E symmetry MBPY

Article
An Note on Uncertainty Inequalities for Deformed
Harmonic Oscillators

Saifallah Ghobber 12

1 Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Hassa 31982,

Saudi Arabia; sghobber@kfu.edu.sa or saifallah.ghobber@math.cnrs.fr
LR11ES11 Analyse Mathématiques et Applications, Faculté des Sciences de Tunis,
Université de Tunis El Manar, Tunis 2092, Tunisia

check for
Received: 16 January 2019; Accepted: 4 March 2019; Published: 6 March 2019 updates

Abstract: The aim of this paper is to prove some uncertainty inequalities for a class of integral
operators associated to deformed harmonic oscillators.

Keywords: integral operators; Hermite expansions; Laguerre expansions; uncertainty principles;
Heisenberg inequality

MSC: 42A38; 42C20

1. Introduction

The present paper is a continuation of our previous papers [1-3] to prove some uncertainty
principles (UP) for a general class of integral operators, including the Fourier transform,
the Fourier-Bessel transform, the Dunkl transform [4], the generalized Fourier transform [5],
the deformed Fourier transform [6] and the Clifford transform. Other versions of UP for integral
operators have been proved in [7-9].

It is well-known that the uncertainty principles set restrictions on the time-frequency
(or space-time) concentration of a nonzero function. Different forms of the UP have been studied by
the mathematical community throughout the 20th century, and this is still a field of research today (see
e.g., the survey [10] and the book [11] for the most well known forms of UP). His first significant results
and outstanding issues go back to the works of Norbert Wiener, Andrei Kolmogorov, Mark Kerin and
Arne Beurling.

The term UP is associated with Werner Heisenberg’s 1927 statement [12]

A(x)A(p) =

NSt

’ )

which has become a fundamental element of quantum physics, where A(x) (respectively, A(p)) is
the standard deviation of position x (respectively, of momentum p) and 7 is the Planck constant.
The Heisenberg’s UP has a great importance in symmetry problems in physics, for example there is a
connection between the space-time UP and the conformal symmetry in string theory (see e.g., [13-16]).

In this paper, we will follow the notation in [1]. More precisely, let (2 and () be two convex cones
in RY (i.e., forall 6 > 0and x € (), we have éx € (2) with non-empty interior, and endowed with the
Borel measures y and 7i. For 1 < p < oo, we define the Lebesgue spaces L?(Q), ) and L?(Q), fi) in the
usual way.

We assume that the measure p (and ) is absolutely continuous with respect to the Lebesgue
measure dx, and has a polar decomposition of the form

du(rg) =1 drQ(g) de(?), ¢)
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where do is the Lebesgue measure on the unit sphere S~ of R? and Q € L!(S?"!, do) such that
Q # 0. Then the measure y is homogeneous of degree 2/, that is, for any f € C.(Q2), and 6 > 0,

x Y
L7 (5) dnx) = [ Fx) dux). ©
Let A be a second order differential operators defined initially on CZ°((2). Assume that A is:

1.  Self-adjoint

(Af,8), = (f,08),,  VfgeC(Q), @)
2. Positive
where (-, ), is inner product on L2(Q, p).

Let {K¢}zeq be the system of the eigenvectors of |x|"1A* and the corresponding eigenvalues are

{|Z|%2}zcq, thatis
[x|TAT K = —[Z|"2 K, (6)

where a1, ay are positive real numbers such that a; # 0 and the superscript in A* indicates the
relevant variable.
Next, assume that the kernel K : O x Q) — C, (x,§) — Kg(x) satisfies:

1. K is continuous,
KC is polynomially bounded:

Ke(x)| < exc(L+ )" (1+g))",  m, >0, @)

3. K is homogeneous:

ICg((Sx) = ngg(x), 6> 0. 8)

One can then define the integral operator 7 on the Schwartz space S(Q) by

~

T(HE) = (Ko, = [ F0R @ dn(x), ¢t ©
Assume that 7 can be extended to an unitary operator from L2(Q), #) onto L2(Q), i) with inverse

TUNE = [ fOK( @), xeq, (10)
and satisfies a Parseval-type equality,

where (-, ) is the inner product on L2(Q), 7).
For p > 0, we define the measures

dpp(x) = (14 [x|)Pdu(x) and djp(5) = (1 4[] di(S)- (12)

Then 7 extends into a continuous operator from LY(Q, im) to

Ca(Q) = {f continuous, s.t. ||f|l, 7 = zlelg (1{_(62”)"? < oo} . (13)
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We define @ accordingly for ji and assume that @ = a. Then we introduce the dilation operators
Ds, ﬁ& ,0>0:

D)= 5f (5),  Dof=5f(3). (14)

then by the homogeneity of the kernel, we have
TD; = ﬁ%T. (15)

Moreover, since the measures y, Ji are absolutely continuous with respect to the Lebesgue measure,
then the dilation operator D (respectively, D) is continuous from (0, 00) x L2(Q), 1) to L?(Q, up)
(respectively, from (0,00) x L?(Q), iy) to L2(Q), 7i,)).

