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Abstract: This paper deals with the existence of positively solution and its asymptotic behavior
for parabolic system of (p(x), q(x))-Laplacian system of partial differential equations using a sub
and super solution according to some given boundary conditions, Our result is an extension of
Boulaaras’s works which studied the stationary case, this idea is new for evolutionary case of this
kind of problem.
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1. Introduction

In this paper, we consider the following evolutionary problem: find u ∈ L2(0, T, H1
0(Ω))

solution of 

∂u
∂t
− ∆p(x)u = λp(x) [λ1a(x) f (v) + µ1c(x)h(u)] in QT = (0, T)×Ω,

∂v
∂t
− ∆q(x)v = λq(x) [λ2b(x)g(u) + µ2d(x)τ(v)] in QT = (0, T)×Ω,

u = v = 0 on ∂QT = (0, T)× ∂Ω,

u(x, 0) = κ1(x), u(x, 0) = κ2(x),

(1)

where Ω ⊂ RN is a bounded domain and the functions p(x), q(x) belong to C1(Ω) and satisfying the
following conditions:

1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
Ω

p(x) < ∞, 1 < q− := inf
x∈Ω

q(x) ≤ q+ := sup
x∈Ω

q(x) < ∞ (2)

and satisfy some natural growth condition at u = ∞.
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∆p(x) is given by ∆p(x)u = div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, the parameters
λ, λ1, λ2, µ1 and µ2 are positive with a, b, c, d are regular functions. In addition we did not consider any
sign condition on f (0) , g (0) , h (0) , τ (0) .

The linear and nonlinear stationary equations with operators of quasilinear homogeneous type
as p-Laplace operator can be carried out according to the standard Sobolev spaces theory of Wm,p,
and thus we can find the weak solutions. The last spaces consist of functions having weak derivatives
which verify some conditions of integrability. Thus, we can have the nonhomogeneous case of
p(.)-Laplace operators in this last condition. We will use Sobolev spaces of the exponential variable in
our standard framework, so that Lp(.) (Ω) will be used instead of Lebesgue spaces Lp (Ω) .

We denote new Sobolev space by Wm,p (Ω), if we replace Lp (Ω) by Lp(.) (Ω), the Sobolev spaces
becomes Wm,p(.) (Ω). Several Sobolev spaces properties have been extended to spaces of Orlicz-Sobolev,
particularly by O’Neill in the reference ([1]). The spaces Wm,p(.) (Ω) and Lp(.) (Ω) have been carefully
studied by many researchers team (see the references ([2] and [3–5]).

Here, in our study we consider the boundedness condition in domain Ω, because many results
under p-Laplacian theory are not usually verified for the p(x)-Laplacian theory; for that in ([6])
the quotient

λp(x) = inf
u∈W1,p(x)

0 (Ω)�{0}

∫
Ω

1
p(x) |∇u|p(x) dx∫

Ω
1

p(x) |u|
p(x) dx

(3)

becomes 0 generally. Then λp(x) can be positive only for some given conditions. In fact, the first
eigenvalue of p(x)-Laplacian and its associated eigenfunction cannot exist, the existence of the positive
first eigenvalue λp and getting its eigenfunction are very important in the p-Laplacian problem study.
Therefore, the study of existence of solutions of our problems have more meaning. Many studies of the
experimental side have been studied on various materials that rely on this advanced theory, as they are
important in electrical fluids, which states that viscosity relates to the electric field in a certain liquid.

Recently, in ([2,6–8]), we have proved the existence of positive solutions of many classes of
(p(x), q(x))-Laplacian stationary problems by using the sub -super solution concept. The current
results are an extension of our previous stationary study to the parabolic case, where we follow-up the
same procedures mathematical proofs similar to that in ([2,7]) by using difference time scheme taking
into consideration the stability analysis of the used scheme and the same conditions which have given
in references mentioned earlier. Our result is an extension for our previous study in ( [2,7,9]) which
studied the stationary case, this idea is new for evolutionary case of this kind of problem.

