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Abstract

:

This paper deals with the existence of positively solution and its asymptotic behavior for parabolic system of (p(x),q(x))-Laplacian system of partial differential equations using a sub and super solution according to some given boundary conditions, Our result is an extension of Boulaaras’s works which studied the stationary case, this idea is new for evolutionary case of this kind of problem.
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1. Introduction


In this paper, we consider the following evolutionary problem: find u∈L2(0,T,H01(Ω)) solution of


∂u∂t−Δp(x)u=λp(x)λ1a(x)f(v)+μ1c(x)h(u)inQT=(0,T)×Ω,∂v∂t−Δq(x)v=λq(x)λ2b(x)g(u)+μ2d(x)τ(v)inQT=(0,T)×Ω,u=v=0on∂QT=(0,T)×∂Ω,u(x,0)=κ1(x),u(x,0)=κ2(x),



(1)




where Ω⊂RN is a bounded domain and the functions p(x),q(x) belong to C1(Ω¯) and satisfying the following conditions:


1<p−:=infx∈Ωp(x)≤p+:=supΩp(x)<∞,1<q−:=infx∈Ωq(x)≤q+:=supx∈Ωq(x)<∞



(2)




and satisfy some natural growth condition at u=∞.



Δp(x) is given by Δp(x)u=div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, the parameters λ,λ1,λ2,μ1 and μ2 are positive with a,b,c,d are regular functions. In addition we did not consider any sign condition on f0,g0,h0,τ0.



The linear and nonlinear stationary equations with operators of quasilinear homogeneous type as p-Laplace operator can be carried out according to the standard Sobolev spaces theory of Wm,p, and thus we can find the weak solutions. The last spaces consist of functions having weak derivatives which verify some conditions of integrability. Thus, we can have the nonhomogeneous case of p(.)-Laplace operators in this last condition. We will use Sobolev spaces of the exponential variable in our standard framework, so that Lp.Ω will be used instead of Lebesgue spaces LpΩ.



We denote new Sobolev space by Wm,pΩ, if we replace LpΩ by Lp.Ω, the Sobolev spaces becomes Wm,p.Ω. Several Sobolev spaces properties have been extended to spaces of Orlicz-Sobolev, particularly by O’Neill in the reference ([1]). The spaces Wm,p.Ω and Lp.Ω have been carefully studied by many researchers team (see the references ([2] and [3,4,5]).



Here, in our study we consider the boundedness condition in domain Ω, because many results under p-Laplacian theory are not usually verified for the p(x)-Laplacian theory; for that in ([6]) the quotient


λpx=infu∈W01,pxΩ∖0∫Ω1p(x)∇up(x)dx∫Ω1p(x)up(x)dx



(3)




becomes 0 generally. Then λpx can be positive only for some given conditions. In fact, the first eigenvalue of p(x)-Laplacian and its associated eigenfunction cannot exist, the existence of the positive first eigenvalue λp and getting its eigenfunction are very important in the p-Laplacian problem study. Therefore, the study of existence of solutions of our problems have more meaning. Many studies of the experimental side have been studied on various materials that rely on this advanced theory, as they are important in electrical fluids, which states that viscosity relates to the electric field in a certain liquid.



Recently, in ([2,6,7,8]), we have proved the existence of positive solutions of many classes of p(x),q(x)-Laplacian stationary problems by using the sub -super solution concept. The current results are an extension of our previous stationary study to the parabolic case, where we follow-up the same procedures mathematical proofs similar to that in ([2,7]) by using difference time scheme taking into consideration the stability analysis of the used scheme and the same conditions which have given in references mentioned earlier. Our result is an extension for our previous study in ( [2,7,9]) which studied the stationary case, this idea is new for evolutionary case of this kind of problem.



The outline of paper consists as follow: In first section we give some definitions, basic theorems and necessarily propositions in the functional analysis which will be used in our study. Then in Section 3, we prove our main result.




2. Preliminaries Results and Assumptions


In order to discuss problem (1), we need some theories on W01,pxΩ which we call variable exponent Sobolev space. Firstly we state some basic properties of spaces W01,pxΩ which will be used later (for details, see [10]).



Let us define


LpxΩ=u:uisameasurablereal-valuedfunctionsuchthat∫Ωuxpxdx<∞.