As A is self-adjoint, then by Inequality (6) one has, for any f € C*(Q)):

T(x|"Af) (@) = (IxI"Af,Ke),
= {(f 1x"AKS), (16)
= —(f[8I"Ke), = — 121" T (£)(2).

We consider the nonnegative and self-adjoint extension of |x|"1A (still denoted by the same
symbol) defined by
(=|x|"a)f =T HEI=T(f)],  f€Dom(a), (17)

where Dom([x|"4) = {f € (), 1) : [T (f) € (0, 1)},
By (3), the measure of the ball B, = {x € () : |x| < r} of center 0 and radius r is majorized by the
power of the radius r i.e,,
u(B;) < cr?. (18)

Assume also that the semigroup {W;},., = {exp (t|x|"1A)},. , generated by |x|" A satisfies

_2
W, <ct m, (19)

||l~>oo
Let £ = |x|"2 — |x|" A be a deformed harmonic oscillator on C(Q)). Assume that there exists

an orthonormal basis {¢;};cy for L?(Q), ) consisting of eigenfunctions of £ that correspond to the

eigenvalues {)‘j}jeNd/ that is

Loj = Ajj.

We impose the assumption that we can arrange the set {A;} jend into an increasing sequence {Ax}ken
that satisfies

O<Ay=NAg< A1 <Ny <--- (20)
and
lim Ay = oo. (21)
k—r00

Therefore £ is symmetric and positive in L2(0), 1) and it has a natural self-adjoint extension (still
denoted by the same symbol) on L?(Q), u), that is,

Lf =Y Ml 9),9; (22)

jeNd
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on the domain Dom£ consisting of all functions L*(Q), 1) for which the defining series )~ [A;(f, ¢j>ﬂ 2
jeNd
converges in L?(Q), ). Moreover, the spectrum of £ is { A }ren and the spectral decomposition of £
can be written as -
L=Y AP, fecDomL, (23)
k=0

where the spectral projections are

Pf= Y. (fei)9 KkeN @)

{jENdZ)\j:Ak}

The structure of the present paper is as follows. In Section 2 we establish an optimal version of
the Heisenberg-type UP for the integral operator 7, as well as some other well-known uncertainty
inequalities. Section 3 is devoted to applying our results to some particular cases.

Notation

For x € R?, |x| = /(x,x) denotes its norm , where (.,.) is the Euclidean inner product, and
(e1,...,e4) will be the canonical basis of R?. We will write xs for the characteristic function of the
subset S C R?, and we write ¢, €y, Cs, €0, ¢(s,T) and CBs,r-- - for constants (which can change from
line to line) that depend on the parameters ¢, sand 3,7, .. ..

2. Heisenberg-Type Uncertainty Principles

2.1. Sharp Heisenberg-Type Uncertainty Inequality

In this subsection we will establish a sharp (optimal) version of Heisenberg-type UP for the
transformation 7. Other non optimal Heisenberg-type inequalities for integral operators can be found
in [1,2].

Theorem 1. For every function f € L?(Q, u),

2
0q > AO”fH%,y' (25)
M

11% £

e ksl

Equality in (25) holds if, and only if f(x) = c¢o(x), c € C.

Proof. If f € L?(Q), u) is a non vanishing function, with

|24 e # 7] <o
2p° 25 '
then from (17) and Parseval-type equality (11),
ﬂz 2
[l Tll,, = 4emTE, T,
= (T80, T(Na (26)

= (=[x"Af, f)e

Therefore

|7 7], , + [@F T, , = 28, P = (31787, £, = (250, @)

A
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As the operator L is self-adjoint and has only discrete spectra, then

2
> A 2. 28
o > Nollf1, 28)

[, + ler# 7o)

Moreover the equality holds in (28), if and only if f is an eigenfunction of the self-adjoint operator
|x|”2 — |x|1A corresponding to the eigenvalue Ag. Thus f is a scalar multiple of ¢p. [

By a dilation argument we deduce the following product form of the Heisenberg-type inequality (25).