The outline of paper consists as follow: In first section we give some definitions, basic theorems
and necessarily propositions in the functional analysis which will be used in our study. Then in
Section 3, we prove our main result.

2. Preliminaries Results and Assumptions

In order to discuss problem (1), we need some theories on W1,p(x)
0 (Ω) which we call variable

exponent Sobolev space. Firstly we state some basic properties of spaces W1,p(x)
0 (Ω) which will be

used later (for details, see [10]).
Let us define

Lp(x) (Ω) =

u : u is a measurable real-valued function such that
∫
Ω

|u (x)|p(x) dx < ∞

 .

We introduce the norm on Lp(x) (Ω) by

|u (x)|p(x) = inf

λ > 0 :
∫
Ω

∣∣∣∣u (x)
λ

∣∣∣∣p(x)
dx ≤ 1
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and
W1,p(x) (Ω) =

{
u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)

}
,

with the norm
‖u‖ = |u|p(x) + |∇u|p(x) , ∀u ∈W1,p(x) (Ω) .

We denote by W1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W1,p(x) (Ω) .
We introduce in this applying for problem (2), we will assume that:
(H1) p, q ∈ C1(Ω) and 1 < p− < p+, 1 < q− < q+;
(H2) f , g, hand τ : [0,+∞[→ R are C1,monotone functions, such that

lim
u→+∞

f (uk) = +∞ lim
u→+∞

g(uk) = +∞, lim
u→+∞

h(uk) = +∞, lim
u→+∞

τ(uk) = +∞,

(H3) lim
u→+∞

f (M(g(uk))
1

q−−1 )

up−−1
k

= 0, for all M > 0;

(H4) lim
u→+∞

h(uk)

up−−1
k

= 0, and lim
u→+∞

τ(uk)

up−−1
k

= 0;

(H5) a, b, c, d : Ω→ (0,+∞) are contionous functions, such that

a1 = min
x∈Ω

a(x), b1 = min
x∈Ω

b(x), c1 = min
x∈Ω

c(x), d1 = min
x∈Ω

d(x),

a2 = max
x∈Ω

a(x), b2 = max
x∈Ω

b(x), c2 = max
x∈Ω

c(x), d2 = max
x∈Ω

d(x).

The Semi-Discrete Problem

We discrete the problem (1) by difference time scheme, we obtain the following problems

uk − τ′∆p(x)uk = τ′λp(x) [λ1a(x) f (v) + µ1c(x)h(uk)] + uk−1 in Ω,

vk − τ′∆q(x)v = τ′λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)] + vk−1 in Ω,

uk = v = 0 on ∂Ω,

u0 = ϕ0,

(4)

where Nτ′ = T, 0 < τ′ < 1, and for 1 ≤ k ≤ N.
We define

〈L(uk), v〉 =
∫
Ω

|∇uk|p(x)−2∇uk∇vdx, ∀uk, v ∈W1,p(x)
0 (Ω).

According to ([11] in Theorem 3.1), the bounded operator L : W1,p(x)
0 (Ω) →

(
W1,p(x)

0 (Ω)
)∗

is
a continuous and strictly monotone, and it is a homeomorphism.

We considere mapping A : W1,p(x)
0 (Ω)→

(
W1,p(x)

0 (Ω)
)∗

as

〈A(uk), ϕ〉 =
∫
Ω

(
|∇uk|p(x)−2∇uk∇ϕ + h(x, uk)ϕ

)
dx, for all uk, v ∈W1,p(x)

0 (Ω),

where h(x, uk) is continuous on Ω×R, and h(x, .) is increasing function.It is easy to verify that A is
a continuous bounded mapping. By the proof ([12]).
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Definition 1. An weak solution to discretized problems (Pk) is a sequence (uk, v)0≤k≤N such that u0 = ϕ0

and (uk, v) is defined by

uk − τ′∆p(x)uk = τ′λp(x) [λ1a(x) f (v) + µ1c(x)h(uk)] + uk−1 in Ω,

vk − τ′∆q(x)v = τ′λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)] + vk−1 in Ω,

uk = v = 0 on ∂Ω,

such that 

−∆p(x)uk = λp(x) [λ1a(x) f (v) + µ1c(x)h(uk)]−
uk−uk−1

τ′ in Ω,

−∆q(x)v = λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)]− vk−vk−1
τ′ in Ω,

uk = v = 0 on ∂Ω.

