t−
2`
a2 . (19)

Let L = |x|a2 − |x|a1 ∆ be a deformed harmonic oscillator on C∞
c (Ω). Assume that there exists

an orthonormal basis {φj}j∈Nd for L2(Ω, µ) consisting of eigenfunctions of L that correspond to the
eigenvalues {λj}j∈Nd , that is

Lφj = λjφj.

We impose the assumption that we can arrange the set {λj}j∈Nd into an increasing sequence {Λk}k∈N
that satisfies

0 < λ0 = Λ0 < Λ1 < Λ2 < · · · (20)

and
lim
k→∞

Λk = ∞. (21)

Therefore L is symmetric and positive in L2(Ω, µ) and it has a natural self-adjoint extension (still
denoted by the same symbol) on L2(Ω, µ), that is,

L f = ∑
j∈Nd

λj
〈

f , φj
〉

µ
φj (22)
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on the domain DomL consisting of all functions L2(Ω, µ) for which the defining series ∑
j∈Nd

|λj
〈

f , φj
〉

µ
|2

converges in L2(Ω, µ). Moreover, the spectrum of L is {Λk}k∈N and the spectral decomposition of L
can be written as

L =
∞

∑
k=0

ΛkPk f , f ∈ DomL, (23)

where the spectral projections are

Pk f = ∑
{j∈Nd :λj=Λk}

〈
f , φj

〉
µ

φj, k ∈ N. (24)

The structure of the present paper is as follows. In Section 2 we establish an optimal version of
the Heisenberg-type UP for the integral operator T , as well as some other well-known uncertainty
inequalities. Section 3 is devoted to applying our results to some particular cases.

Notation

For x ∈ Rd, |x| =
√
〈x, x〉 denotes its norm , where 〈., .〉 is the Euclidean inner product, and

(e1, . . . , ed) will be the canonical basis of Rd. We will write χS for the characteristic function of the
subset S ⊂ Rd, and we write c, c`, cs, cs,`, c(s, T ) and cβ,s,`, . . . for constants (which can change from
line to line) that depend on the parameters `, s and β, T , . . ..

2. Heisenberg-Type Uncertainty Principles

2.1. Sharp Heisenberg-Type Uncertainty Inequality

In this subsection we will establish a sharp (optimal) version of Heisenberg-type UP for the
transformation T . Other non optimal Heisenberg-type inequalities for integral operators can be found
in [1,2].

Theorem 1. For every function f ∈ L2(Ω, µ),∥∥∥|x| a2
2 f
∥∥∥2

2,µ
+
∥∥∥|ξ| a2

2 T ( f )
∥∥∥2

2,µ̂
≥ Λ0‖ f ‖2

2,µ. (25)

Equality in (25) holds if, and only if f (x) = c φ0(x), c ∈ C.

Proof. If f ∈ L2(Ω, µ) is a non vanishing function, with∥∥∥|x| a2
2 f
∥∥∥2

2,µ
,
∥∥∥|ξ| a2

2 T ( f )
∥∥∥2

2,µ̂
< ∞,

then from (17) and Parseval–type equality (11),∥∥∥|ξ| a2
2 T ( f )

∥∥∥2

2,µ̂
= 〈|ξ|a2T ( f ), T ( f )〉µ̂
= 〈T (−|x|a1 ∆ f ), T ( f )〉µ̂ (26)

= 〈−|x|a1 ∆ f , f 〉µ.

Therefore ∥∥∥|x| a2
2 f
∥∥∥2

2,µ
+
∥∥∥|ξ| a2

2 T ( f )
∥∥∥2

2,µ̂
= 〈|x|a2 f , f 〉µ − 〈|x|

a1 ∆ f , f 〉µ = 〈L f , f 〉µ. (27)
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As the operator L is self-adjoint and has only discrete spectra, then∥∥∥|x| a2
2 f
∥∥∥2

2,µ
+
∥∥∥|ξ| a2

2 T ( f )
∥∥∥2

2,µ̂
≥ Λ0‖ f ‖2

2,µ. (28)

Moreover the equality holds in (28), if and only if f is an eigenfunction of the self-adjoint operator
|x|a2 − |x|a1 ∆ corresponding to the eigenvalue Λ0. Thus f is a scalar multiple of φ0.

By a dilation argument we deduce the following product form of the Heisenberg-type inequality (25).

Corollary 1. For every f ∈ L2(Ω, µ),∥∥∥|x| a2
2 f
∥∥∥

2,µ

∥∥∥|ξ| a2
2 T ( f )

∥∥∥
2,µ̂
≥ Λ0

2
‖ f ‖2

2,µ. (29)

Equality holds in (29), if and only if, f (x) = cφ0(δx) for some c ∈ C and δ > 0.

Proof. Since ‖Dδ f ‖2,µ = ‖ f ‖2,µ, then by replacing f by Dδ f in (25), we obtain from (15) that

δa2
∥∥∥|x| a2

2 f
∥∥∥2

2,µ
+ δ−a2

∥∥∥|ξ| a2
2 T ( f )

∥∥∥2

2,µ̂
≥ Λ0‖ f ‖2

2,µ. (30)

Then (29) follows by minimizing the left hand side of (30) over δ > 0, with

min
δ>0

(
δa2
∥∥∥|x| a2

2 f
∥∥∥2

2,µ
+ δ−a2

∥∥∥|ξ| a2
2 T ( f )

∥∥∥2

2,µ̂

)
= 2

∥∥∥|x| a2
2 f
∥∥∥

2,µ

∥∥∥|ξ| a2
2 T ( f )

∥∥∥
2,µ̂

. (31)

Equality in (29) holds exactly if we have

2
∥∥∥|x| a2

2 f
∥∥∥

2,µ

∥∥∥|ξ| a2
2 T ( f )

∥∥∥
2,µ̂

= Λ0‖ f ‖2
2,µ, (32)

thus by equality cases of (25), we deduce the desired result.