Corollary 1. For every f € L?(Q, u),

% 7], [l # T, = S5, 29)

2,1

Equality holds in (29), if and only if, f(x) = c¢o(dx) for some ¢ € C and & > 0.

Proof. Since || D;f||2,, = || fll2,4, then by replacing f by D;f in (25), we obtain from (15) that

2
5% > Aol fI3, (30)

2,1

ap 2
X2 f o7
2,p

27|

Then (29) follows by minimizing the left hand side of (30) over > 0, with

min (0% ls %, + o7 |l T, ) =2 %], et T, e
Equality in (29) holds exactly if we have
2||ix %1, |l E TR, = AollFIB, (32)

thus by equality cases of (25), we deduce the desired result. [J

More generally, we can state the following improvement.

Corollary 2. Foreverys, B € [1,00), and every f € L*(Q, u),

ol Jer Tl = (32) usisi )

Proof. If f € L?(Q), u) is a non vanishing function with finite dispersions
[1x% 5], L |lePE T, <,
2,u 2,1

then
2/s 2/s'

Il 2 AL e = et Pl AP (34)

where s’ is the conjugate index of s. Therefore, by Holder’s inequality we obtain

a a !
112 £, < 1% £ L (35)

Thus, for all s > 1: )
a —(s— a
A8 > APl 2 £ (36)
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Similarly, we have for € [1, c0):

NP2 TN, > ITAILL el TS = 1A e % 715

Now, applying Heisenberg’s Inequality (29), we obtain the desired result. [

As the proof of the last corollary is based on Holder’s inequality, then it exclude the other cases
whens, B € (0,1).

2.2. General Form of Heisenberg-Type Uncertainty Inequality

In this subsection we will establish a general from of Heisenberg-type relation for any s, 8 > 0.
Such inequality can be deduced from [1] (Theorem C), which is obtained from either the local Faris-type
inequality [1] (Theorem A) or the Benedicks—Amrein—Berthier-type UP [1] (Theorem B). Our proof
here is inspired from related results on Lie groups of polynomial growth in [17], and the assumption
(19) plays a key role here.

Lemma 1. Let s < {. Then there is Cs > 0 such that, for any f € L*(Q, ),

< cst*%

[We f

a2
2 2, (37)

Proof. Put f, = fxp, and f" = f — f,. We have

_s%2 L)
17 < 7% it 2 1] @9
Now since W; is a semigroup of contractions, then
T r —s2 s%2
IWef e < Wf e < 722 |lIF2 A,
Moreover, as fr € Ll(Q, i), then by Cauchy-Schwartz’s inequality and (19) we obtain
Wikl < Wil folh,
2 1/2 ap ap
< el
- He 1—00 ¥ XBr 2,u = f 2,u
_L a a
< oot mplsF |x|572f o
M
Therefore
%2 -t 2
IWef Ll < IWefellgge + I Wef Tl < 7 <1+csr"t ) [lt21], (39)
1
Choosing r = ", we obtain
_s 2
IWiflay < (et i3 ], (40)

as expected. [

Now, let’s show our main result of this subsection.

Theorem 2. Let s, B € (0,00). Then there exists cgs ¢ such that for every f € L*(Q, ),

=% £15,, 116172 7(f)

57 > cosellfI5 7. (41)
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Proof. First assume thats < £ and B < 2. Then by Lemma 1,

1l

IN

”WffHZ,y + ”f_ Wl‘f||2,y
P f, ]| (1) () E (e
M

_ s
cslt 2

IN

=)

Now since, for any p > 0 and < 2, the function p — (1 —e™?)p~ 2 is bounded, then

B B
[ (1= e8) (tixa) =S (eixmay |, <t

B
(—lxa)2 £
M
Therefore by the Parseval equality and (17)

£l < st

a B
‘x|572fH2;4 i

cPETn,,

By minimizing the right hand side of (42) over f > 0, we obtain

s
an = pstllflloye

||x5% fH”ﬂ 112162 7 (f)

Now if B > 2, then for every B’ < 2, we have by Parseval equality (11)
1% 2 )
P 2T < 115, +]|1ePE T

Hz,ﬁ'

Replacing f by D;f in (44), we get, by (15),

i 2T, , < i, + P T

Minimizing the right hand side of (45) over t > 0, we obtain

/

ket T, < 525 (4- ) Il HCIﬂ?T(f)H:é

Together with (43) for f’ we obtain the result for § > 2.
Finally, and in same way, for s > ¢, we take s’ < ¢ and we obtain

$% H2 <8 i—l (1—s'/s)
|24, < =5 ||f||2

50

S
S

2,y'