(5)

We have the following:
(1) If (uk, v) ∈

(
W1.p(x)

0 (Ω)×W1.q(x)
0 (Ω)

)
, (uk, v) is called a weak solution of (5) if it satisfies

∫
Ω

|∇uk|p(x)−2∇uk.∇ϕdx =
∫
Ω

[
λp(x) [λ1a(x) f (v) + µ1c(x)h(uk)]−

uk − uk−1
τ′

]
ϕdx,

∫
Ω

|∇v|q(x)−2∇v.∇ψdx =
∫
Ω

[
λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)]− vk − vk−1

τ′

]
ψdx. (6)

for all
(ϕ, ψ) ∈

(
W1.p(.)

0 (Ω)×W1.q(.)
0 (Ω)

)
with (ϕ, ψ) > 0.

(2) We say called a sub solution (respectively a super solution) of (1) if

∫
Ω

|∇uk|p(x)−2∇uk.∇ϕdx ≤ (respectively >)
∫
Ω

[
λp(x) [λ1a(x) f (v) + µ1c(x)h(uk)]−

uk − uk−1
τ′

]
ϕdx,

∫
Ω

|∇v|q(x)−2∇v.∇ψdx ≤ (respectively >)
∫
Ω

[
λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)]− vk − vk−1

τ′

]
ψdx.

Lemma 1. (Comparison principle) Let uk, v ∈ W1,p(x)
0 (Ω) verify Auk − Av > 0 in(

W1,p(x)
0 (Ω)

)∗
, ϕ(x) = min {uk(x)− v(x), 0} .If ϕ(x) ∈ W1,p(x)

0 (Ω) (i.e., uk > v on ∂Ω),
then uk > v a.e in Ω.

Here, we will use the notation d(x, ∂Ω) to denote the distance of x ∈ Ω to denote the distance
of Ω.

Denote d(x) = d(x, ∂Ω) and ∂Ωε = {x ∈ Ω : d(x, ∂Ω) < ε} .
Since ∂Ω is C2 regularly, there exists a constant δ ∈ (0, 1) such that d(x) ∈ C2(∂Ω3δ) and

|∇d(x)| = 1.
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Denote also

v1(x) =



γd(x), d(x) < δ,

γδ +
∫ d(x)

δ γ( 2δ−t
δ )

2
p−−1 (λ1a1 + µ1c1)

2
p−−1 dt, δ ≤ d(x) ≤ 2δ,

γδ +
∫ 2δ

δ γ( 2δ−t
δ )

2
p−−1 (λ1b1 + µ1d1)

2
p−−1 dt, 2δ ≤ d(x)

and

v2(x) =



γd(x), d(x) < δ,

γδ +
∫ d(x)

δ γ( 2δ−t
δ )

2
p−−1 (λ2a2 + µ2c2)

2
q−−1 dt, δ ≤ d(x) ≤ 2δ,

γδ +
∫ 2δ

δ γ( 2δ−t
δ )

2
p−−1 (λ2b2 + µ2d2)

2
q−−1 dt, 2δ ≤ d(x).

Obviously,
0 ≤ v1(x), v2(x) ∈ C1(Ω).

Considering 
−∆p(x)w(x) = η in Ω

w = 0 on ∂Ω.
(7)

Lemma 2. ([13]), If positive parameter η is large enough and w is the unique solution of (7), then we have

(i) For any θ ∈ (0, 1) there exists a positive constant C1, such that

C1η
1

p+−1+θ ≤ max
x∈Ω

w(x).