We introduce the norm on LpxΩ by


uxpx=infλ>0:∫Ωuxλpxdx≤1








and


W1,pxΩ=u∈LpxΩ;∇u∈LpxΩ,








with the norm


u=upx+∇upx,∀u∈W1,pxΩ.











We denote by W01,pxΩ the closure of C0∞Ω in W1,pxΩ.



We introduce in this applying for problem (2), we will assume that:

	
(H1)p,q∈C1(Ω¯) and 1<p−<p+,1<q−<q+;



	
(H2)f,g,h and τ:0,+∞→R are C1, monotone functions, such that


limu→+∞f(uk)=+∞limu→+∞g(uk)=+∞,limu→+∞h(uk)=+∞,limu→+∞τ(uk)=+∞,











	
(H3)limu→+∞f(M(g(uk))1q−−1)ukp−−1=0, for all M>0;



	
(H4) limu→+∞h(uk)ukp−−1=0, and limu→+∞τ(uk)ukp−−1=0;



	
(H5)a,b,c,d:Ω¯→(0,+∞) are contionous functions, such that


a1=minx∈Ω¯a(x),b1=minx∈Ω¯b(x),c1=minx∈Ω¯c(x),d1=minx∈Ω¯d(x),










a2=maxx∈Ω¯a(x),b2=maxx∈Ω¯b(x),c2=maxx∈Ω¯c(x),d2=maxx∈Ω¯d(x).
















The Semi-Discrete Problem


We discrete the problem (1) by difference time scheme, we obtain the following problems


uk−τ′Δp(x)uk=τ′λp(x)λ1a(x)f(v)+μ1c(x)h(uk)+uk−1inΩ,vk−τ′Δq(x)v=τ′λq(x)λ2b(x)g(uk)+μ2d(x)τ(v)+vk−1inΩ,uk=v=0on∂Ω,u0=φ0,



(4)




where Nτ′=T,0<τ′<1, and for 1≤k≤N.



We define


L(uk),v=∫Ω∇ukp(x)−2∇uk∇vdx,∀uk,v∈W01,p(x)(Ω).











According to ([11] in Theorem 3.1), the bounded operator L:W01,p(x)(Ω)→W01,p(x)(Ω)∗ is a continuous and strictly monotone, and it is a homeomorphism.



We considere mapping A:W01,p(x)(Ω)→W01,p(x)(Ω)∗ as


A(uk),φ=∫Ω∇ukp(x)−2∇uk∇φ+h(x,uk)φdx,foralluk,v∈W01,p(x)(Ω),








where h(x,uk) is continuous on Ω¯×R, and h(x,.) is increasing function.It is easy to verify that A is a continuous bounded mapping. By the proof ([12]).



Definition 1.

An weak solution to discretized problems (Pk) is a sequence (uk,v)0≤k≤N such that u0=φ0 and (uk,v) is defined by


uk−τ′Δp(x)uk=τ′λp(x)λ1a(x)f(v)+μ1c(x)h(uk)+uk−1inΩ,vk−τ′Δq(x)v=τ′λq(x)λ2b(x)g(uk)+μ2d(x)τ(v)+vk−1inΩ,uk=v=0on∂Ω,








such that


−Δp(x)uk=λp(x)λ1a(x)f(v)+μ1c(x)h(uk)−uk−uk−1τ′inΩ,−Δq(x)v=λq(x)λ2b(x)g(uk)+μ2d(x)τ(v)−vk−vk−1τ′inΩ,uk=v=0on∂Ω.



(5)







We have the following:



(1) If (uk,v)∈W01.p(x)(Ω)×W01.q(x)(Ω),(uk,v) is called a weak solution of (5) if it satisfies


∫Ω∇ukp(x)−2∇uk.∇φdx=∫Ωλp(x)λ1a(x)f(v)+μ1c(x)h(uk)−uk−uk−1τ′φdx,










∫Ω∇vq(x)−2∇v.∇ψdx=∫Ωλq(x)λ2b(x)g(uk)+μ2d(x)τ(v)−vk−vk−1τ′ψdx.



(6)




for all


(φ,ψ)∈W01.p(.)(Ω)×W01.q(.)(Ω)








with (φ,ψ)⩾0.