2

X2 f

This allows to conclude again with (43). O
Remark 1. If we take s = f in Inequality (41), then we obtain

%% £l IEEF T 0 > sl £,

which implies
IR A5, + N1EEZ TN 5 > o1,

7 of 18

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)



Symmetry 2019, 11, 335 8 of 18

2.3. The e-Concentration Version of Heisenberg-Type Uncertainty Inequality

Let S € Qand £ C Q) be two subsets, such that 0 < p2,(S), fioii(E) < co. We define the time
and frequency limiting operators by

Esf=xsf,  Ef=T =T, fel2@p).
Then we recall the following well-known definition (see [18]).
Definition 1. Let 0 < e < 1and f € L2(Q, ). Then
1.  Wesay that f is e-concentrated on S if
Ixse fllz < ell fllz (50)

2. Wesay that f is e-bandlimited (or T (f) is e-concentrated) on X if

Ixze T (F)llzp < ellfllzp (51)

The subsets S and X are known as the essential supports of f and 7 (f), respectively, and this fact
is first introduced by Donoho-Stark in [18], replacing the exact supports by the essential supports.
If f is e1-concentrated on S and €>-bandlimited on X, we briefly write f is (g1, €2)-concentrated on
(S,%), and we denote by L?(e1,e5,S,X) the subspace of L?(Q), ) consisting of functions that are
(e1,€2)-concentrated on (S, ). In particular (see [1] (Inequality (3.4))), if f € L?(e1,€2,S,%), then

2
Han () iz (Z) > ¢ <1 - m) . (52)

Moreover from [1] (Theorem 2.1) we recall the following local UP.
Theorem 3. Let s > 0 and let . C ) be a subset such that 0 < Jiys(Z) < oo, Then

1. if0o<s<Z L there exists ¢ = c(s, T') such that for every f € L2(Q, u), |x=T (f )”2,1? is bounded by

San

C[?‘M(Z} N E i 2a(E) <1
[ ®)] " xR, iaa() > 1

(53)

2. If % <s< %(6 +m), then for any e > 0 there exists ¢ = c(s, T, €) such that for every f € L*>(Q, ),
X2 T (F)lly,z is bounded by

o mm e e m e
e fizn (x) | Hmez X2 £ll52 ifa(®) <1

RS e -
@] Il W E A A > L

(54)

3. Ifs> Z(m+1{), there exists c = c(s, T) such that for every f € L*(Q, ), | xsT (f)ll,, is bounded
by
e x
c[an (@) I, 12 £33, ipm =0

! (55)
c{ﬁzrﬁ } HfHLz (Qteny)’ otherwise.
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By (11), we have
VEELXQu),  If13, = ITAI3s = IxsT D5z + lxzT (A3 5 (56)
then, (51) is equivalent to
T3> A =fIB, or  IFeflop > V1= flap (57)

In same way, (50) is equivalent to

IEsfllzp = V1—2||f

Heisenberg’s inequality in Theorem 2 gives a lower bound of the product for the generalized time
and frequency dispersions for functions in L?(Q), 1), but we can not have a lower bound for each one

2,u- (58)

separately. The purpose of this section is to establish a Heisenberg-type inequality for functions in
L%(eq,€3,5,%), for which a lower bound is given for each of the time and frequency dispersions. This
gives more information than the lower bound of the product between them.

First by using Theorem 3, we will obtain a lower bound for the measure of the generalized time

dispersion || |x’5%2fH2,y'

Corollary 3. Let s > 0 and let ¥ C Q) be a subset such that 0 < fiys(£) < co. Then

1. IfOo<s< %, there exists ¢ = c(s, T), such that for any eo-bandlimited function f € L*(Q, ) on %,

2 £, > —

7
[ (£)] 2(E4m)

If15, ffa(Z) <1

(59)

2. (D) > 1

2

2 (1-€3)
|5 > = f
| 2, (2 (£)] 2

2. If i—f <s< % (£ + m), then for any € > O there exists ¢ = c(s, T, €) such that for any e,-bandlimited
function f € L2(Q, u) on L,

sa

s[% 5 178% 20—esap 2 R '
2 flly z e | — = IF15, fiem(E) <1;

(o (2)] /0

(60)

Sﬂz
s2 o112 1-8 H=esny
e e e

%,y’ IfﬁZnﬁ (Z) > 1

3. Ifs> % (m + €), there exists ¢ = c(s, T) such that for any ep-bandlimited function f € L>(Q, u) on %,

sa:

2
2 2 1-¢2 \ 2 .
% 13, 2 e (it ) 118, =0

(61)