More generally, we can state the following improvement.

Corollary 2. For every s, β ∈ [1, ∞), and every f ∈ L2(Ω, µ),

∥∥∥|x|s a2
2 f
∥∥∥β

2,µ

∥∥∥|ξ|β a2
2 T ( f )

∥∥∥s

2,µ̂
≥
(

Λ0

2

)sβ

‖ f ‖s+β
2,µ . (33)

Proof. If f ∈ L2(Ω, µ) is a non vanishing function with finite dispersions∥∥∥|x|s a2
2 f
∥∥∥

2,µ
,
∥∥∥|ξ|β a2

2 T ( f )
∥∥∥

2,µ̂
< ∞,

then ∥∥|x|s a2
2 f
∥∥2/s

2,µ

∥∥ f
∥∥2/s′

2,µ =
∥∥|x|a2 | f |2/s∥∥

s,µ

∥∥| f |2/s′∥∥
s′ ,µ, (34)

where s′ is the conjugate index of s. Therefore, by Hölder’s inequality we obtain

∥∥|x| a2
2 f
∥∥

2,µ ≤
∥∥|x|s a2

2 f
∥∥1/s

2,µ

∥∥ f
∥∥1/s′

2,µ . (35)

Thus, for all s ≥ 1: ∥∥|x|s a2
2 f
∥∥β

2,µ ≥
∥∥ f
∥∥−(s−1)β

2,µ

∥∥|x| a2
2 f
∥∥βs

2,µ (36)
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Similarly, we have for β ∈ [1, ∞):∥∥|ξ|β a2
2 T ( f )

∥∥s
2,µ̂ ≥

∥∥T ( f )
∥∥−(β−1)s

2,µ̂

∥∥|ξ| a2
2 T ( f )

∥∥βs
2,µ̂ =

∥∥ f
∥∥−(β−1)s

2,µ̂

∥∥|ξ| a2
2 T ( f )

∥∥βs
2,µ̂.

Now, applying Heisenberg’s Inequality (29), we obtain the desired result.

As the proof of the last corollary is based on Hölder’s inequality, then it exclude the other cases
when s, β ∈ (0, 1).

2.2. General Form of Heisenberg-Type Uncertainty Inequality

In this subsection we will establish a general from of Heisenberg-type relation for any s, β > 0.
Such inequality can be deduced from [1] (Theorem C), which is obtained from either the local Faris-type
inequality [1] (Theorem A) or the Benedicks–Amrein–Berthier-type UP [1] (Theorem B). Our proof
here is inspired from related results on Lie groups of polynomial growth in [17], and the assumption
(19) plays a key role here.

Lemma 1. Let s < `. Then there is Cs > 0 such that, for any f ∈ L2(Ω, µ),

‖Wt f ‖2,µ ≤ cst−
s
2

∥∥∥|x|s a2
2 f
∥∥∥

2,µ
. (37)

Proof. Put fr = f χBr and f r = f − fr. We have

‖ f r‖2,µ ≤ r−s a2
2

∥∥∥|x|s a2
2 f
∥∥∥

2,µ
. (38)

Now since Wt is a semigroup of contractions, then

‖Wt f r‖2,µ ≤ ‖ f r‖2,µ ≤ r−s a2
2

∥∥∥|x|s a2
2 f
∥∥∥

2,µ
.

Moreover, as fr ∈ L1(Ω, µ), then by Cauchy–Schwartz’s inequality and (19) we obtain

‖Wt fr‖2,µ ≤ ‖Wt‖1→2‖ fr‖1,µ

≤
∥∥∥e2t|x|a1 ∆

∥∥∥1/2

1→∞

∥∥∥|x|−s a2
2 χBr

∥∥∥
2,µ

∥∥∥|x|s a2
2 f
∥∥∥

2,µ

≤ cst−
`

a2 r`−s a2
2

∥∥∥|x|s a2
2 f
∥∥∥

2,µ
.

Therefore

‖Wt f ‖2,µ ≤ ‖Wt fr‖2,µ + ‖Wt f r‖2,µ ≤ r−s a2
2

(
1 + csr`t

− `
a2

)∥∥∥|x|s a2
2 f
∥∥∥

2,µ
. (39)

Choosing r = t
1

a2 , we obtain

‖Wt f ‖2,µ ≤ (1 + cs)t−
s
2

∥∥∥|x|s a2
2 f
∥∥∥

2,µ
, (40)

as expected.

Now, let’s show our main result of this subsection.

Theorem 2. Let s, β ∈ (0, ∞). Then there exists cβ,s,` such that for every f ∈ L2(Ω, µ),

∥∥|x|s a2
2 f
∥∥β

2,µ

∥∥|ξ|β a2
2 T ( f )

∥∥s
2,µ̂ ≥ cβ,s,`‖ f ‖(s+β)

2,µ . (41)
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Proof. First assume that s < ` and β ≤ 2. Then by Lemma 1,

‖ f ‖2,µ ≤ ‖Wt f ‖2,µ + ‖ f −Wt f ‖2,µ

≤ cst−
s
2

∥∥∥|x|s a2
2 f
∥∥∥

2,µ
+
∥∥∥(1− et|x|a1 ∆

)
(−t|x|a1 ∆)−

β
2 (−t|x|a1 ∆)

β
2 f
∥∥∥

2,µ
.

Now since, for any ρ > 0 and β ≤ 2, the function ρ 7→ (1− e−ρ)ρ−
β
2 is bounded, then∥∥∥(1− et|x|a1 ∆

)
(−t|x|a1 ∆)−

β
2 (−t|x|a1 ∆)

β
2 f
∥∥∥

2,µ
≤ t

β
2

∥∥∥(−|x|a1 ∆)
β
2 f
∥∥∥

2,µ
.