(ii) There exists a positive constant C2, such that

max
x∈Ω

w(x) ≤ C2η
1

p−−1

3. Main Result

In the following, once we have no misunderstanding, we always use Ci to denote the
positive constants.

Theorem 1. Assume that the conditions (H1)–(H5) are statisfied.Then, problem (1) has a positive solution
when λ is large enough.

Proof. We establish Theorem 1 by constructing a positive subsolution (φk1 , φk2) and supersolution
(zk1 , zk2) of (1) such that φk1 ≤ zk1 and φk2 ≤ zk2 , that is (φk1 , φk2) and (zk1 , zk2) satisfies

∫
Ω

∣∣∇φk1

∣∣p(x)−2∇φk1 .∇ϕdx ≤
∫
Ω

[
λp(x) [λ1a(x) f (φk2) + µ1c(x)h(φk1)

]
−

φk1 − φk1−1

τ′

]
ϕdx,

∫
Ω

∣∣∇φk2

∣∣q(x)−2∇φk2 .∇ψdx ≤
∫
Ω

[
λq(x) [λ2b(x)g(φk1) + µ2d(x)τ(φk2)

]
−

φk1 − φk1−1

τ′

]
ψdx,
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and∫
Ω

∣∣∇zk1

∣∣p(x)−2∇zk1 .∇ϕdx ≥
∫
Ω

[
λp(x) [λ1a(x) f (zk2) + µ1c(x)h(zk1)

]
−

zk1 − zk1−1

τ′

]
ϕdx,

∫
Ω

∣∣∇zk2

∣∣q(x)−2∇zk2 .∇ψdx ≥
∫
Ω

[
λq(x) [λ2b(x)g(zk1) + µ2d(x)τ(zk2)

]
−

zk1 − zk1−1

τ′

]
ψdx,

for all (ϕ, ψ) ∈
(

W1.p(x)
0 (Ω)×W1.q(x)

0 (Ω)
)

with (ϕ, ψ) > 0. According to the sub-super solution
method for ((p(x), q(x)))−Laplacian systems see ([9,13]), the problem (1) has a positive solution.

Step 1. We will construct a subsolution of (1). Let σ ∈ (0, δ) is small enough. Denote

φk1(x) =



ekd(x) − 1, d(x) < σ,

ekd(x) − 1 +
∫ d(x)

δ kekσ( 2δ−t
2δ−σ )

2
p−−1 dt, σ ≤ d(x) < 2δ,

ekd(x) − 1 +
∫ 2δ

σ kekσ( 2δ−t
2δ−σ )

2
p−−1 dt, 2δ ≤ d(x)

and

φk2(x) =



ekd(x) − 1, d(x) < σ,

ekd(x) − 1 +
∫ d(x)

δ kekσ( 2δ−t
2δ−σ )

2
q−−1 dt, σ ≤ d(x) < 2δ,

ekd(x) − 1 +
∫ 2δ

σ kekσ( 2δ−t
2δ−σ )

2
q−−1 dt, 2δ ≤ d(x).

It easy to see that φk1 , φk2 ∈ C1(Ω).

Denote

α = min
{

inf p(x)− 1
4(sup |∇p(x) + 1|) ,

inf q(x)− 1
4(sup |∇q(x) + 1|) , 1

}
and

ξ = min {λ1a1 f (0) + µ1c1h(0), λ2b1g(0) + µ2d1σ(0),−1} .

By some simple computations we obtain

−∆p(x)φk1 =



−k(ekd(x))p(x)−1
[
(p(x)− 1) + (d(x) + ln k

k )∇p∇d + ∆d
k

]
, d(x) < σ

{
1

2δ−σ
2(p(x)−1)

p−−1 −
(

2δ−d
2δ−σ

) [(
ln kekσ

) (
2δ−d
2δ−σ

) 2
p−−1 ∇p∇d + ∆d

]}
×
(

Kekσ
)p(x)−1 ( 2δ−d

2δ−σ

) 2(p(x)−1)
p−−1

−1
, σ ≤ d(x) < 2δ,

0, 2δ ≤ d(x)
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and

−∆p(x)φk2 =



−k(ekd(x))q(x)−1
[
(q(x)− 1) + (d(x) + ln k

k )∇q∇d + ∆d
k

]
, d(x) < σ,

{
1

2δ−σ
2(q(x)−1)