2 2 1-€3 .
& f”z,y > (Cﬁ(m(ef)) — 1) ||f||%w otherwise,
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where in the last line, we have used the fact that

2
ey = [+ 0P dn()
22 (£, + |12 £113,.) -

IN

Owing to a symmetry between f and its integral transform, then by exchanging the roles of f and
T (f) in Theorem 3, we obtain:

Theorem 4. Let f > 0and let S C Q) be a subset such that 0 < pp,,(S) < oo. Then

1. If0< B < 2, there exists a positive constant ¢ = (B, T ) such that for all f € L2(Q, ), x5Sl 15
bounded by

2 (S)] N ET ) g F2m(S) <1
& )
()] T NEFET ) iFp2n(S) > 1,

2. If g 2 <p< (6 + ), then for any € > O there exists a positive constant ¢ = c(B, T, €) such that for
allf € L2(Q, ;4) HXSJ(”Z,V is bounded by

(62)

2

4mmmrmw>nﬂw WW“TfW7 ;i pan(S) < 1;

1€ (63)
cran®) A NP ETONE S ) >

3. IfB> (m + 0), there exists a positive constant ¢ = c(B, T) such that for all f € L2(Q, u), 1x5f1l2,
is bounded by

1
clien()] 1710, P E T IE2, =,

elpants)]

Consequently, and in the same way by using (58), we obtain the following result giving a lower

(64)

N—

HT HLZ oy oy )/ otherwise.

bound for the measure of the generalized frequency dispersion |||& |l3 ? T 2

Corollary 4. Let B > 0and let S C Q) be a subset such that 0 < pip,,(S) < co. Then

1. If0<§B < £, there exists a positive constant ¢ = (B, T), such that for any e;-concentrated function
fe LZ(Q,],t) onS,

I T3, = ——L—m;wﬂbw if pom(S) < 1;
[H2m(S)] 2(t+m)

(65)
c(1—€3)

P27 =~ 1B Frean(S) > 1

[#am (S)] 2
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2. If g 2 <p< (E + ), then for any € > O there exists a positive constant ¢ = c(p, T, €) such that for
any 81 concentmted function f € L2(Q, u) on S,

2
ay 2 1 g2 20—ePay .
EPET (Al > € ([(Sll_z> IF13, i Hom(S) <1;
Hom

)] T 70)
(66)

a _e2 20—¢Bay S/Su )
IFE TR 2 ¢ (s ) 1B iFmanlS) 21

3. IfB> (m + (), there exists a positive constant ¢ = c(B, T") such that for any e1-concentrated function
fe Lz(Q u)onS,

pap

2 2 1-¢2 | 2 PPN
1EPE T ()3 = e (m(%) I£15,, ifm=0;

(67)

2 2 c(1—¢2 .
H|’§|/5 3 T(f)||2,ﬁ > (I/EZm(Sl)) — 1) ||f||%y, otherwise.

Now it is enough to take the product of the inequalities in Corollary 3 and Corollary 4 to obtain
the analogue of Inequality (41) for functions in Lz(sl, €2,5,%). In particular, we state the following
special case (the same holds for the other cases).

a a a

with 1 < Uy (S), Hpis (L) < co. Then for any € > 0 there exists C = c¢(s,B, T, ¢€), such that for every
fel?(e1,€,8,%),

Corollary 5. Let Zf <s < 2(L+m), 2—5 < B < %(€+ﬁ1) and let S ¢ Q, & C Q be two subsets

spap

s £||B B2 s 1—¢2 2(20—epar)
IR A2, 1P 2T, 2 C(W)
spay
1—¢2 M)
X <M)€ﬁ-zs> 12,0 (68)

Remark 2. In particular, if s = B in (68), then for any e > 0 there exists C = c(s, T, €) such that for every
f S L2(€1,82, S,Z),

S{lz

a a 1_¢2 2 22l—esay)
H|x|57f||2,y|||€|57T<f)||2,ﬁ =C ([Vim( ;’ll/l),(@( )?%)%) Hf”%,;ﬂ (69)
which implies that
9 s2 1-e2)(1-¢5 )
It % 713, + lier T, > € ([ygm(s;;g;@;zg) 1B 00

On the other hand, if f € L*(e1,€2,S, L), then we obtain the following new variation (see also [2]) of
Donoho-Stark type uncertainty inequality (52), with constant that depends on f,

Han(S)fa (E) = Crls, Toe) (1)1 -3)) 7, 71)
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where
40—2¢sap

C 2 sap (1—2¢)
ot ( __ai, ) | 7
%1% £l 122 Tz

2.4. Shapiro-Type Uncertainty Principles

In [3] (Section 5.2) we have proved some Shapiro-type uncertainty principles for a family of
integral transforms with bounded kernel, which is the case here when m = 1z = 0. The transforms
under consideration in this paper are integral operators with polynomially bounded kernels (as in
the article [1]). In this subsection, we will establish these uncertainty inequalities without any proof,
which can be given in the same way with minor modifications.