(2) We say called a sub solution (respectively a super solution) of (1) if


∫Ω∇ukp(x)−2∇uk.∇φdx≤(respectively⩾)∫Ωλp(x)λ1a(x)f(v)+μ1c(x)h(uk)−uk−uk−1τ′φdx,










∫Ω∇vq(x)−2∇v.∇ψdx≤(respectively⩾)∫Ωλq(x)λ2b(x)g(uk)+μ2d(x)τ(v)−vk−vk−1τ′ψdx.













Lemma 1.

(Comparison principle) Let uk,v∈W01,p(x)(Ω) verify Auk−Av⩾0 in W01,p(x)(Ω)∗,φ(x)=minuk(x)−v(x),0. If φ(x)∈W01,p(x)(Ω) (i.e., uk⩾v on ∂Ω), then uk⩾v a.e in Ω.





Here, we will use the notation d(x,∂Ω) to denote the distance of x∈Ω to denote the distance of Ω.



Denote d(x)=d(x,∂Ω) and ∂Ωε=x∈Ω:d(x,∂Ω)<ε.



Since ∂Ω is C2 regularly, there exists a constant δ∈(0,1) such that d(x)∈C2(∂Ω¯3δ) and |∇d(x)|=1.



Denote also


v1(x)=γd(x),d(x)<δ,γδ+∫δd(x)γ(2δ−tδ)2p−−1(λ1a1+μ1c1)2p−−1dt,δ≤d(x)≤2δ,γδ+∫δ2δγ(2δ−tδ)2p−−1(λ1b1+μ1d1)2p−−1dt,2δ≤d(x)








and


v2(x)=γd(x),d(x)<δ,γδ+∫δd(x)γ(2δ−tδ)2p−−1(λ2a2+μ2c2)2q−−1dt,δ≤d(x)≤2δ,γδ+∫δ2δγ(2δ−tδ)2p−−1(λ2b2+μ2d2)2q−−1dt,2δ≤d(x).











Obviously,


0≤v1(x),v2(x)∈C1(Ω¯).











Considering


−Δp(x)w(x)=ηinΩw=0on∂Ω.



(7)







Lemma 2.

([13]), If positive parameter η is large enough and w is the unique solution of (7), then we have

	(i) 

	
For any θ∈(0,1) there exists a positive constant C1, such that


C1η1p+−1+θ≤maxx∈Ω¯w(x).












	(ii) 

	
There exists a positive constant C2, such that


maxx∈Ω¯w(x)≤C2η1p−−1





















3. Main Result


In the following, once we have no misunderstanding, we always use Ci to denote the positive constants.



Theorem 1.

Assume that the conditions (H1)–(H5) are statisfied.Then, problem (1) has a positive solution when λ is large enough.





Proof. 

We establish Theorem 1 by constructing a positive subsolution (ϕk1,ϕk2) and supersolution (zk1,zk2) of (1) such that ϕk1≤zk1 and ϕk2≤zk2, that is (ϕk1,ϕk2) and (zk1,zk2) satisfies


∫Ω∇ϕk1p(x)−2∇ϕk1.∇φdx≤∫Ωλp(x)λ1a(x)f(ϕk2)+μ1c(x)h(ϕk1)−ϕk1−ϕk1−1τ′φdx,∫Ω∇ϕk2q(x)−2∇ϕk2.∇ψdx≤∫Ωλq(x)λ2b(x)g(ϕk1)+μ2d(x)τ(ϕk2)−ϕk1−ϕk1−1τ′ψdx,








and


∫Ω∇zk1p(x)−2∇zk1.∇φdx≥∫Ωλp(x)λ1a(x)f(zk2)+μ1c(x)h(zk1)−zk1−zk1−1τ′φdx,∫Ω∇zk2q(x)−2∇zk2.∇ψdx≥∫Ωλq(x)λ2b(x)g(zk1)+μ2d(x)τ(zk2)−zk1−zk1−1τ′ψdx,








for all (φ,ψ)∈W01.p(x)(Ω)×W01.q(x)(Ω) with (φ,ψ)⩾0. According to the sub-super solution method for (p(x),q(x))—Laplacian systems see ([9,13]), the problem (1) has a positive solution.