Therefore by the Parseval equality and (17)

‖ f ‖2,µ ≤ cst−
s
2

∥∥∥|x|s a2
2 f
∥∥∥

2,µ
+ t

β
2

∥∥∥|ξ|β a2
2 T ( f )

∥∥∥
2,µ̂

. (42)

By minimizing the right hand side of (42) over t > 0, we obtain

∥∥|x|s a2
2 f
∥∥ β

s+β

2,µ

∥∥|ξ|β a2
2 T ( f )

∥∥ s
s+β

2,µ̂ ≥ cβ,s,`‖ f ‖2,µ. (43)

Now if β > 2, then for every β′ ≤ 2, we have by Parseval equality (11)∥∥∥|ξ|β′ a2
2 T ( f )

∥∥∥2

2,µ̂
≤ ‖ f ‖2

2,µ +
∥∥∥|ξ|β a2

2 T ( f )
∥∥∥2

2,µ̂
. (44)

Replacing f by Dt f in (44), we get, by (15),∥∥∥|ξ|β′ a2
2 T ( f )

∥∥∥2

2,µ̂
≤ tβ′a2‖ f ‖2

2,µ + ta2(β′−β)
∥∥∥|ξ|β a2

2 T ( f )
∥∥∥2

2,µ̂
. (45)

Minimizing the right hand side of (45) over t > 0, we obtain

∥∥∥|ξ|β′ a2
2 T ( f )

∥∥∥2

2,µ̂
≤ β

β− β′

(
β

β′
− 1
) β′

β

‖ f ‖2(1−β′/β)
2,µ

∥∥∥|ξ|β a2
2 T ( f )

∥∥∥ 2β′
β

2,µ̂
. (46)

Together with (43) for β′ we obtain the result for β > 2.
Finally, and in same way, for s ≥ `, we take s′ < ` and we obtain

∥∥∥|x|s′ a2
2 f
∥∥∥2

2,µ
≤ s

s− s′

(
s
s0
− 1
) s′

s
‖ f ‖2(1−s′/s)

2,µ

∥∥∥|x|s a2
2 f
∥∥∥ 2s′

s

2,µ
. (47)

This allows to conclude again with (43).

Remark 1. If we take s = β in Inequality (41), then we obtain∥∥|x|s a2
2 f
∥∥

2,µ

∥∥|ξ|s a2
2 T ( f )

∥∥
2,µ̂ ≥ cs,`‖ f ‖2

2,µ, (48)

which implies ∥∥|x|s a2
2 f
∥∥2

2,µ +
∥∥|ξ|s a2

2 T ( f )
∥∥2

2,µ̂ ≥ cs,`‖ f ‖2
2,µ. (49)
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2.3. The ε-Concentration Version of Heisenberg-Type Uncertainty Inequality

Let S ⊂ Ω and Σ ⊂ Ω̂ be two subsets, such that 0 < µ2m(S), µ̂2m̂(Σ) < ∞. We define the time
and frequency limiting operators by

ES f = χS f , FΣ f = T −1
[
χΣT ( f )

]
, f ∈ L2(Ω, µ).

Then we recall the following well-known definition (see [18]).

Definition 1. Let 0 < ε < 1 and f ∈ L2(Ω, µ). Then

1. We say that f is ε-concentrated on S if

‖χSc f ‖2,µ ≤ ε‖ f ‖2,µ, (50)

2. We say that f is ε-bandlimited (or T ( f ) is ε-concentrated) on Σ if

‖χΣcT ( f )‖2,µ̂ ≤ ε‖ f ‖2,µ. (51)

The subsets S and Σ are known as the essential supports of f and T ( f ), respectively, and this fact
is first introduced by Donoho–Stark in [18], replacing the exact supports by the essential supports.
If f is ε1-concentrated on S and ε2-bandlimited on Σ, we briefly write f is (ε1, ε2)-concentrated on
(S, Σ), and we denote by L2(ε1, ε2, S, Σ) the subspace of L2(Ω, µ) consisting of functions that are
(ε1, ε2)-concentrated on (S, Σ). In particular (see [1] (Inequality (3.4))), if f ∈ L2(ε1, ε2, S, Σ), then

µ2m(S)µ̂2m̂(Σ) ≥ c−2
K

(
1−

√
ε2

1 + ε2
2

)2
. (52)

Moreover from [1] (Theorem 2.1) we recall the following local UP.

Theorem 3. Let s > 0 and let Σ ⊂ Ω̂ be a subset such that 0 < µ̂2m̂(Σ) < ∞. Then

1. if 0 < s < 2`
a2

, there exists c = c(s, T ) such that for every f ∈ L2(Ω, µ), ‖χΣT ( f )‖2,µ̂ is bounded by


c
[
µ̂2m̂(Σ)

] sa2
4(`+m) ∥∥|x|s a2

2 f
∥∥

2,µ, if µ̂2m̂(Σ) ≤ 1;

c
[
µ̂2m̂(Σ)

] sa2
4` ∥∥|x|s a2

2 f
∥∥

2,µ, if µ̂2m̂(Σ) > 1;
(53)

2. If 2`
a2
≤ s ≤ 2

a2
(`+ m), then for any ε > 0 there exists c = c(s, T , ε) such that for every f ∈ L2(Ω, µ),

‖χΣT ( f )‖2,µ̂ is bounded by


c
[
µ̂2m̂(Σ)

] 1
2(1+m/`)−ε∥∥ f

∥∥1− 2`
sa2

+ε

2,µ

∥∥|x|s a2
2 f
∥∥ 2`

sa2
−ε

2,µ , if µ̂2m̂(Σ) ≤ 1;

c
[
µ̂2m̂(Σ)

] 1
2−ε∥∥ f

∥∥1− 2`
sa2

+ε

2,µ

∥∥|x|s a2
2 f
∥∥ 2`

sa2
−ε

2,µ , if µ̂2m̂(Σ) > 1;
(54)