First notice that a straightforward computation shows EgFs is an integral transform with kernel
(see [1], Lemma 3.2)

N(x,8) = xs(€) T (xz Ke)) ().
Then EgFy is a Hilbert-Schmidt operator, such that

IEsFs|fs < ckpam(S)fiam(Z). (73)

Adapting the proofs of [3] (Section 5.2), which are inspired from related results in [19], we obtain
the following Shapiro-type UP.

Theorem 5. Lets > 0.

1. If{@n}o, is an orthonormal system in L?(Q, u), then for every N > 1,
y ng2 2 sﬂl 2 l+i
> (IIxFZ @ally, + 11EF 2 T(@n)l35) = eoe N2, (74)
n=1
2. If{@n}5_, is an orthonormal basis for L2(Q), ), then
2 2
sup (|[1+% gull, 163 T (g ) = . @

Remark 3.

1. The dispersion inequality (74) implies that there is no infinite system { @, }5_; in L?(Q, u) for which
b { e on
20 ) =1

if {@n o, is an orthonormal sequence in L2(Q), u), then for every N > 1,

the two sequences {H |x|s£72 @n ) A} are bounded. More precisely,
M) n=1

sup {[[x% gul3,, 1 FT(pu)l3} > s N7, @
1<n<N

and particularly

Saf2 2 52 2
sup (|12 gul3, + 11612 T(pn)[3,7) = . 77)

2. Relation (75) is not true for any orthonormal sequence in L2(Q, u). Indeed we can find an infinite

20 NS 2 T (@n) I is finite.

3. It is clear that Shapiro-type uncertainty principles (75) and (77) refine respectively Inequalities (48)
and (49) for orthonormal bases and sequences.

orthonormal sequence { @y}, in L?(Q), u), such that the product || |x|sa72 @n
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3. Examples

3.1. The Harmonic Oscillator

Let O = O = R? and let 4 = ji be the normalized Lebesgue measure given by du(x) =
(271)=%/2 dx. For f € L'(R?) N L2(R¥), the Fourier transform is defined by

F(R)@) = @m0 [ fxe ™ dr, ¢ er

and is then extended to an isomorphism on L?(R¢) in the usual way. In this example A = Y4, % is
the usual Laplacian operator, 7 = F,{ =d/2,ay = m = M = 0 and a; = 2. The (pj’s are the Herrrlﬁte
functions and A; = 2|j| +d, such that j = (ji,..., ja) € N? and [j| = ji + - +ja

Notice that, here £ = (—A + |x|?) is the harmonic oscillator (or the Hermite operator) on R? and

for each x = (x1,...,x4) € R? and each multi-index j = (ji, ..., j;) € N,

d

¢j(x) =T Thj(xi)

i=1

be the normalized Hermite function on R?, where foralli = 1,...d, hji (x;) is the one-dimensional
Hermite function defined by

N2 o
By (i) = (27125) e 2 H (), (78)
and H;, are the Hermite polynomials of degree j; defined by the Rodriguez formula

.2 d]l 2
Hy (x) = (~1)ie? (o), 79)
dx;

It is well-known that the sequence of Hermite functions ¢; form an orthonormal basis for the
Hilbert space L?(IR%), and they are eigenfunctions of F and of the harmonic oscillator, that is,

(= +x)py = @l +d)¢;  and  F(g;) = (=)/g; (80)
3.2. The Bessel Oscillator
If f(x) = fo(|x|) is radial, then its Fourier transform satisfies
pa—1

FE)@) = [ folb)iara (2 qa7z 17 & = Faraa ()21,

where F;/,_1 is the Fourier-Bessel (or Hankel) transform of index % —1,and for any « > —1/2, j, is
the Bessel function:

. © (1) xy
Jux) = r(“+1)1§)nlf(n+zx+1) (E) ’

y2a+1

= m dx, then for

where I' is the gamma function. We have [j,| < 1 and if we denote dpu,(x)
f € LY(Ry, uy) N L2(R4, g ), the Fourier-Bessel transform is defined by