q−−1 −
(

2δ−d
2δ−σ

) [(
ln kekσ

) (
2δ−d
2δ−σ

) 2
q−−1 ∇q∇d + ∆d

]}

×
(

Kekσ
)q(x)−1 ( 2δ−d

2δ−σ

)2(q(x)− 1)
q− − 1

−1
, σ ≤ d(x) < 2δ,

0, 2δ ≤ d(x).

From (H3) there exists a positive constant M > 1 such that

f (M− 1) > 1, g(M− 1) > 1,

h(M− 1) > 1, σ(M− 1) > 1.

Let σ = 1
k ln M, then

σk = ln M. (8)

If k is sufficiently large, from (8), we have

− ∆p(x)φk1 ≤ −kp(x)α, d(x) < σ. (9)

Let λξ = kα, then
kp(x)α > −λp(x)ξ.

From (9), we have
−∆p(x)φk1 ≤ λp(x)ξ ≤ λp(x)(λ1a1 f (0) + µ1c1h(0))

≤ λp(x)(λ1a(x) f (φk2) + µ1c(x)h(φk1)), d(x) < σ.
(10)

Since d(x) ∈ C2(∂Ω3δ), there exists a positive constant C3, such that

−∆p(x)φk1 ≤
(

Kekσ
)p(x)−1

(
2δ− d
2δ− σ

)2(p(x)− 1)
p− − 1

−1
(λ1a1 + µ1c1)

×
∣∣∣∣{ 1

2δ− σ

2(p(x)− 1)
p− − 1

−
(

2δ− d
2δ− σ

)
×
[(

ln kekσ
)( 2δ− d

2δ− σ

) 2
p−−1
∇p∇d + ∆d

]}∣∣∣∣∣
≤ C3

(
Kekσ

)p(x)−1
(λ1a1 + µ1c1) ln k, σ ≤ d(x) < 2δ.

If k is sufficiently large, let λξ = kα, then we have

C3

(
Kekσ

)p(x)−1
(λ1a1 + µ1c1) ln k = C3 (kM)p(x)−1 (λ1a1 + µ1c1) ln k

≤ λp(x)(λ1a1 + µ1c1),
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then
− ∆p(x)φk1 ≤ λp(x)(λ1a1 + µ1c1), σ ≤ d(x) < 2δ (11)

Since φk1(x), φk2(x) and f , h are monotone, when λ is large enough, we have

−∆p(x)φk1 ≤ λp(x)(λ1a(x) f (φk2) + µ1c(x)h(φk1)), σ ≤ d(x) < 2δ

and
−∆p(x)φk1 = 0 ≤ λp(x)(λ1a1 + µ1c1) ≤ λp(x)(λ1a(x) f (φk2)

+ µ1c(x)h(φk1)), 2δ ≤ d(x). (12)

Combining (10), (12) and (13), we can deduce that

− ∆p(x)φk1 ≤ λp(x)(λ1a(x) f (φk2) + µ1c(x)h(φk1)), a.e. on Ω. (13)

Similarly
− ∆q(x)φk2 ≤ λq(x)(λ2b(x)g(φk1) + µ2d(x)τ(φk2)), a.e. on Ω (14)

From (13) and (14), we can see that (φk1 , φk2) is a subsolution of problem (1).
Step 2. We will construct a supersolution of problem (1), we consider

−∆p(x)zk1 = λp+(λ1a2 + µ1c2)µ in Ω,

−∆q(x)zk2 = λq+(λ1b2 + µ1d2)g(β(λp+(λ1a2 + µ1c2)µ)) in Ω,

zk1 = zk2 = 0 on ∂Ω,

where
β = β(λp+(λ1a2 + µ1c2)µ) = max

x∈Ω
zk1(x).