3. If s > 2
a2
(m + `), there exists c = c(s, T ) such that for every f ∈ L2(Ω, µ), ‖χΣT ( f )‖2,µ̂ is bounded

by 
c
[
µ̂2m̂(Σ)

] 1
2 ∥∥ f

∥∥1− 2`
sa2

2,µ

∥∥|x|s a2
2 f
∥∥ 2`

sa2
2,µ , if m = 0;

c
[
µ̂2m̂(Σ)

] 1
2 ∥∥ f

∥∥
L2(Ω,µsa2 )

, otherwise.
(55)
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By (11), we have

∀ f ∈ L2(Ω, µ), ‖ f ‖2
2,µ = ‖T ( f )‖2

2,µ̂ = ‖χΣT ( f )‖2
2,µ̂ + ‖χΣcT ( f )‖2

2,µ̂, (56)

then, (51) is equivalent to

‖χΣT ( f )‖2
2,µ̂ ≥ (1− ε2)‖ f ‖2

2,µ, or ‖FΣ f ‖2,µ ≥
√

1− ε2‖ f ‖2,µ. (57)

In same way, (50) is equivalent to

‖ES f ‖2,µ ≥
√

1− ε2‖ f ‖2,µ. (58)

Heisenberg’s inequality in Theorem 2 gives a lower bound of the product for the generalized time
and frequency dispersions for functions in L2(Ω, µ), but we can not have a lower bound for each one
separately. The purpose of this section is to establish a Heisenberg-type inequality for functions in
L2(ε1, ε2, S, Σ), for which a lower bound is given for each of the time and frequency dispersions. This
gives more information than the lower bound of the product between them.

First by using Theorem 3, we will obtain a lower bound for the measure of the generalized time

dispersion
∥∥|x|s a2

2 f
∥∥

2,µ.

Corollary 3. Let s > 0 and let Σ ⊂ Ω̂ be a subset such that 0 < µ̂2m̂(Σ) < ∞. Then

1. If 0 < s < 2`
a2

, there exists c = c(s, T ), such that for any ε2-bandlimited function f ∈ L2(Ω, µ) on Σ,

∥∥|x|s a2
2 f
∥∥2

2,µ ≥
c(1−ε2

2)

[µ̂2m̂(Σ)]
sa2

2(`+m)

‖ f ‖2
2,µ, if µ̂2m̂(Σ) ≤ 1;

∥∥|x|s a2
2 f
∥∥2

2,µ ≥
c(1−ε2

2)

[µ̂2m̂(Σ)]
sa2
2`
‖ f ‖2

2,µ, if µ̂2m̂(Σ) > 1;

(59)

2. If 2`
a2
≤ s ≤ 2

a2
(`+ m), then for any ε > 0 there exists c = c(s, T , ε) such that for any ε2-bandlimited

function f ∈ L2(Ω, µ) on Σ,

∥∥|x|s a2
2 f
∥∥2

2,µ ≥ c

(
1−ε2

2

[µ̂2m̂(Σ)]
1

(1+m/`)−2ε

) sa2
2`−εsa2 ∥∥ f

∥∥2
2,µ if µ̂2m̂(Σ) ≤ 1;

∥∥|x|s a2
2 f
∥∥2

2,µ ≥ c
(

1−ε2
2

[µ̂2m̂(Σ)]1−2ε

) sa2
2`−εsa2 ‖ f ‖2

2,µ, if µ̂2m̂(Σ) > 1;

(60)

3. If s > 2
a2
(m + `), there exists c = c(s, T ) such that for any ε2-bandlimited function f ∈ L2(Ω, µ) on Σ,

∥∥|x|s a2
2 f
∥∥2

2,µ ≥ c
(

1−ε2
2

µ̂2m̂(Σ)

) sa2
2`
‖ f ‖2

2,µ, if m = 0;

∥∥|x|s a2
2 f
∥∥2

2,µ ≥
(

c(1−ε2
2)

µ̂2m̂(Σ) − 1
)
‖ f ‖2

2,µ, otherwise,

(61)



Symmetry 2019, 11, 335 10 of 18

where in the last line, we have used the fact that∥∥ f
∥∥2

L2(Ω,µsa2 )
=

∫
Ω
(1 + |x|)sa2 | f (x)|2 dµ(x)

≤ 2sa2
(
‖ f ‖2

2,µ +
∥∥|x|s a2

2 f
∥∥2

2,µ

)
.

Owing to a symmetry between f and its integral transform, then by exchanging the roles of f and
T ( f ) in Theorem 3, we obtain:

Theorem 4. Let β > 0 and let S ⊂ Ω be a subset such that 0 < µ2m(S) < ∞. Then

1. If 0 < β < 2`
a2

, there exists a positive constant c = c(β, T ) such that for all f ∈ L2(Ω, µ), ‖χS f ‖2,µ is
bounded by 

c
[
µ2m(S)

] βa2
4(`+m̂) ∥∥|ξ|β a2

2 T ( f )
∥∥

2,µ̂, if µ2m(S) ≤ 1;

c
[
µ2m(S)

] βa2
4` ∥∥|ξ|β a2

2 T ( f )
∥∥

2,µ̂, if µ2m(S) > 1,
(62)

2. If 2`
a2
≤ β ≤ 2

a2
(`+ m̂), then for any ε > 0 there exists a positive constant c = c(β, T , ε) such that for

all f ∈ L2(Ω, µ), ‖χS f ‖2,µ is bounded by


c
[
µ2m(Σ)

] 1
2(1+m̂/`)−ε∥∥ f

∥∥1− 2`
βa2

+ε

2,µ

∥∥|ξ|β a2
2 T ( f )

∥∥ 2`
βa2
−ε

2,µ̂ , if µ2m(S) ≤ 1;

c
[
µ2m(S)

] 1
2−ε∥∥ f

∥∥1− 2`
βa2

+ε

2,µ

∥∥|ξ|β a2
2 T ( f )

∥∥ 2`
βa2
−ε

2,µ̂ , if µ2m(S) > 1,
(63)

3. If β > 2
a2
(m̂ + `), there exists a positive constant c = c(β, T ) such that for all f ∈ L2(Ω, µ), ‖χS f ‖2,µ

is bounded by 
c
[
µ2m(S)

] 1
2 ∥∥ f

∥∥1− 2`
βa2

2,µ

∥∥|ξ|β a2
2 T ( f )

∥∥ 2`
βa2
2,µ̂ , if m̂ = 0;

c
[
µ2m(S)

] 1
2 ∥∥T ( f )

∥∥
L2(Ω̂,µ̂βa2

)
, otherwise.