Step 1. We will construct a subsolution of (1). Let σ∈(0,δ) is small enough. Denote


ϕk1(x)=ekd(x)−1,d(x)<σ,ekd(x)−1+∫δd(x)kekσ(2δ−t2δ−σ)2p−−1dt,σ≤d(x)<2δ,ekd(x)−1+∫σ2δkekσ(2δ−t2δ−σ)2p−−1dt,2δ≤d(x)








and


ϕk2(x)=ekd(x)−1,d(x)<σ,ekd(x)−1+∫δd(x)kekσ(2δ−t2δ−σ)2q−−1dt,σ≤d(x)<2δ,ekd(x)−1+∫σ2δkekσ(2δ−t2δ−σ)2q−−1dt,2δ≤d(x).











It easy to see that ϕk1,ϕk2∈C1(Ω¯).



Denote


α=mininfp(x)−14(sup∇p(x)+1),infq(x)−14(sup∇q(x)+1),1








and


ξ=minλ1a1f(0)+μ1c1h(0),λ2b1g(0)+μ2d1σ(0),−1.











By some simple computations we obtain


−Δp(x)ϕk1=−k(ekd(x))p(x)−1(p(x)−1)+(d(x)+lnkk)∇p∇d+Δdk,d(x)<σ12δ−σ2(p(x)−1)p−−1−2δ−d2δ−σ(lnkekσ)2δ−d2δ−σ2p−−1∇p∇d+Δd×(Kekσ)p(x)−12δ−d2δ−σ2(p(x)−1)p−−1−1,σ≤d(x)<2δ,0,2δ≤d(x)








and


−Δp(x)ϕk2=−k(ekd(x))q(x)−1(q(x)−1)+(d(x)+lnkk)∇q∇d+Δdk,d(x)<σ,12δ−σ2(q(x)−1)q−−1−2δ−d2δ−σ(lnkekσ)2δ−d2δ−σ2q−−1∇q∇d+Δd×(Kekσ)q(x)−12δ−d2δ−σ2(q(x)−1)q−−1−1,σ≤d(x)<2δ,0,2δ≤d(x).











From (H3) there exists a positive constant M>1 such that


f(M−1)⩾1,g(M−1)⩾1,h(M−1)⩾1,σ(M−1)⩾1.











Let σ=1klnM, then


σk=lnM.



(8)







If k is sufficiently large, from (8), we have


−Δp(x)ϕk1≤−kp(x)α,d(x)<σ.



(9)







Let λξ=kα, then


kp(x)α⩾−λp(x)ξ.











From (9), we have


−Δp(x)ϕk1≤λp(x)ξ≤λp(x)(λ1a1f(0)+μ1c1h(0))≤λp(x)(λ1a(x)f(ϕk2)+μ1c(x)h(ϕk1)),d(x)<σ.



(10)







Since d(x)∈C2(∂Ω3δ¯), there exists a positive constant C3, such that


−Δp(x)ϕk1≤(Kekσ)p(x)−12δ−d2δ−σ2(p(x)−1)p−−1−1(λ1a1+μ1c1)×12δ−σ2(p(x)−1)p−−1−2δ−d2δ−σ×lnkekσ2δ−d2δ−σ2p−−1∇p∇d+Δd≤C3Kekσp(x)−1(λ1a1+μ1c1)lnk,σ≤d(x)<2δ.











If k is sufficiently large, let λξ=kα, then we have


C3Kekσp(x)−1(λ1a1+μ1c1)lnk=C3kMp(x)−1(λ1a1+μ1c1)lnk≤λp(x)(λ1a1+μ1c1),








then


−Δp(x)ϕk1≤λp(x)(λ1a1+μ1c1),σ≤d(x)<2δ



(11)







Since ϕk1(x), ϕk2(x) and f,h are monotone, when λ is large enough, we have


−Δp(x)ϕk1≤λp(x)(λ1a(x)f(ϕk2)+μ1c(x)h(ϕk1)),σ≤d(x)<2δ








and


−Δp(x)ϕk1=0≤λp(x)(λ1a1+μ1c1)≤λp(x)(λ1a(x)f(ϕk2)+μ1c(x)h(ϕk1)),2δ≤d(x).