FolN@ = [ @D din(x),  EeRy,

and extends to an unitary operator to all L2(R, p,) with 7, 1 = F,.
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Let L}, be the Laguerre polynomials, which can be defined by the Rodriguez formula (see [20],
(4.17.1), p. 76)

o
La(x) = x"

They are solutions of the following second order linear differential equation (see [20], (4.18.8),

e x"tY), neN, x>0. (81)

xu + (o +1—x)u' +nu=0, (82)
and then they satisfy the following recurrence formula (see [20], (4.18.4), p. 76)
xLA N (x) = —(n + 1)LE, 4 (x) + (@ +n + 1)LE(x), n € N. (83)

Therefore if we define ¢, by

210 (a+ Dl

x2/27a (.2
—F(n+ac+1) L% (x%), neN, x>0, (84)

Pn(x) =
then the sequence {¢%}, .\ forms an orthonormal basis for L?>(R, i) (see [20], p. 84), such that

Fulpn) = (=1)"¢y,  neN (85)

+ 2’”1 ~ the differential Bessel operator, then by (82) the

X

Now if we denote by ¢, =
%’s satisfy

dx2

Loy = (4n + 20 +2) ¢y, neN. (86)
InthiscaseQ:ﬁ:R+,y =pl=po, T =Fu, A=ty l=a+1,a0=m=m=0and ay =2.
The ¢;’s are the Laguerre functions, £ = L, and forall j € N, A; = 4j + 2a + 2.
3.3. The Dunkl Harmonic Oscillator

Let us present some necessary material on the Dunkl’” theory. Let G be a finite reflection group
on RY, associated with a root system R and let R the positive subsystem of R (see [4,21]). If k is a
nonnegative multiplicity function defined on R, and G-invariant, then we define the index

vi=ak) = ) kE) =0 (87)
CERy
and the weight function
we(x) = TT g %)@, (88)
GeRy

Further we introduce the Mehta-type constant c; by

= e 5 gl (89)

where dj(x) = wy(x) dx.
The Dunkl operators T;, 1 < j < d associated with G and k are given by (see [22])

Tf(x) = g{ i k(g)@'@W' X € RY; ©00)

where f € C®(RY), and 0z denotes the reflection with respect to the hyperplane orthogonal to ¢.
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C.F. Dunkl in [4] introduced the Dunkl kernel K; : R? x R? — C, where for all y € R4,
the function /Ci (-, y) is the solution of the initial problem

Tu(x,y) =yju(xy);, 1<j<d, u(0y)=1 (1)

This kernel has a unique holomorphic extension to C? x C4, and satisfies forall A € C, z, z/ € C
and x, y € R%:
Ki(z,2') = Ki(2,2), Ki(Az,Z') = Kr(z,AZ),

Ki(—iy, x) = K (iy, x), |Ki(—iy,x)| < 1.

The Dunkl transform F of a function f € LY(RY, uy) N L2(RY, ;) (see e.g., [21]), is given by
FP© = [ Kul=ig0f () dielx), ¢ R

and extends uniquely to an isometric isomorphism on L2(R¢, y1;.) with

FHE) = Fi(F)(=2). (92)

If k = 0, the the Dunkl transform reduces to the Fourier transform, and if f(x) = f(|x|) is radial,
then its Dunkl transform is given through the Fourier-Bessel transform, as follows:

Fe(NE) = Fygarz—1(F)(ED)- (93)

Rosler in [23] has introduced the Dunkl Hermite functions {h’fl} N associated with G and k,
ne

HE(x) = /2= Inl e=Ix1* HE (%), x € RY, (94)

where HE is the Dunkl Hermite polynomials of degree ||.

which are defined by

The sequence {h’,‘l} N forms an orthonormal basis for L2(R?, y;) and each h¥ satisfies
ne

Fe(hE) = (=DI"pE, e N (95)

Now if we denote by Ay = 2?21 T].2 the Dunkl Laplacian and £ = |x|> — Ag the Dunkl harmonic
oscillator, then we have

Fie (Bkf) (€) = —[EPF(f) (@),  EeRY, (96)

and
LihE = 2n| +2y +d)nk,  ne N (97)

In this case Q = Q = RY, u = i = uy, T = Fi, A = A is the Dunkl Lalpacian, £ = ¢ +d/2,
ap = m = i = 0 and ay = 2. The ¢;’s are the Dunkl Hermite functions, A; = (2[j| +2v +d) and
L = L} is Dunkl harmonic oscillator.