(64)

Consequently, and in the same way by using (58), we obtain the following result giving a lower

bound for the measure of the generalized frequency dispersion
∥∥|ξ|β a2

2 T ( f )
∥∥

2,µ̂.

Corollary 4. Let β > 0 and let S ⊂ Ω be a subset such that 0 < µ2m(S) < ∞. Then

1. If 0 < β < 2`
a2

, there exists a positive constant c = c(β, T ), such that for any ε1-concentrated function
f ∈ L2(Ω, µ) on S,



∥∥|ξ|β a2
2 T ( f )

∥∥2
2,µ̂ ≥

c(1−ε2
1)

[µ2m(S)]
βa2

2(`+m̂)

‖ f ‖2
2,µ, if µ2m(S) ≤ 1;

∥∥|ξ|β a2
2 T ( f )

∥∥2
2,µ̂ ≥

c(1−ε2
1)

[µ2m(S)]
βa2
2`

‖ f ‖2
2,µ, if µ2m(S) > 1,

(65)
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2. If 2`
a2
≤ β ≤ 2

a2
(`+ m̂), then for any ε > 0 there exists a positive constant c = c(β, T , ε) such that for

any ε1-concentrated function f ∈ L2(Ω, µ) on S,

∥∥|ξ|β a2
2 T ( f )

∥∥2
2,µ̂ ≥ c

(
1−ε2

1

[µ2m(S)]
1

(1+m̂/`)−2ε

) βa2
2`−εβa2

‖ f ‖2
2,µ if µ2m(S) ≤ 1;

∥∥|ξ|β a2
2 T ( f )

∥∥2
2,µ̂ ≥ c

(
1−ε2

1
[µ2m(S)]1−2ε

) βa2
2`−εβa2 ‖ f ‖2

2,µ, if µ2m(S) > 1,

(66)

3. If β > 2
a2
(m̂ + `), there exists a positive constant c = c(β, T ) such that for any ε1-concentrated function

f ∈ L2(Ω, µ) on S, 

∥∥|ξ|β a2
2 T ( f )

∥∥2
2,µ̂ ≥ c

(
1−ε2

1
µ2m(S)

) βa2
2`
‖ f ‖2

2,µ, if m̂ = 0;

∥∥|ξ|β a2
2 T ( f )

∥∥2
2,µ̂ ≥

(
c(1−ε2

1)
µ2m(S) − 1

)
‖ f ‖2

2,µ, otherwise.

(67)

Now it is enough to take the product of the inequalities in Corollary 3 and Corollary 4 to obtain
the analogue of Inequality (41) for functions in L2(ε1, ε2, S, Σ). In particular, we state the following
special case (the same holds for the other cases).

Corollary 5. Let 2`
a2

< s < 2
a2
(` + m), 2`

a2
< β < 2

a2
(` + m̂) and let S ⊂ Ω, Σ ⊂ Ω̂ be two subsets

with 1 < µ2m(S), µ̂2m̂(Σ) < ∞. Then for any ε > 0 there exists C = c(s, β, T , ε), such that for every
f ∈ L2(ε1, ε2, S, Σ),

∥∥|x|s a2
2 f
∥∥β

2,µ

∥∥|ξ|β a2
2 T ( f )

∥∥s
2,µ̂ ≥ C

(
1− ε2

1
[µ2m(S)]1−2ε

) sβa2
2(2`−εβa2)

×
(

1− ε2
2

[µ̂2m̂(Σ)]1−2ε

) sβa2
2(2`−εsa2)

‖ f ‖s+β
2,µ . (68)

Remark 2. In particular, if s = β in (68), then for any ε > 0 there exists C = c(s, T , ε) such that for every
f ∈ L2(ε1, ε2, S, Σ),

∥∥|x|s a2
2 f
∥∥

2,µ

∥∥|ξ|s a2
2 T ( f )

∥∥
2,µ̂ ≥ C

(
(1− ε2

1)(1− ε2
2)

[µ2m(S)µ̂2m̂(Σ)]1−2ε

) sa2
2(2`−εsa2)

‖ f ‖2
2,µ, (69)

which implies that

∥∥|x|s a2
2 f
∥∥2

2,µ +
∥∥|ξ|s a2

2 T ( f )
∥∥2

2,µ̂ ≥ C

(
(1− ε2

1)(1− ε2
2)

[µ2m(S)µ̂2m̂(Σ)]1−2ε

) sa2
2(2`−εsa2)

‖ f ‖2
2,µ. (70)

On the other hand, if f ∈ L2(ε1, ε2, S, Σ), then we obtain the following new variation (see also [2]) of
Donoho–Stark type uncertainty inequality (52), with constant that depends on f ,

µ2m(S)µ̂2m̂(Σ) ≥ C f (s, T , ε)
(
(1− ε2

1)(1− ε2
2)
) 1

1−2ε , (71)
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where

C f (s, T , ε) =

 C‖ f ‖2
2,µ∥∥|x|s a2

2 f
∥∥

2,µ

∥∥|ξ|s a2
2 T ( f )

∥∥
2,µ̂


4`−2εsa2
sa2(1−2ε)

. (72)

2.4. Shapiro-Type Uncertainty Principles

In [3] (Section 5.2) we have proved some Shapiro-type uncertainty principles for a family of
integral transforms with bounded kernel, which is the case here when m = m̂ = 0. The transforms
under consideration in this paper are integral operators with polynomially bounded kernels (as in
the article [1]). In this subsection, we will establish these uncertainty inequalities without any proof,
which can be given in the same way with minor modifications.