(12)







Combining (10), (12) and (13), we can deduce that


−Δp(x)ϕk1≤λp(x)(λ1a(x)f(ϕk2)+μ1c(x)h(ϕk1)),a.e.onΩ.



(13)







Similarly


−Δq(x)ϕk2≤λq(x)(λ2b(x)g(ϕk1)+μ2d(x)τ(ϕk2)),a.e.onΩ



(14)







From (13) and (14), we can see that (ϕk1,ϕk2) is a subsolution of problem (1).



Step 2. We will construct a supersolution of problem (1), we consider


−Δp(x)zk1=λp+(λ1a2+μ1c2)μinΩ,−Δq(x)zk2=λq+(λ1b2+μ1d2)g(β(λp+(λ1a2+μ1c2)μ))inΩ,zk1=zk2=0on∂Ω,








where


β=β(λp+(λ1a2+μ1c2)μ)=maxx∈Ω¯zk1(x).











We shall prove that (zk1,zk2) is a supersolution of problem (1).



From Lemma 2, we have


maxx∈Ω¯zk1(x)≤C2λp+(λ1a2+μ1c2)μ1p−−1








and


maxx∈Ω¯zk2(x)≤C2λq+(λ2b2+μ2d2)g(β(λp+(λ1a2+μ1c2)μ))1q−−1.











For ψ∈W01,q(x)(Ω) with ψ⩾0, it is easy to see that


∫Ω∇zk2q(x)−2∇zk2.∇ψdx=∫Ωλq+(λ2b2+μ2d2)g(β(λp+(λ1a2+μ1c2)μ))ψdx⩾∫Ωλq+λ2b(x)g(zk1)ψdx+∫Ωλq+μ2d(x)g(β(λp+(λ1a2+μ1c2)μ))ψdx.











By (H4), for μ a large enough, using Lemma 2, we have


g(β(λp+(λ1a2+μ1c2)μ))⩾τ(C2λq+(λ2b2+μ2d2)g(β(λp+(λ1a2+μ1c2)μ))1q−−1)⩾τ(zk2).



(15)







Hence


∫Ω∇zk2q(x)−2∇zk2.∇ψdx⩾∫Ωλq+λ2b(x)g(zk1)ψdx+∫Ωλq+μ2d(x)τ(zk2)ψdx.



(16)







Also, for φ∈W1,p(x)(Ω) with φ≥0, it is easy to see that


∫Ω∇zk1p(x)−2∇zk1.∇φdx=∫Ωλp+(λ1a2+μ1c2)μφdx.











By (H3),(H4) and Lemma 2, when μ is sufficiently large, we have


(λ1a2+μ1c2)μ⩾1λp+1C2β(λp+(λ1a2+μ1c2)μ)p−−1⩾μ1h(β(λp+(λ1a2+μ1c2)μ))+λ1fC2λq+(λ2b2+μ2d2)g(β(λp+(λ1a2+μ1c2)μ))1q−−1.











Then


∫Ω∇zk1p(x)−2∇zk1.∇φdx⩾∫Ωλp+λ1a(x)f(zk2)φdx+∫Ωλp+μ1c(x)h(zk1)φdx.



(17)







According to (16) and (17), we can conclude that (zk1,zk2) is a supersolution of problem (1). It only remains to prove that ϕk1≤zk1 and ϕk2≤zk2.



In the definition of v1(x), let


γ=2δmaxΩ¯ϕk1(x)+maxΩ¯∇ϕk1(x).











We claim that


ϕk1(x)≤v1(x),∀x∈Ω.



(18)







From the definition of v1, it is easy to see that


ϕk1(x)≤2maxΩ¯ϕk1(x)≤v1(x),whend(x)=δ,










ϕk1(x)≤2maxΩ¯ϕk1(x)≤v1(x),whend(x)⩾δ








and


ϕk1(x)≤v1(x)whend(x)<δ.











Since v1−ϕk1∈C1(∂Ωδ¯), there exists a point x0∈∂Ωδ¯, such that


v1(x0)−ϕk1(x0)=minx0∈∂Ωδ¯(v1(x0)−ϕk1(x0)).











If v1(x0)−ϕk1(x0)<0, It is easy to see that 0<d(x)<δ and then


∇v1(x0)−∇ϕk1(x0)=0.