3.4. The Deformed Dun Harmonic Osklcillator

Let O = O = RY, and let G and k as defined as in the last example. Let @ > 0 be a deformation
parameter and define the weight measure dyy, = dy = dji = 9, dx, as follows

Oa(x) = [x|" 2 TT 1 ) MO = [x[* 2wy (x). (98)
¢eR
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The weight function 8 , is homogeneous of degree a — 2 + 27, where 7 := % Yeer k(G) is the
index of k. In the following we will assume that

2y+d+a—2>0. (99)

%

For a real number A > —1, we write L;"’, s € N, for the Laguerre polynomial defined by

i 1)T(A+s+j) ¢
= (s — ) )H—]—I—l)]'

Set Ay, = (d+2v+2n—2)/a,and foreach n € N, let {h](") }jeJ, be an orthonormal basis of the space
HI(RY) s¢-1, where where H}! (R?) is the space of k-harmonic polynomials of degree 7 (i.e., the set of
homogeneous polynomial p on R of degree n such that Ayp = 0) and J, is the dimension of H} (R%).

Then by [6] (Proposition 3.15), for any n € N, the family { fs(,{::) }sen forms an orthonormal basis for
L*(R,r?7+4+3-3 dr), where

1/2
1+ an
fs(,i)(r)—( 2T+ 1) ) e (20 e

aMenT (1454 Aon) !

s|%

(100)

Therefore by [6] (Corollary 3.17), the family {q;iu;q) RS N,n € N,j € J,} constitutes an
orthonormal basis for L2(R?, iy ,), where

@0, = (5) A, e (1o1)

The (k, a)-generalized Fourier transform F , is given for f € L'(R%, i ,) by

Fual @) = cun [, F(3)Bial(,2) ()

1 -1
Cko = (/Rd exp (—a|x|”> B dx) , (102)

and the kernel By, is given in [6] (Inequality (5.9)), and satisfies for A > 0, x,{ € RY the following
properties (see [6], Theorem 5.9):

where

Bya(8, %) = Bia(x,8); Bra(0,%) =1; Bia(AZ, x) = Bya(g, Ax).
Moreover (see [24-27]), if one of the following assumptions holds:

(i) d=1landa >0,
(i) a€{1,2},
(iii) d >2,k=0anda = %, for some n € N*,

then By , is uniformly bounded, that is,
Bia(x,8)| <C,  Vx,&eRY,

where C = C(d, k,a).

The transformation Fy , is a unitary operator on L2(RY, Mk o) and it is defined a by the a-deformed
Dunkl harmonic oscillator £y, = |x|* — |x|27?A;, where A the Dunkl Laplacian (introduced in the



Symmetry 2019, 11, 335 17 of 18

()

s,n,j

previous example). Note also that (see [6], Theorem 5.1) the system {®
that is

} is the eigensystem of Fy ,,

Fia(@L) )(8) = e /00" (7). (103)

Moreover Fy , is of finite order if and only if 2 € Q, and if a = g € Q, with p,q positive, then

(Fi k,a)zp = Id (see [6], Corollary 5.2), with F,_ ul = ]—',f ’;71. In addition, for any r € N, the transformation

Fy 2 is a unitary operator of order four on L? (Rd, 2 ), with (see [6], Corollary 3.2.2)
12+ 72+

FoLh () =F 2 (-x), xeR. (104)

k, 21 72r+1

The differential-difference operator Ly, is an essentially self-adjoint operator on L?(R¢, iy ;) and
satisfies (see [6], Corollary 3.22):

1. There is no continuous spectrum of Ly ,,

2. The discrete spectrum of Ly , is given by
{2sa+2n+2y+d+a—-2:s,neN}, if d>2, (105)
{2sa+2y+a+1:seN}, if d=1

Particularly F , reduces to the Fourier transform on RY if (k = 0, a = 2), the Fourier-Bessel transform
if (k = 0, a = 1) and the Dunkl transform if (k > 0, a = 2). Moreover the restriction of F , to radial
functions is given by an a-deformed Fourier-Bessel transform (see [26])

In this case 7 = Fy,, £ = ’y—i—dzﬂ—l,m =im=0a =2anda; = a—2, A = A is the
Dunkl Lalpacian and £ = Ly, is the deformed Dunkl harmonic oscillator. The ¢;’s and the A;’s are
respectively given by (101) and (105).

Remark 4. Notice that the estimates (37), which is obtained either from the heat kernel for the operator Ly ,
or from disguised in spectral estimates of powers of the Laplacian. To my knowledge, the heat kernel for the
operator Ly , is only known at present for some special cases like d = 1, a > 0 (where one can deform the known
one-dimensional Dunkl heat kernel with the parameter a), and d = 2, a € {1,2} (where the explicit formula
was obtained in [5]).
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