First notice that a straightforward computation shows ESFΣ is an integral transform with kernel
(see [1], Lemma 3.2)

N (x, ξ) = χS(ξ)T −1(χΣ Kξ)
)
(x).

Then ESFΣ is a Hilbert–Schmidt operator, such that

‖ESFΣ‖2
HS ≤ c2

Kµ2m(S)µ̂2m̂(Σ). (73)

Adapting the proofs of [3] (Section 5.2), which are inspired from related results in [19], we obtain
the following Shapiro-type UP.

Theorem 5. Let s > 0.

1. If {ϕn}∞
n=1 is an orthonormal system in L2(Ω, µ), then for every N ≥ 1,

N

∑
n=1

(∥∥|x|s a2
2 ϕn

∥∥2
2,µ +

∥∥|ξ|s a2
2 T (ϕn)

∥∥2
2,µ̂

)
≥ cs,` N1+ s

2` , (74)

2. If {ϕn}∞
n=1 is an orthonormal basis for L2(Ω, µ), then

sup
n

(∥∥|x|s a2
2 ϕn

∥∥
2,µ

∥∥|ξ|s a2
2 T (ϕn)

∥∥
2,µ̂

)
= ∞. (75)

Remark 3.

1. The dispersion inequality (74) implies that there is no infinite system {ϕn}∞
n=1 in L2(Ω, µ) for which

the two sequences
{∥∥∥|x|s a2

2 ϕn

∥∥∥
2,µ

}∞

n=1
and

{∥∥∥|ξ|s a2
2 T (ϕn)

∥∥∥
2,µ̂

}∞

n=1
are bounded. More precisely,

if {ϕn}∞
n=1 is an orthonormal sequence in L2(Ω, µ), then for every N ≥ 1,

sup
1≤n≤N

{∥∥|x|s a2
2 ϕn

∥∥2
2,µ,

∥∥|ξ|s a2
2 T (ϕn)

∥∥2
2,µ̂

}
≥ cs,` N

s
2` , (76)

and particularly
sup

n

(∥∥|x|s a2
2 ϕn

∥∥2
2,µ +

∥∥|ξ|s a2
2 T (ϕn)

∥∥2
2,µ̂

)
= ∞. (77)

2. Relation (75) is not true for any orthonormal sequence in L2(Ω, µ). Indeed we can find an infinite
orthonormal sequence {ϕn}n in L2(Ω, µ), such that the product ‖|x|s

a2
2 ϕn‖2,µ ‖|ξ|s

a2
2 T (ϕn)‖2,µ̂ is finite.

3. It is clear that Shapiro-type uncertainty principles (75) and (77) refine respectively Inequalities (48)
and (49) for orthonormal bases and sequences.
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3. Examples

3.1. The Harmonic Oscillator

Let Ω = Ω̂ = Rd and let µ = µ̂ be the normalized Lebesgue measure given by dµ(x) =

(2π)−d/2 dx. For f ∈ L1(Rd) ∩ L2(Rd), the Fourier transform is defined by

F ( f )(ξ) = (2π)−d/2
∫
Rd

f (x)e−i〈x,ξ〉 dx, ξ ∈ Rd;

and is then extended to an isomorphism on L2(Rd) in the usual way. In this example ∆ = ∑d
i=1

∂2

∂x2
i

is

the usual Laplacian operator, T = F , ` = d/2, a1 = m = m̂ = 0 and a2 = 2. The φj’s are the Hermite
functions and λj = 2|j|+ d, such that j = (j1, . . . , jd) ∈ Nd and |j| = j1 + · · ·+ jd.

Notice that, here L = (−∆ + |x|2) is the harmonic oscillator (or the Hermite operator) on Rd and
for each x = (x1, . . . , xd) ∈ Rd and each multi-index j = (j1, . . . , jd) ∈ Nd,

φj(x) =
d

∏
i=1

hji (xi)

be the normalized Hermite function on Rd, where for all i = 1, . . . d, hji (xi) is the one-dimensional
Hermite function defined by

hji (xi) =
(

2ji−1/2 ji!
)−1/2

e−x2
i /2Hji (xi), (78)

and Hji are the Hermite polynomials of degree ji defined by the Rodriguez formula

Hji (xi) = (−1)ji ex2
i

dji

dxji
i

(e−x2
i ). (79)

It is well-known that the sequence of Hermite functions φi form an orthonormal basis for the
Hilbert space L2(Rd), and they are eigenfunctions of F and of the harmonic oscillator, that is,

(−∆ + |x|2)φj = (2|j|+ d)φj and F (φj) = (−i)|j|φj. (80)

3.2. The Bessel Oscillator

If f (x) = f0(|x|) is radial, then its Fourier transform satisfies

F ( f )(ξ) =
∫ ∞

0
f0(t)jd/2−1(t|ξ|)

td−1

2d/2−1Γ(d/2)
dt = Fd/2−1( f0)(|ξ|),

where Fd/2−1 is the Fourier–Bessel (or Hankel) transform of index d
2 − 1, and for any α ≥ −1/2, jα is

the Bessel function:

jα(x) := Γ(α + 1)
∞

∑
n=0

(−1)n

n!Γ(n + α + 1)