From the definition of v1, we have


∇v1(x0)=γ=2δmaxΩ¯ϕk1(x0)+maxΩ¯∇ϕk1(x0)>∇ϕk1(x0).











It is a contradiction to


∇v1(x0)−∇ϕk1(x0)=0.











Thus, (18) is valid.



Obviously, there exists a positive constants C3, such that γ≤C3λ.



Since d(x)∈C2(∂Ω3δ¯), according to the proof of Lemma 2, there exists a positive constant C4, such that


−Δp(x)v1(x)≤C∗γp(x)−1+θ≤C4λp(x)−1+θa.eΩ,whereθ∈(0,1).











Since η⩾λp+ is large enough, we have −Δp(x)v1(x)≤η.



Under the comparaison principle, we have


v1(x)≤w(x),forallx∈Ω.



(19)







From (18) and (19), when η⩾λp+ and λ⩾1 is sufficiently large, we have


ϕk1(x)≤v1(x)≤w(x),forallx∈Ω.



(20)







According to the comparaison principle, when μ is large enough, we have


v1(x)≤w(x)≤zk1(x),forallx∈Ω.











Combining the definition of v1(x) and (20), it is easy to see that


ϕk1(x)≤v1(x)≤w(x)≤zk1(x),forallx∈Ω.











When μ⩾1 and λ is a large enough, from Lemma 2, we can note that



β(λp+(λ1a2+μ1c2)μ is large enough, then


λq+(λ2b2+μ2d2)g(β(λp+(λ1a2+μ1c2)μ))








is a large enough. Similarly, we have ϕk2(x)≤zk2(x). This completes the proof. □





Asymptotic Behavior of Solutions


Definition 2.

A measurable funtion u:ΩT→R is an weak solution to hyperbolic systems involving of (p(x),q(x))—Laplacien (1) in ΩT if u(.,0)=u0 in Ω,


u∈C(0,T;L2(Ω))∩Lp(0,T;H01(Ω)),










∂u∂t∈L2(ΩT),∇u∈(L2(ΩT))N








and for all φ∈C1(ΩT) and ψ∈C1(ΩT), we have


∫0T∫Ω∂u∂tφdxdt+∫0T∫Ω∇up(x)−2∇u∇φdxdt+∫0T∫Ω(−λp(x)μ1c(x)h(u))φdxdt=∫0T∫Ωλp(x)λ1a(x)f(v)φdxdt



(21)









Lemma 3.



∫0T∫Ω∂v∂tψdxdt+∫0T∫Ω∇vq(x)−2∇v∇ψdxdt+∫0T∫Ω(−λq(x)λ2b(x)g(u))ψdxdt=∫0T∫Ωλq(x)μ2d(x)σ(v)ψdxdt













Lemma 4.

Let u̲,u¯ be the solutions of (1) with u̲x,0=φ1,u¯x,0=φ2 Than u̲x,t is nondercreasing in t, u¯x,t is nonincreasing and u¯>u̲ for all t≥0,x∈Ω





Theorem 2.

Let hypotheses (H1),(H2) and (H3) be satisfied. and let ux,t the solution of a new class of hyperbolic systems (1) with Ψ∈S∗ than


limt→∞ux,t=u̲sxifu^s≤Ψ≤u̲su¯sxifu¯s≤Ψ≤u˜s








.





Proof. 

The pair u̲s,u^s and the pair u˜s,u¯s are both sub-super solutions of (4), the maximale and minimale property of u¯s and u̲s in S∗ ensures that:



u̲s is the unique solution in u^s,u̲s and u¯s is the unique solution in u¯s,u˜s. □







4. Conclusions


Our result is an extension for our previous study in ( [2,7,8]) which studied the stationary case, this idea is new for evolutionary case of this kind of problem, This paper deals with the existence of positively solution and its asymptotic behavior for parabolic system of (p(x),q(x))-Laplacian system of partial differential equations using a sub and super solution according to some given boundary conditions, which is familiar in physics, since it appears clearly natural in inflation cosmology and supersymmetric filed theories, quantum mechanics, and nuclear physics (see [3,14]). This sort of problem has many applications in several branches of physics such as nuclear physics, optics, and geophysics (see [7,15]). In future work, we will try to extend this study for the hyperbolic case of the presented problem, but by using the semigroup theory.
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