We shall prove that (zk1 , zk2) is a supersolution of problem (1).
From Lemma 2, we have

max
x∈Ω

zk1(x) ≤ C2
[
λp+(λ1a2 + µ1c2)µ

] 1
p−−1

and
max
x∈Ω

zk2(x) ≤ C2
[
λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))

] 1
q−−1 .

For ψ ∈W1,q(x)
0 (Ω) with ψ > 0, it is easy to see that

∫
Ω

∣∣∇zk2

∣∣q(x)−2∇zk2 .∇ψdx =
∫
Ω

λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))ψdx >

∫
Ω

λq+λ2b(x)g(zk1)ψdx +
∫
Ω

λq+µ2d(x)g(β(λp+(λ1a2 + µ1c2)µ))ψdx.

By (H4), for µ a large enough, using Lemma 2, we have
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g(β(λp+(λ1a2 + µ1c2)µ))

> τ(C2 [λ
q+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))]

1
q−−1 )

> τ(zk2).

(15)

Hence∫
Ω

∣∣∇zk2

∣∣q(x)−2∇zk2 .∇ψdx >
∫
Ω

λq+λ2b(x)g(zk1)ψdx +
∫
Ω

λq+µ2d(x)τ(zk2)ψdx. (16)

Also, for ϕ ∈W1,p(x)(Ω) with ϕ ≥ 0, it is easy to see that∫
Ω

∣∣∇zk1

∣∣p(x)−2∇zk1 .∇ϕdx =
∫
Ω

λp+(λ1a2 + µ1c2)µϕdx.

By (H3), (H4) and Lemma 2, when µ is sufficiently large, we have

(λ1a2 + µ1c2)µ >
1

λp+

[
1

C2
β(λp+(λ1a2 + µ1c2)µ)

]p−−1

> µ1h(β(λp+(λ1a2 + µ1c2)µ))

+λ1 f
(

C2
[
λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))

] 1
q−−1

)
.

Then ∫
Ω

∣∣∇zk1

∣∣p(x)−2∇zk1 .∇ϕdx >
∫
Ω

λp+λ1a(x) f (zk2)ϕdx +
∫
Ω

λp+µ1c(x)h(zk1)ϕdx. (17)

According to (16) and (17), we can conclude that (zk1 , zk2) is a supersolution of problem (1). It only
remains to prove that φk1 ≤ zk1 and φk2 ≤ zk2 .

In the definition of v1(x), let

γ =
2
δ

(
max

Ω
φk1(x) + max

Ω

∣∣∇φk1

∣∣ (x)
)

.

We claim that
φk1(x) ≤ v1(x), ∀x ∈ Ω. (18)

From the definition of v1, it is easy to see that

φk1(x) ≤ 2 max
Ω

φk1(x) ≤ v1(x), when d(x) = δ,

φk1(x) ≤ 2 max
Ω

φk1(x) ≤ v1(x), when d(x) > δ

and
φk1(x) ≤ v1(x) when d(x) < δ.
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Since v1 − φk1 ∈ C1(∂Ωδ), there exists a point x0 ∈ ∂Ωδ, such that

v1(x0)− φk1(x0) = min
x0∈∂Ωδ

(v1(x0)− φk1(x0)).

If v1(x0)− φk1(x0) < 0, It is easy to see that 0 < d(x) < δ and then

∇v1(x0)−∇φk1(x0) = 0.

From the definition of v1,we have

|∇v1(x0)| = γ =
2
δ

(
max

Ω
φk1(x0) + max

Ω

∣∣∇φk1

∣∣ (x0)

)
>
∣∣∇φk1

∣∣ (x0).

It is a contradiction to
∇v1(x0)−∇φk1(x0) = 0.

Thus, (18) is valid.
Obviously, there exists a positive constants C3, such that γ ≤ C3λ.
Since d(x) ∈ C2(∂Ω3δ), according to the proof of Lemma 2, there exists a positive constant C4,

such that
−∆p(x)v1(x) ≤ C∗γp(x)−1+θ ≤ C4λp(x)−1+θ a.e Ω, where θ ∈ (0, 1).