( x
2

)2n
,

where Γ is the gamma function. We have |jα| ≤ 1 and if we denote dµα(x) = x2α+1

2αΓ(α+1) dx, then for

f ∈ L1(R+, µα) ∩ L2(R+, µα), the Fourier–Bessel transform is defined by

Fα( f )(ξ) =
∫ ∞

0
f (x)jα(xξ)dµα(x), ξ ∈ R+,

and extends to an unitary operator to all L2(R+, µα) with F−1
α = Fα.
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Let Lα
n be the Laguerre polynomials, which can be defined by the Rodriguez formula (see [20],

(4.17.1), p. 76)

Lα
n(x) = x−α ex

n!
dn

dxn

(
e−xxn+α

)
, n ∈ N, x > 0. (81)

They are solutions of the following second order linear differential equation (see [20], (4.18.8),
p. 80),

xu′′ + (α + 1− x)u′ + nu = 0, (82)

and then they satisfy the following recurrence formula (see [20], (4.18.4), p. 76)

xLα+1
n (x) = −(n + 1)Lα

n+1(x) + (α + n + 1)Lα
n(x), n ∈ N. (83)

Therefore if we define φα
n by

φα
n(x) =

√
2α+1Γ(α + 1)n!

Γ(n + α + 1)
e−x2/2Lα

n(x2), n ∈ N, x > 0, (84)

then the sequence {φα
n}n∈N forms an orthonormal basis for L2(R+, µα) (see [20], p. 84), such that

Fα(φ
α
n) = (−1)nφα

n, n ∈ N. (85)

Now if we denote by `α = d2

dx2 + 2α+1
x

d
dx the differential Bessel operator, then by (82) the

φα
n’s satisfy

Lαφα
n = (4n + 2α + 2)φα

n, n ∈ N. (86)

In this case Ω = Ω̂ = R+, µ = µ̂ = µα, T = Fα, ∆ = `α, ` = α + 1, a1 = m = m̂ = 0 and a2 = 2.
The φj’s are the Laguerre functions, L = Lα and for all j ∈ N, λj = 4j + 2α + 2.

3.3. The Dunkl Harmonic Oscillator

Let us present some necessary material on the Dunkl’ theory. Let G be a finite reflection group
on Rd, associated with a root system R and let R+ the positive subsystem of R (see [4,21]). If k is a
nonnegative multiplicity function defined on R, and G-invariant, then we define the index

γ := γ(k) = ∑
ξ∈R+

k(ξ) ≥ 0 (87)

and the weight function
wk(x) = ∏

ξ∈R+

|〈ξ, x〉|2k(ξ). (88)

Further we introduce the Mehta-type constant ck by

c−1
k =

∫
Rd

e−
|x|2

2 dµk(x), (89)

where dµk(x) = wk(x)dx.

The Dunkl operators Tj, 1 ≤ j ≤ d associated with G and k are given by (see [22])

Tj f (x) =
∂ f
∂xj

+ ∑
ξ∈R+

k(ξ)
〈
ξ, ej

〉 f (x)− f (σξ(x))
〈ξ, x〉 , x ∈ Rd; (90)

where f ∈ C∞(Rd), and σξ denotes the reflection with respect to the hyperplane orthogonal to ξ.
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C. F. Dunkl in [4] introduced the Dunkl kernel Kk : Rd × Rd → C, where for all y ∈ Rd,
the function Kk(·, y) is the solution of the initial problem

Tju(x, y) = yju(x, y); 1 ≤ j ≤ d, u(0, y) = 1. (91)

This kernel has a unique holomorphic extension to Cd ×Cd, and satisfies for all λ ∈ C, z, z′ ∈ Cd

and x, y ∈ Rd:
Kk(z, z′) = Kk(z′, z), Kk(λz, z′) = Kk(z, λz′),

Kk(−iy, x) = Kk(iy, x), |Kk(−iy, x)| ≤ 1.

The Dunkl transform Fk of a function f ∈ L1(Rd, µk) ∩ L2(Rd, µk) (see e.g., [21]), is given by

Fk( f )(ξ) := ck

∫
Rd
Kk(−iξ, x) f (x)dµk(x), ξ ∈ Rd;

and extends uniquely to an isometric isomorphism on L2(Rd, µk) with

F−1
k ( f )(ξ) = Fk( f )(−ξ). (92)

If k = 0, the the Dunkl transform reduces to the Fourier transform, and if f (x) = f̃ (|x|) is radial,
then its Dunkl transform is given through the Fourier–Bessel transform, as follows:

Fk( f )(ξ) = Fγ+d/2−1( f̃ )(|ξ|). (93)

Rösler in [23] has introduced the Dunkl Hermite functions
{

hk
n

}
n∈Nd

associated with G and k,

which are defined by

hk
n(x) =

√
ck2−|n| e−|x|2 Hk

n(x), x ∈ Rd, (94)

where Hk
n is the Dunkl Hermite polynomials of degree |n|.

The sequence
{

hk
n

}
n∈Nd

forms an orthonormal basis for L2(Rd, µk) and each hk
n satisfies

Fk(hk
n) = (−1)|n|hk

n, n ∈ Nd. (95)

Now if we denote by ∆k = ∑d
j=1 T2

j the Dunkl Laplacian and Lk = |x|2 − ∆k the Dunkl harmonic
oscillator, then we have

Fk (∆k f ) (ξ) = −|ξ|2Fk( f )(ξ), ξ ∈ Rd, (96)

and
Lkhk

n = (2|n|+ 2γ + d)hk
n, n ∈ Nd. (97)

In this case Ω = Ω̂ = Rd, µ = µ̂ = µk, T = Fk, ∆ = ∆k is the Dunkl Lalpacian, ` = γ + d/2,
a1 = m = m̂ = 0 and a2 = 2. The φj’s are the Dunkl Hermite functions, λj = (2|j|+ 2γ + d) and
L = Lk is Dunkl harmonic oscillator.

3.4. The Deformed Dun Harmonic Osklcillator

Let Ω = Ω̂ = Rd, and let G and k as defined as in the last example. Let a > 0 be a deformation
parameter and define the weight measure dµk,a = dµ = dµ̂ = ϑk,a dx, as follows

ϑk,a(x) = |x|a−2 ∏
ξ∈R
|〈ξ, x〉|k(ξ) = |x|a−2wk(x). (98)
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The weight function ϑk,a is homogeneous of degree a− 2 + 2γ, where γ := 1
2 ∑ξ∈R k(ξ) is the

index of k. In the following we will assume that

2γ + d + a− 2 > 0. (99)

For a real number λ > −1, we write L(λ)
s , s ∈ N, for the Laguerre polynomial defined by

L(λ)
s (t) =

s

∑
j=0

(−1)jΓ(λ + s + j)
(s− j)!Γ(λ + j + 1)

tj

j!
.

Set λk,a,n = (d+ 2γ+ 2n− 2)/a, and for each n ∈ N, let {h(n)j }j∈Jn be an orthonormal basis of the space

Hn
k (R

d)|Sd−1 , where whereHn
k (R

d) is the space of k-harmonic polynomials of degree n (i.e., the set of
homogeneous polynomial p on Rd of degree n such that ∆k p = 0) and Jn is the dimension ofHn

k (R
d).

Then by [6] (Proposition 3.15), for any n ∈ N, the family { f (a)
s,n }s∈N forms an orthonormal basis for

L2(R+, r2γ+d+a−3 dr), where

f (a)
s,n (r) =

(
21+λk,a,n Γ(s + 1)

aλk,a,n Γ(1 + s + λk,a,n)

)1/2

rnL(λk,a,n)
s

(
2
a

ra
)

e−
ra
a . (100)

Therefore by [6] (Corollary 3.17), the family {Φ(a)
s,n,j : s ∈ N, n ∈ N, j ∈ Jn} constitutes an

orthonormal basis for L2(Rd, µk,a), where

Φ(a)
s,n,j(x) = h(n)j

(
x
|x|

)
f (a)
s,n (|x|), x ∈ Rd. (101)

The (k, a)-generalized Fourier transform Fk,a is given for f ∈ L1(Rd, µk,a) by

Fk,a( f )(ξ) = ck,a

∫
Rd

f (x)Bk,a(x, ξ)dµk,a(x);

where

ck,a =

(∫
Rd

exp
(
−1

a
|x|a

)
ϑk,a dx

)−1
, (102)

and the kernel Bk,a is given in [6] (Inequality (5.9)), and satisfies for λ > 0, x, ξ ∈ Rd the following
properties (see [6], Theorem 5.9):

Bk,a(ξ, x) = Bk,a(x, ξ); Bk,a(0, x) = 1; Bk,a(λξ, x) = Bk,a(ξ, λx).

Moreover (see [24–27]), if one of the following assumptions holds:

(i) d = 1 and a > 0,
(ii) a ∈ {1, 2},
(iii) d ≥ 2, k ≡ 0 and a = 2

n , for some n ∈ N∗,

then Bk,a is uniformly bounded, that is,

|Bk,a(x, ξ)| ≤ C, ∀x, ξ ∈ Rd,

where C = C(d, k, a).

The transformation Fk,a is a unitary operator on L2(Rd, µk,a) and it is defined a by the a-deformed
Dunkl harmonic oscillator Lk,a = |x|a − |x|2−a∆k, where ∆k the Dunkl Laplacian (introduced in the
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previous example). Note also that (see [6], Theorem 5.1) the system
{

Φ(a)
s,n,j
}

is the eigensystem of Fk,a,
that is

Fk,a(Φ
(a)
s,n,j)(ξ) = e−iπ(s+n/a)Φ(a)

s,n,j(ξ). (103)

Moreover Fk,a is of finite order if and only if a ∈ Q, and if a = p
q ∈ Q, with p, q positive, then

(Fk,a)
2p = Id (see [6], Corollary 5.2), with F−1

k,a = F 2p−1
k,a . In addition, for any r ∈ N, the transformation

Fk, 2
2r+1

is a unitary operator of order four on L2(Rd, µk, 2
2r+1

)
, with (see [6], Corollary 3.2.2)

F−1
k, 2

2r+1
( f )(x) = Fk, 2

2r+1
( f )(−x), x ∈ Rd. (104)

The differential-difference operator Lk,a is an essentially self-adjoint operator on L2(Rd, µk,a) and
satisfies (see [6], Corollary 3.22):

1. There is no continuous spectrum of Lk,a,
2. The discrete spectrum of Lk,a is given by{

{2sa + 2n + 2γ + d + a− 2 : s, n ∈ N}, if d ≥ 2,

{2sa + 2γ + a± 1 : s ∈ N}, if d = 1.
(105)

Particularly Fk,a reduces to the Fourier transform on Rd if (k = 0, a = 2), the Fourier–Bessel transform
if (k = 0, a = 1) and the Dunkl transform if (k > 0, a = 2). Moreover the restriction of Fk,a to radial
functions is given by an a-deformed Fourier–Bessel transform (see [26])

In this case T = Fk,a, ` = γ + d+a
2 − 1, m = m̂ = 0, a2 = 2 and a1 = a − 2, ∆ = ∆k is the

Dunkl Lalpacian and L = Lk,a is the deformed Dunkl harmonic oscillator. The φj’s and the λj’s are
respectively given by (101) and (105).

Remark 4. Notice that the estimates (37), which is obtained either from the heat kernel for the operator Lk,a
or from disguised in spectral estimates of powers of the Laplacian. To my knowledge, the heat kernel for the
operator Lk,a is only known at present for some special cases like d = 1, a > 0 (where one can deform the known
one-dimensional Dunkl heat kernel with the parameter a), and d = 2, a ∈ {1, 2} (where the explicit formula
was obtained in [5]).
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