Since η > λp+ is large enough, we have −∆p(x)v1(x) ≤ η.
Under the comparaison principle, we have

v1(x) ≤ w(x), for all x ∈ Ω. (19)

From (18) and (19), when η > λp+ and λ > 1 is sufficiently large, we have

φk1(x) ≤ v1(x) ≤ w(x), for all x ∈ Ω. (20)

According to the comparaison principle, when µ is large enough, we have

v1(x) ≤ w(x) ≤ zk1(x), for all x ∈ Ω.

Combining the definition of v1(x) and (20), it is easy to see that

φk1(x) ≤ v1(x) ≤ w(x) ≤ zk1(x), for all x ∈ Ω.

When µ > 1 and λ is a large enough, from Lemma 2, we can note that
β(λp+(λ1a2 + µ1c2)µ is large enough, then

λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))

is a large enough. Similarly, we have φk2(x) ≤ zk2(x). This completes the proof.

Asymptotic Behavior of Solutions

Definition 2. A measurable funtion u : ΩT → R is an weak solution to hyperbolic systems involving of
(p(x), q(x))−Laplacien (1) in ΩT if u(., 0) = u0 in Ω,

u ∈ C(0, T; L2(Ω)) ∩ Lp(0, T; H1
0(Ω)),

∂u
∂t
∈ L2(ΩT),∇u ∈

(
L2(ΩT)

)N
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and for all ϕ ∈ C1(ΩT) and ψ ∈ C1(ΩT), we have

T∫
0

∫
Ω

∂u
∂t

ϕdxdt +
T∫

0

∫
Ω
|∇u|p(x)−2∇u∇ϕdxdt +

T∫
0

∫
Ω
(−λp(x)µ1c(x)h(u))ϕdxdt

=

T∫
0

∫
Ω

λp(x)λ1a(x) f (v)ϕdxdt (21)

Lemma 3.

T∫
0

∫
Ω

∂v
∂t

ψdxdt +
T∫

0

∫
Ω
|∇v|q(x)−2∇v∇ψdxdt +

T∫
0

∫
Ω
(−λq(x)λ2b(x)g(u))ψdxdt

=

T∫
0

∫
Ω

λq(x)µ2d(x)σ(v)ψdxdt

Lemma 4. Let u, u be the solutions of (1) with u (x, 0) = ϕ1, u (x, 0) = ϕ2Than u(x, t) is nondercreasing in
t , u (x, t) is nonincreasing and u > u for all t ≥ 0, x ∈ Ω

Theorem 2. Let hypotheses (H1), (H2) and (H3) be satisfied. and let u (x, t) the solution of a new class of
hyperbolic systems (1) with Ψ ∈ S∗ than

lim
t→∞

u (x, t) =

{
us (x) if ûs ≤ Ψ ≤ us
us (x) if us ≤ Ψ ≤ ũs

.

Proof. The pair (us, ûs) and the pair (ũs, us) are both sub-super solutions of (4), the maximale and
minimale property of us and us in S∗ ensures that:

us is the unique solution in [ûs, us] and us is the unique solution in [us, ũs].

4. Conclusions

Our result is an extension for our previous study in ( [2,7,8]) which studied the stationary case,
this idea is new for evolutionary case of this kind of problem, This paper deals with the existence
of positively solution and its asymptotic behavior for parabolic system of (p(x), q(x))-Laplacian
system of partial differential equations using a sub and super solution according to some given
boundary conditions, which is familiar in physics, since it appears clearly natural in inflation cosmology
and supersymmetric filed theories, quantum mechanics, and nuclear physics (see [3,14]). This sort
of problem has many applications in several branches of physics such as nuclear physics, optics,
and geophysics (see [7,15]). In future work, we will try to extend this study for the hyperbolic case of
the presented problem, but by using the semigroup theory.
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